Messgeräte zur Bestimmung der Radon-Aktivitätskonzentration oder der Radonexposition – Vergleichsprüfung 2011

Instruments to Measure Radon Activity Concentration or Exposure to Radon – Interlaboratory Comparison 2011

Fachbereich
Strahlenschutz und Umwelt

Elisabeth Foerster
Thomas Beck
Helmut Buchröder
Joachim Döring
Volkmar Schmidt
Bitte beziehen Sie sich beim Zitieren dieses Dokuments immer auf folgende URN:

urn:nbn:de:0221-201109216413

Zur Beachtung:

Salzgitter, Oktober 2011
Messgeräte zur Bestimmung der Radon-Aktivitätskonzentration oder der Radonexposition – Vergleichsprüfung 2011

Instruments to Measure Radon Activity Concentration or Exposure to Radon – Interlaboratory Comparison 2011

Fachbereich
Strahlenschutz und Umwelt

Elisabeth Foerster
Thomas Beck
Helmut Buchröder
Joachim Döring
Volkmar Schmidt
SUMMARY

According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices ..., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices.

Passive radon measurement devices\(^1\) using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if

- the devices are issued by recognized radon measurement services, and
- the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by BfS.

A radon measuring service is recognized by the competent authority if it proves its organizational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily.

The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the website www.bfs.de/de/ion/radon/fachinfo_messung/vergleichspruefungen.html and from the European Information System on Proficiency Testing Schemes (eptis) available in the internet.

Organisational course

Radon services which intend to participate submit a sufficient number of devices of the same type to BfS. The number depends on type and the need for transit devices. Transit devices are used for the measurement of effects during storage and delivery. Paragraph 2.2, Table 1 gives the numbers of devices needed for the different test procedures.

Radon devices submitted for the intercomparison remain in their original packaging and are stored under monitored conditions in a room with low radon concentration. In order to prepare the tests, the devices are randomized and grouped to exposure groups of identical size. In case of determining effects during storage and delivery, additional groups (transit groups) are arranged which will not be exposed to radon. After unpacking and preparing the radon devices are stored in an air-conditioned room with low radon concentration (storage room) until start of the exposures. Devices of transit groups remain in the storage room for the whole time. Exposures during the storage are low related to the lowest reference exposure level and negligible with respect to its measurement uncertainty (see Paragraph A.3 and Paragraph A.4, Table A.4-1.).

After exposure, radon devices are stored in fresh air for about one hour to ventilate and to diminish the radon inside. Devices with nuclear track detectors or electrets are put back into the

\(^1\) The term “passive” means in this case that the sensor consisting of a detector housed in a chamber has no electrical circuits to register radiation effects. The measurement value is only indicated by chemical and/or physical processing of the detector after finishing exposure.
air-conditioned storage room afterwards. After all exposures have taken place, the radon devices are delivered back to the services. Devices with activated charcoal are delivered back by parcel service immediately after finishing each single exposure.

Radon services determine the exposures to radon for devices with solid state nuclear track detectors or electrets or the average radon activity concentrations for devices with activated charcoal and transmit the results back to BfS for summarising and reporting. Radon services get a certificate each with their own results.

Reference atmospheres for radon

The Radon Calibration Service Laboratory at BfS is accredited by the German Accreditation Body Deutsche Akkreditierungsstelle GmbH (DAkkS) according to EN ISO/IEC 17025 for the measurands radon-222 activity concentration and potential alpha energy concentration of short-lived radon-222 decay products.

The equipment of the Radon Calibration Service Laboratory consists of two walk-in chambers (30 m³ and 11 m³) and five 0.4-m³-containers all made of stainless steel, and of supplementary technical devices (Paragraph 3.1, Figure 1). Each unit, i.e. the chambers and the five containers, is equipped with sensors to measure quantities of radon activity concentration, temperature and humidity. For the purpose of measuring radon activity concentration flow-through scintillation cells, traced back to national standard, are used. With this equipment all parameters influencing the reference atmosphere are monitored permanently. The values from these on-line measurements are displayed on the screen of the control panel and are continuously registered. The radon activity concentration in the containers can be adjusted to values in the range from 500 to 100,000 Bq/m³.

External recalibrations are carried out on the basis of standards, which can be traced back to the national standards of the German federal metrology institute Physikalisch-Technische Bundesanstalt (PTB), using a radon transfer standard as reference standard, and occasionally also certified gas standards of PTB. A commercial radon measuring instrument specially reserved as a transfer standard is used.

Special care is needed for the exposure of devices with activated charcoal. Because of the high adsorption rate of activated charcoal high volume reference atmospheres are used to prevent large inhomogeneties and to reduce uncertainties in the monitoring of radon activity concentration. Therefore devices with activated charcoal are exposed separately in a 30-m³-chamber. Measures for quality assurance are analogous to those described for the 0.4-m³-containers.

Radon activity concentration and climatic parameters for each reference atmosphere used for the interlaboratory comparison are given in the attachment. Different exposures to radon are achieved by different levels of radon activity concentrations and/or limiting of duration of exposure. The duration of exposures is long enough to minimize uncertainties caused by taking radon devices in and out of the atmosphere.

Results

The results of the interlaboratory comparison are given in the attachment. Paragraph 4, Figures 2 to 5 show the summarised results for devices with solid state nuclear track detectors and electrets. Box plots indicate the scattering of values measured around the reference value.
INHALTSVERZEICHNIS

1 EINLEITUNG ...6
 1.1 Rechtliche Grundlagen und Festlegungen..6
 1.2 Zweck der Vergleichsprüfungen...6
2 ORGANISATION ..7
 2.1 Qualitätssicherung ..7
 2.2 Anzahl der zu prüfenden Messgeräte eines Typs..7
 2.3 Ablauf der Vergleichsprüfungen...8
3 EXPOSITIONEN ...9
 3.1 Herstellung von Radon-Referenzatmosphären ...9
 3.2 Raum zur Lagerung der Messgeräte ..10
 3.3 Exposition von Messgeräten in Radon-Referenzatmosphären..11
4 ERGEBNISSE DER VERGLEICHSPRÜFUNGEN ...12
5 LITERATUR ..15

ANHANG: TABELLEN UND ABBILDUNGEN ZUR VERGLEICHSPRÜFUNG 2011
ATTACHMENT: TABLES AND FIGURES OF THE INTERLABORATORY COMPARISON 2011

A.1 MESSSTELLEN, DIE AN DEN VERGLEICHSPRÜFUNGEN 2011 TEILGENOMMEN HABEN RADON
SERVICES, PARTICIPATED IN THE INTERCOMPARISON 2011 ...17
A.2 MESSGERÄTETYPEN INSTRUMENT TYPES ..20
A.3 PARAMETER DER ATMOSPHÄRE IM LAGERRAUM PARAMETER OF THE ATMOSPHERE IN THE
STORAGE ROOM ..27
A.4 VERGLEICHSPRÜFUNG FÜR MESSGERÄTE MIT FESTKÖRPERSPUR- UND ELEKTRETDETEKTOREN
INTERCOMPARISON FOR MEASURING INSTRUMENTS USING SOLID STATE NUCLEAR TRACK
DETECTORS AND ELECTRETS ..28
A.5 VERGLEICHSPRÜFUNG FÜR MESSGERÄTE MIT AKTIVKOHLE INTERCOMPARISON FOR MEASURING
INSTRUMENTS USING ACTIVATED CHARCOAL ..31
A.6 ERGEBNISSE DER VERGLEICHSPRÜFUNG: ANZEIGEWERTE DER NICHTEXPONIERTEN
MESSGERÄTE MIT FESTKÖRPERSPUR- UND ELEKTRETDETEKTOREN (TRANSPORT- UND
LAGERUNGSEFFEKT) RESULTS OF THE INTERCOMPARISON: INDICATION OF NON-EXPOSED
INSTRUMENTS USING SOLID STATE NUCLEAR TRACK DETECTORS AND ELECTRETS (INFLUENCES
OF TRANSIT AND STORAGE) ...34
A.7 ERGEBNISSE DER VERGLEICHSPRÜFUNG: MESSGERÄTE MIT FESTKÖRPERSPUR- UND
ELEKTRETDETEKTOREN RESULTS OF THE INTERCOMPARISON: MEASURING INSTRUMENTS USING
SOLID STATE NUCLEAR TRACK DETECTORS AND ELECTRETS ...37
A.8 ERGEBNISSE DER VERGLEICHSPRÜFUNG: MESSGERÄTE MIT AKTIVKOHLE RESULTS OF
INTERCOMPARISON: MEASURING INSTRUMENTS USING ACTIVATED CHARCOAL46
1 EINLEITUNG

1.1 Rechtliche Grundlagen und Festlegungen

1.2 Zweck der Vergleichsprüfungen

Die Vergleichsprüfungen werden jährlich von der Leitstelle für Fragen der Radioaktivitätsüberwachung bei erhöhter natürlicher Radioaktivität des Bundesamtes für

² Messgeräte mit Aktivkohle werden in der Regel nur wenige Tage exponiert und aus diesem Grund nicht für die Langzeitüberwachung an Arbeitsplätzen eingesetzt.
Strahlenschutz durchgeführt. Messstellen, die in der Bundesrepublik Messgeräte zur Überwachung beruflicher Strahlenexpositionen durch Radon und Radonzerfallsprodukte ausgeben, sind entsprechend der Richtlinie für die Überwachung der Strahlenexposition bei Arbeiten nach Teil 3 Kapitel 2 Strahlenschutzverordnung verpflichtet, an den Vergleichsprüfungen regelmäßig teilzunehmen [3].

Messstellen, die Messungen der Radon-Aktivitätskonzentration in Häusern, im Freien oder zu anderen Zwecken durchführen, die nicht im Zusammenhang mit der Überwachung beruflich strahlenexponierter Personen stehen, wird empfohlen, ebenfalls an den Vergleichs- und Eignungsprüfungen teilzunehmen. Die Teilnahme soll das Vertrauen des Kunden in die durchgeführten Messungen und die Akzeptanz in die erhaltenen Ergebnisse erhöhen.

2 ORGANISATION

2.1 Qualitätssicherung

2.2 Anzahl der zu prüfenden Messgeräte eines Typs

Tabelle 1: Anzahl der durch eine Messstelle einzureichenden Messgeräte

<table>
<thead>
<tr>
<th>Prüfplan</th>
<th>Messgeräte zur Exposition unter Referenzbedingungen</th>
<th>Messgeräte zur Ermittlung von Expositionen durch Lagerung und Transport</th>
<th>Messgerätetyp bzw. Detektortyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test procedure</td>
<td>Number of Instruments to be tested</td>
<td>Number of non-exposed instruments (correction of transit and storage effects)</td>
<td>Type of instrument to which the test procedure is preferentially applied</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>0</td>
<td>Aktivkohlesammler (Activated charcoal)</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>6</td>
<td>Elektretendetektoren (Electrets)</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>7</td>
<td>Festkörperspurdetektoren (Nuclear Track Detectors)</td>
</tr>
</tbody>
</table>

2.3 Ablauf der Vergleichsprüfungen

Die Vergleichsprüfungen für passive Radonmessgeräte werden ca. 2 – 3 Monate vor Beginn auf der Internetseite des Bundesamtes für Strahlenschutz sowie durch Anschreiben der Teilnehmer vorangegangener Vergleichsprüfungen bekannt gegeben. Weitere allgemeine Informationen werden im Europäischen Informationssystem über Eignungsprüfungen (eptis) bereitgestellt, das als Internetdatenbank (http://www.eptis.bam.de) verfügbar ist.

Messstellen, die beabsichtigen an den Vergleichsprüfungen teilzunehmen, reichen bis zu dem in der Ankündigung genannten Termin für jeden Messgerätetyp eine entsprechend Tabelle 1 bestimmte Anzahl eindeutig gekennzeichneter Messgeräte beim Bundesamt für Strahlenschutz, Fachgebiet Dosimetrie und Messmethodik (SW 1.3) ein.

Messgeräte mit Aktivkohle werden unmittelbar nach Entnahme aus der Radon-Referenzatmosphäre fest verschlossen, und den Messstellen umgehend zurückgesendet.

Die Messstellen werten die Messgeräte aus und stellen für jedes Messgerät den Anzeigewert der Radon-Aktivitätskonzentration oder Radonexposition fest. Diese Werte werden zur Endauswertung an das Bundesamt für Strahlenschutz zurückgesendet.

3 EXPOSITIONEN

3.1 Herstellung von Radon-Referenzatmosphären

Für die Herstellung von Radon-Referenzatmosphären stehen im Kalibrierlabor für Radon- und Radonzerfallsprodukt-Messgeräte des Bundesamtes für Strahlenschutz großvolumige Behälter aus Edelstahl mit Volumina von 0,4 m³, 11 m³ und 30 m³ zur Verfügung. Die hergestellten Referenzatmosphären sind durch ihre Radon-Aktivitätskonzentrationen sowie durch die klimatischen Parameter Temperatur, Druck und relative Luftfeuchte gekennzeichnet. In den 11 m³- und 30 m³ - Behältern können die Klimaparameter eingestellt und geregelt werden. Der 30 m³-Behälter verfügt zusätzlich über Einrichtungen zur Einstellung der Luftturbulenz und der Aerosolparameter.

Die Messungen der Radon-Aktivitätskonzentration sowie alle anderen für die Qualität der durchgeführten Prüfungen relevanten Messungen sind auf nationale Normale zurückgeführt. Alle während der Prüfungen aufgenommenen Messdaten werden in Datenbanken aufgezeichnet und können zentral verwaltet werden, so dass die Wiederholbarkeit und die Rückverfolgbarkeit der Prüfungen sichergestellt sind.

3.2 Raum zur Lagerung der Messgeräte

Für die Lagerung der zu prüfenden Messgeräte vor und nach der Exposition wird ein klimatisierter Lagerraum genutzt. Die Raumluft wird im 24-Stundenbetrieb ständig durch Außenluft ersetzt. Die Überwachung der Radon-Aktivitätskonzentration sowie der klimatischen

3.3 Exposition von Messgeräten in Radon-Referenzatmosphären

Passive Messgeräte mit Festkörperspurdetektoren oder mit Elektretendetektoren sind integrierende Messgeräte der Radon-Aktivitätskonzentration über die Expositionszeit. Ihr Anzeigewert ist direkt proportional zur Radonexposition. Somit wird für die Prüfung von Messgeräten mit Festkörperspurdetektoren oder mit Elektretendetektoren die Radonexposition als Prüfgröße festgelegt. Für die Prüfung werden jeweils 4 Referenzatmosphären mit unterschiedlichen Niveaus der Radon-Aktivitätskonzentrationen hergestellt. Die Expositionszeiten betragen mindestens 5 Tage. Damit sind die Expositionszeiten ausreichend lang, um kurzzeitige Störungen der Atmosphären vernachlässigbar zu sein und um den Fehler bei der Bestimmung der Expositionszeiten zu minimieren. Die Radonexpositionen liegen in einem für die Praxis relevanten Bereich zwischen $100 \text{ kBq} \cdot \text{h}^{-1} \cdot \text{m}^{-3}$ und $3500 \text{ kBq} \cdot \text{h}^{-1} \cdot \text{m}^{-3}$.

Die erweiterte relative Messunsicherheit ist durch die Rückführung der Radon-Aktivitätskonzentration auf das nationale Normal bestimmt und wird durch die Deutsche Akkreditierungsstelle GmbH im Rahmen der Akkreditierung als Kalibrierlabor für Radonmessgeräte vorgegeben [6], [7]. Innerhalb eines Bereiches der Radon-Aktivitätskonzentration von 50 - 1000 Bq·m⁻³ beträgt die erweiterte relative Messunsicherheit
12 % und oberhalb von 1000 Bq·m⁻³ einheitlich 7 %. Diese Werte der erweiterten relativen Messunsicherheit werden auch für die Radonexposition verwendet, da die Messunsicherheiten der Expositionszeiten vernachlässigbar sind.

4 ERGEBNISSE DER VERGLEICHSPRÜFUNGEN

Die Ergebnisse der Vergleichsprüfung werden im Anhang ausführlich dargestellt. Für Messgerätetypen, die Kernspurdetektoren oder Elektretdetektoren zum Strahlungsnachweis enthalten, sind die Ergebnisse in den Abbildungen 2 bis 5, getrennt für die einzelnen Expositionsgruppen, mittels Boxplots zusammengefasst.

Abbildungen 2 bis 5 zeigen sowohl die relative Messabweichung der Messgeräte bezüglich der Referenzwerte als auch die Streuung der Messwerte innerhalb der Messgerätegruppe.

Bei Beherrschung der messtechnischen Prozesse und Anwendung eines angemessenen Qualitätsmanagementsystems durch die Messstelle kann davon ausgegangen werden, dass der richtige Wert der Radon-Aktivitätsexposition durch eine Einzelmessung mit passiven Messgeräten oberhalb von 3000 kBq·h·m⁻³ um weniger als 20 % und unterhalb von 650 kBq·h·m⁻³ um weniger als das 1,5-fache über- bzw. unterschätzt wird.

Wenn mehr als ein Einzelmesswert der Messgeräte eines Prüfcodes diese Kriterien nicht erfüllt, sollten die jeweiligen Messstellen geeignete Maßnahmen der Qualitätssicherung einleiten. In vielen Fällen kann die mittlere relative Messabweichung durch Nachkalibrierung der Messeinrichtung reduziert werden.

Abbildung 2: Relative Messabweichung der Messgeräte mit Kernspurdetektoren bzw. Elektretdetektoren bezüglich der Referenzexposition der Expositionsgruppe 1, dargestellt als Boxplots [8] (innerhalb der Boxen liegen 50 % der Ergebnisse), Prüfcode siehe Anhang

Figure 2: Indication of the instruments using nuclear track detectors or electrets relative to the reference exposure of exposure group 1, given as box plots [8] (within the boxes are 50 % of the results), Test code see attachment
Abbildung 3: Relative Messabweichung der Messgeräte mit Kernspurdetektoren bzw. Elektretdetektoren bezüglich der Referenzexposition der Expositionsgruppe 2, dargestellt als Boxplots [8] (innerhalb der Boxen liegen 50 % der Ergebnisse), Prüfcode siehe Anhang

Figure 2: Indication of the instruments using nuclear track detectors or electrets relative to the reference exposure of exposure group 2, given as box plots [8] (within the boxes are 50% of the results), Test code see attachment

Abbildung 4: Relative Messabweichung der Messgeräte mit Kernspurdetektoren bzw. Elektretdetektoren bezüglich der Referenzexposition der Expositionsgruppe 3, dargestellt als Boxplots [8] (innerhalb der Boxen liegen 50 % der Ergebnisse), Prüfcode siehe Anhang

Figure 2: Indication of the instruments using nuclear track detectors or electrets relative to the reference exposure of exposure group 3, given as box plots [8] (within the boxes are 50% of the results), Test code see attachment

Figure 2: Indication of the instruments using nuclear track detectors or electrets relative to the reference exposure of exposure group 4, given as box plots [8] (within the boxes are 50% of the results), Test code see attachment.
5 LITERATUR

ANHANG: TABELLEN UND ABBILDUNGEN ZUR VERGLEICHSPRÜFUNG 2011

ATTACHMENT: TABLES AND FIGURES OF THE INTERLABORATORY COMPARISON 2011

A.1 MESSSTELLEN, DIE AN DEN VERGLEICHSPRÜFUNGEN 2011 TEILGENOMMEN HABEN RADON SERVICES, PARTICIPATED IN THE INTERCOMPARISON 2011 ... 17
A.2 MESSGERÄTETYPEN INSTRUMENT TYPES ... 20
A.3 PARAMETER DER ATMOSPHÄRE IM LAGERRAUM PARAMETER OF THE ATMOSPHERE IN THE STORAGE ROOM .. 27
A.4 VERGLEICHSPRÜFUNG FÜR MESSGERÄTE MIT FESTKÖRPERSPUR- UND ELEKTRETDETEKTOREN INTERCOMPARISON FOR MEASURING INSTRUMENTS USING SOLID STATE NUCLEAR TRACK DETECTORS AND ELECTRETS .. 28
A.5 VERGLEICHSPRÜFUNG FÜR MESSGERÄTE MIT AKTIVKOHLE INTERCOMPARISON FOR MEASURING INSTRUMENTS USING ACTIVATED CHARCOAL .. 31
A.6 ERGEBNISSE DER VERGLEICHSPRÜFUNG: ANZEIGEWERTE DER NICHTEXPONIERTEN MESSGERÄTE MIT FESTKÖRPERSPUR- UND ELEKTRETDETEKTOREN (TRANSPORT- UND LAGERUNGSEFFEKTEN) RESULTS OF THE INTERCOMPARISON: INDICATION OF NON-EXPOSED INSTRUMENTS USING SOLID STATE NUCLEAR TRACK DETECTORS AND ELECTRETS (INFLUENCES OF TRANSIT AND STORAGE) .. 34
A.7 ERGEBNISSE DER VERGLEICHSPRÜFUNG: MESSGERÄTE MIT FESTKÖRPERSPUR- UND ELEKTRETDETEKTOREN RESULTS OF THE INTERCOMPARISON: MEASURING INSTRUMENTS USING SOLID STATE NUCLEAR TRACK DETECTORS AND ELECTRETS ... 37
A.8 ERGEBNISSE DER VERGLEICHSPRÜFUNG: MESSGERÄTE MIT AKTIVKOHLE RESULTS OF INTERCOMPARISON: MEASURING INSTRUMENTS USING ACTIVATED CHARCOAL ... 46
A.1 Messstellen, die an den Vergleichsprüfungen 2011 teilgenommen haben

Radon Services, participated in the intercomparison 2011

<table>
<thead>
<tr>
<th>Messstelle</th>
<th>Land</th>
<th>Adresse</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGES GmbH</td>
<td>Österreich</td>
<td>Wieningerstraße 8 4020 Linz</td>
</tr>
<tr>
<td>CC Radioökologie und Radon</td>
<td>Austria</td>
<td></td>
</tr>
<tr>
<td>ALTRAC Radon-Messtechnik</td>
<td>Deutschland</td>
<td>Dorothea-Viehmann-Straße 28 12524 Berlin</td>
</tr>
<tr>
<td>Arpa Piemonte</td>
<td>Italien</td>
<td>Via Jervis, 30 10015 Ivrea (TO)</td>
</tr>
<tr>
<td>Dipartimento Radiazioni</td>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>ARPACAL</td>
<td>Italien</td>
<td>Via Lungomare Giovino 88063 Catanzaro</td>
</tr>
<tr>
<td>Dipartimento Provinciale di Catanzaro</td>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>Asse GmbH</td>
<td>Deutschland</td>
<td>Am Walde 2 38319 Remmlingen</td>
</tr>
<tr>
<td>Bundesamt für Strahlenschutz</td>
<td>Deutschland</td>
<td>Köpenicker Allee 120-130 10318 Berlin</td>
</tr>
<tr>
<td>Dipartimento di Scienze Ambientali</td>
<td>Italien</td>
<td>Via Vivaldi 43 81100 Caserta</td>
</tr>
<tr>
<td>Seconda Università degli studi di Napoli</td>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>Elettrosmog Control srl</td>
<td>Italien</td>
<td>Via Etiopia snc 00044 Frascati (RM)</td>
</tr>
<tr>
<td>ENEA IRP-DOS</td>
<td>Italien</td>
<td>Via dei Colli, 16 40136 Bologna</td>
</tr>
<tr>
<td>Servicio Valutazione Radon</td>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>GT-Analytic KG</td>
<td>Österreich</td>
<td>Innsbrück 38a 6020 Innsbruck</td>
</tr>
<tr>
<td>Health Protection Agency</td>
<td>Großbritannien</td>
<td>Chilton, Didcot OX11ORQ Oxfordshire</td>
</tr>
<tr>
<td>Personal Dosimetry Service</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Helmholtz Zentrum München</td>
<td>Deutschland</td>
<td>Otto-Hahn-Ring 6 81739 München</td>
</tr>
<tr>
<td>Auswertungsstelle, Radon-Messdienst</td>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>Helmholtz Zentrum München</td>
<td>Deutschland</td>
<td>Ingolstädter Landstraße 1 85764 Neuherberg</td>
</tr>
<tr>
<td>Institut für Strahlenschutz</td>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>Independia Control AB</td>
<td>Schweden</td>
<td>Sisjö Kullegata 8 42132 Västra Frölunda</td>
</tr>
<tr>
<td>Dr. Dragomir Karajović</td>
<td>Serbia</td>
<td>Deligradska 29 11000 Beograd</td>
</tr>
<tr>
<td>Institut za medicinu rada Srbije</td>
<td>Serbien</td>
<td></td>
</tr>
<tr>
<td>Messstelle</td>
<td>Land</td>
<td>Adresse</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Karlsruher Institut für Technologie (KIT) Dosimetrie Radonlabor</td>
<td>Deutschland</td>
<td>Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen</td>
</tr>
<tr>
<td>Keskkonnaamet Environmental Board Radiation Safety Department</td>
<td>Estland</td>
<td>Kopli 76 10146 Tallinn</td>
</tr>
<tr>
<td>Lab. Radiazioni Ionizzanti Radioattività Naturale (INAIL)</td>
<td>Italien</td>
<td>Via Fontana Candida, 1 00040 Monteporzio Catone (RM)</td>
</tr>
<tr>
<td>LABTOX SA</td>
<td>Schweiz</td>
<td>Rue des Prés 90 2503 Biel / Bienne</td>
</tr>
<tr>
<td>Landauer Nordic AB</td>
<td>Schweden</td>
<td>P.O.Box 6522 75138 Uppsala</td>
</tr>
<tr>
<td>Materialprüfungsamt Nordrhein-Westfalen Dezernat 11</td>
<td>Deutschland</td>
<td>Marsbruchstraße 186 44287 Dortmund</td>
</tr>
<tr>
<td>MI.AM srl</td>
<td>Italien</td>
<td>Via de Amicis, 5 29029 Fabiano di Rivergaro (PC)</td>
</tr>
<tr>
<td>Ministère de la Santé Division de la Radioprotection</td>
<td>Luxemburg</td>
<td>Villa Louvigny, Allée Marconi 2120 Luxembourg</td>
</tr>
<tr>
<td>PASELA miljösupport ab</td>
<td>Schweden</td>
<td>Box 5093 42605 Västra Frölunda</td>
</tr>
<tr>
<td>Radosys Ltd.</td>
<td>Ungarn</td>
<td>Vegyesz u. 17-25 1116 Budapest</td>
</tr>
<tr>
<td>Universidad de Cantabria LaRUC Grupo Radon</td>
<td>Spanien</td>
<td>c/ Av. Cardenal Herrera Oria, s/n 39011 Santander (Cantabria)</td>
</tr>
<tr>
<td>Università degli studi di Napoli Dipartimento di Scienze Fisiche</td>
<td>Italien</td>
<td>Edificio 6, Via Cintia 80126 Napoli</td>
</tr>
<tr>
<td>University of Novi Sad Laboratory for Radioactivity and Radiation Dose Measurement</td>
<td>Serbien</td>
<td>Trg Dositeja Obradovića 4 21000 Novi Sad</td>
</tr>
<tr>
<td>U-SERIES SRL.</td>
<td>Italien</td>
<td>Via Ferrarese, 131 40128 Bologna</td>
</tr>
<tr>
<td>Messstelle</td>
<td>Land</td>
<td>Adresse</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Radon service</td>
<td>Country</td>
<td>Address</td>
</tr>
<tr>
<td>Veterinary Faculty of Sarajevo</td>
<td>Bosnien</td>
<td>Zmaja od bosne 90</td>
</tr>
<tr>
<td>Veterinary Institute</td>
<td>Herzegowina</td>
<td>71000 Sarajevo</td>
</tr>
<tr>
<td></td>
<td>Zmaja od bosne 90</td>
<td>71000 Sarajevo</td>
</tr>
<tr>
<td></td>
<td>Bosnia-Herzegovina</td>
<td>71000 Sarajevo</td>
</tr>
<tr>
<td>ZVD d.d.</td>
<td>Slowenien</td>
<td>Chengdujska cesta 25</td>
</tr>
<tr>
<td>Zavod za varstvo pri delu</td>
<td>Slovenia</td>
<td>1260 Ljubljana Polje</td>
</tr>
<tr>
<td></td>
<td>Slovenia</td>
<td>1260 Ljubljana Polje</td>
</tr>
</tbody>
</table>
Tabelle A.2-1: Messgeräte mit Kernspurdetektoren oder Elektretendetektoren (k.A.: keine Angabe)

<table>
<thead>
<tr>
<th>Bauform / Design</th>
<th>Detektor / Detector</th>
<th>Detektordicke</th>
<th>Gesamt-Detektorfläche</th>
<th>Ausgewertete Detektorfläche</th>
<th>Typ und Filter</th>
<th>Expositionsbereich</th>
<th>Prüfcode / Test code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Makrofol</td>
<td>0,3 mm</td>
<td>134 mm²</td>
<td>96 mm²</td>
<td>geschlossen, mit Glasfaserfilter/ closed, with glass fiber filter</td>
<td>20 – 5 000 kBq·h·m⁻³</td>
<td>A2</td>
</tr>
<tr>
<td></td>
<td>Kodak LR115L</td>
<td>300 µm</td>
<td>290 mm²</td>
<td>200 mm²</td>
<td>geschlossen, mit Glasfaserfilter/ closed, with glass fiber filter</td>
<td>0 – 7 000 kBq·h·m⁻³</td>
<td>A3</td>
</tr>
<tr>
<td></td>
<td>Makrofol</td>
<td>0,3 mm</td>
<td>350 mm²</td>
<td>95 mm²</td>
<td>geschlossen, mit Glasfaser-Mikrofilter/ closed, with glass fiber micro filter</td>
<td>200 – 2 000 kBq·h·m⁻³</td>
<td>A6</td>
</tr>
<tr>
<td>B</td>
<td>CR-39</td>
<td>1 mm</td>
<td>100 mm²</td>
<td>k.A. n.s.</td>
<td>geschlossen, mit Luftspalt/ closed, with air gap</td>
<td>36 – 10 000 kBq·h·m⁻³</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,5 mm</td>
<td>300 mm²</td>
<td>140 mm²</td>
<td>geschlossen, mit Luftspalt/ closed, with air gap</td>
<td>20 – 50 000 kBq·h·m⁻³</td>
<td>B2</td>
</tr>
<tr>
<td>Bauform / Design</td>
<td>Messgerätetyp (nicht maßstabsgerecht)</td>
<td>Detektor / Detector</td>
<td>Detektordicke</td>
<td>Gesamt-Detektorfläche</td>
<td>Ausgewertete Detektorfläche</td>
<td>Typ und Filter</td>
<td>Expositionsbereich</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>B</td>
<td>CR-39</td>
<td>0,5 mm</td>
<td>k.A. n.s.</td>
<td>k.A. n.s.</td>
<td>geschlossen, mit Luftspalt/ closed, with air gap</td>
<td>20 – 3500 kBq·h·m⁻³</td>
<td>B4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 mm</td>
<td>480 mm²</td>
<td>120 mm²</td>
<td>geschlossen, ohne Filter/ closed, without filter</td>
<td>1 – 20 000 kBq·h·m⁻³</td>
<td>B6</td>
</tr>
<tr>
<td>C</td>
<td>CR-39</td>
<td>1 mm</td>
<td>100 mm²</td>
<td>49 mm²</td>
<td>geschlossen, ohne Filter/ closed, without filter</td>
<td>32 – 86 400 kBq·h·m⁻³</td>
<td>C1</td>
</tr>
<tr>
<td>D</td>
<td>Makrofol</td>
<td>0,3 mm</td>
<td>1020 mm²</td>
<td>240 mm²</td>
<td>geschlossen, mit Glasfaserfilter/ closed, with glass fiber filter</td>
<td>50 – 10 000 kBq·h·m⁻³</td>
<td>D1</td>
</tr>
<tr>
<td>GA</td>
<td>Elektret (Teflon)</td>
<td>k.A. n.s.</td>
<td>k.A. n.s.</td>
<td>k.A. n.s.</td>
<td>geschlossen mit Filter/ closed, with filter</td>
<td>300 – 5 000 kBq·h·m⁻³</td>
<td>GA 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,127 mm</td>
<td>962 mm²</td>
<td>k.A. n.s.</td>
<td>geschlossen mit Filter/ closed, with filter</td>
<td>580 – 3 500 kBq·h·m⁻³</td>
<td>GA 3</td>
</tr>
<tr>
<td>Messgerätytyp</td>
<td>Bauform / Design</td>
<td>Detektor / Detector</td>
<td>Detektordicke</td>
<td>Gesamtdetektorfläche</td>
<td>Ausgewertete Detektorfläche</td>
<td>Typ und Filter</td>
<td>Expositionsbereich</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>(nicht maßstabsgerecht)</td>
<td>Intrument type (no accurate scale)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA</td>
<td>Elektret (Teflon)</td>
<td>k.A. n.s.</td>
<td>k.A. n.s.</td>
<td>k.A. n.s.</td>
<td>geschlossen, mit Filter/ closed, with filter</td>
<td>86,4 – 43 000 kBq·h·m(^{-3})</td>
<td>GA 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>k.A. n.s.</td>
<td>44,2 mm(^2)</td>
<td>8,6 mm(^2)</td>
<td>geschlossen, mit Filter/ closed, with filter</td>
<td>49 – 1300 kBq·h·m(^{-3})</td>
<td>GA 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>k.A. n.s.</td>
<td>44,2 mm(^2)</td>
<td>8,6 mm(^2)</td>
<td>geschlossen, mit Filter/ closed, with filter</td>
<td>761 – 15 400 kBq·h·m(^{-3})</td>
<td>GA 8</td>
</tr>
<tr>
<td>GB</td>
<td>Elektret (Teflon)</td>
<td>0,127 mm</td>
<td>962 mm(^2)</td>
<td>k.A. n.s.</td>
<td>geschlossen, mit Filter/ closed, with filter</td>
<td>95 – 2 700 kBq·h·m(^{-3})</td>
<td>GB 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>k.A. n.s.</td>
<td>k.A. n.s.</td>
<td>k.A. n.s.</td>
<td>geschlossen, ohne Filter / closed, without filter</td>
<td>0 – 240 kBq·h·m(^{-3})</td>
<td>GB 6</td>
</tr>
<tr>
<td>J</td>
<td>CR-39</td>
<td>1 mm</td>
<td>100 mm(^2)</td>
<td>50 mm(^2)</td>
<td>geschlossen, mit Filter/ closed, with filter</td>
<td>40 – 12 000 kBq·h·m(^{-3})</td>
<td>J1</td>
</tr>
<tr>
<td>K</td>
<td>CR-39</td>
<td>1 mm</td>
<td>100 mm(^2)</td>
<td>50 mm(^2)</td>
<td>geschlossen, ohne Filter/ closed, without filter</td>
<td>40 – 12 000 kBq·h·m(^{-3})</td>
<td>K1</td>
</tr>
<tr>
<td>Bauform / Design</td>
<td>Detektor / Detector</td>
<td>Detektordicke</td>
<td>Gesamt-Detektorfläche</td>
<td>Ausgewertete Detektorfläche</td>
<td>Typ und Filter</td>
<td>Expositionsbereich</td>
<td>Prüfcode / Test code</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>L</td>
<td>CR-39</td>
<td>1 mm</td>
<td>520 mm²</td>
<td>150 mm²</td>
<td>geschlossen, mit Luftspalt / closed, with air gap</td>
<td>40 – 10 000 kBq·h·m⁻³</td>
<td>L1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 mm</td>
<td>100 mm²</td>
<td>k.A. n.s.</td>
<td>geschlossen, mit Luftspalt / closed, with air gap</td>
<td>50 – 15 000 kBq·h·m⁻³</td>
<td>L2</td>
</tr>
<tr>
<td></td>
<td>CR-39</td>
<td>1 mm</td>
<td>100 mm²</td>
<td>50 mm²</td>
<td>geschlossen, mit Luftspalt / closed, with air gap</td>
<td>40 – 8 000 kBq·h·m⁻³</td>
<td>N1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 mm</td>
<td>100 mm²</td>
<td>k.A. n.s.</td>
<td>geschlossen, mit Luftspalt / closed, with air gap</td>
<td>50 – 15 000 kBq·h·m⁻³</td>
<td>N2</td>
</tr>
<tr>
<td>N</td>
<td>CR-39</td>
<td>1 mm</td>
<td>100 mm²</td>
<td>50 mm²</td>
<td>geschlossen, ohne Filter / closed, without filter</td>
<td>50 – 15 000 kBq·h·m⁻³</td>
<td>N3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 mm</td>
<td>100 mm²</td>
<td>k.A. n.s.</td>
<td>geschlossen, ohne Filter / closed, without filter</td>
<td>50 – 15 000 kBq·h·m⁻³</td>
<td>N4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 mm</td>
<td>100 mm²</td>
<td>46,8 mm²</td>
<td>geschlossen, mit Luftspalt / closed, with air gap</td>
<td>40 – 12 000 kBq·h·m⁻³</td>
<td>N4</td>
</tr>
<tr>
<td>P</td>
<td>CR-39</td>
<td>1,5 mm</td>
<td>625 mm²</td>
<td>100 mm²</td>
<td>geschlossen, ohne Filter / closed, without filter</td>
<td>24 – 50 000 kBq·h·m⁻³</td>
<td>P1</td>
</tr>
<tr>
<td>Bauform / Design</td>
<td>Messgerätytyp (nicht maßstabsgerecht)</td>
<td>Detektor / Detector</td>
<td>Gesamt-Detektorfläche / Detector thickness</td>
<td>Ausgewertete Detektorfläche / Analyzed detector area</td>
<td>Typ und Filter / Type and filter</td>
<td>Expositionsbereich / Range of exposure</td>
<td>Prüfcode / Test code</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>--------------------------</td>
<td>-----------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>S</td>
<td>LR-115</td>
<td>1,5 mm</td>
<td>625 mm²</td>
<td>100 mm²</td>
<td>geschlossen, mit Luftspalt / closed, with air gap</td>
<td>30 – 2 500 kBq·h·m⁻³</td>
<td>P2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,5 mm</td>
<td>2,38 mm²</td>
<td>1 mm²</td>
<td>geschlossen, ohne Filter / closed, without filter</td>
<td>50 – 10 000 kBq·h·m⁻³</td>
<td>P4</td>
</tr>
<tr>
<td>S</td>
<td>LR-115</td>
<td>0,012 mm</td>
<td>850 mm²</td>
<td>100 mm²</td>
<td>geschlossen, mit Polyethylen-Filter / closed, with polyethylene filter</td>
<td>300 – 5 000 kBq·h·m⁻³</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,012 mm</td>
<td>850 mm²</td>
<td>100 mm²</td>
<td>geschlossen, mit Polyethylene-Filter / closed, with polyethylene filter</td>
<td>100 – 5 000 kBq·h·m⁻³</td>
<td>S2</td>
</tr>
<tr>
<td>T</td>
<td>CR-39</td>
<td>1,45 mm</td>
<td>900 mm²</td>
<td>0,45 mm²</td>
<td>geschlossen, mit Luftspalt / closed, with air gap</td>
<td>10 – 20 000 kBq·h·m⁻³</td>
<td>T1</td>
</tr>
<tr>
<td>Messgerätetyp (nicht maßstabsgerecht) / Instrument type (no accurate scale)</td>
<td>Detektor / Detector</td>
<td>Detektordicke / Detector thickness</td>
<td>Gesamt-Detektorfläche / Total detector area</td>
<td>Ausgewertete Detektorfläche / Analyzed detector area</td>
<td>Typ und Filter / Type and filter</td>
<td>Expositionsbereich / Range of exposure</td>
<td>Prüfcode / Test code</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>U</td>
<td>CR-39</td>
<td>1,5 mm</td>
<td>625 mm²</td>
<td>100 mm²</td>
<td>20 – 40 000 kBq·h·m⁻³</td>
<td>geschlossen, mit Luftspalt / closed, with air gap</td>
<td>U1</td>
</tr>
<tr>
<td>V</td>
<td>CR-39</td>
<td>1,5 mm</td>
<td>625 mm²</td>
<td>100 mm²</td>
<td>geschlossen, mit Polyethylenfilter / closed, with polyethylene filter</td>
<td>40 – 8 000 kBq·h·m⁻³</td>
<td>V1</td>
</tr>
<tr>
<td></td>
<td>LR-115</td>
<td>0,012 mm</td>
<td>704 mm²</td>
<td>100 mm²</td>
<td>geschlossen, mit Polyethylenfilter / closed, with polyethylene filter</td>
<td>40 – 4 000 kBq·h·m⁻³</td>
<td>V2</td>
</tr>
<tr>
<td>Y</td>
<td>CR-39</td>
<td>1 mm</td>
<td>100 mm²</td>
<td>k.A. n.s.</td>
<td>geschlossen, mit Luftspalt / closed, with air gap</td>
<td>36 – 10 000 kBq·h·m⁻³</td>
<td>Y1</td>
</tr>
<tr>
<td>Z</td>
<td>LR-115</td>
<td>0,012 mm</td>
<td>227 mm²</td>
<td>100 mm²</td>
<td>geschlossen, mit Polyethylenfilter / closed, with polyethylene filter</td>
<td>50 – 30 000 kBq·h·m⁻³</td>
<td>Z1</td>
</tr>
</tbody>
</table>
Tabelle A.2-2: Messgeräte mit Aktivkohle

<table>
<thead>
<tr>
<th>Bauform / Design</th>
<th>Messgerätetyp (nicht maßstabsgerecht)</th>
<th>Aktivkohlemasse</th>
<th>Expositionzeit</th>
<th>Messbereich</th>
<th>Auswertung</th>
<th>Prüfcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>cA</td>
<td>1 g</td>
<td>72 h</td>
<td>10 – 100 000 Bq·m⁻³</td>
<td>Flüssigszintillation/ liquid scintillation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70 g</td>
<td>48 h</td>
<td>5 – 50 000 Bq·m⁻³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70 g</td>
<td>48 h</td>
<td>50 – 5 000 Bq·m⁻³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70 g</td>
<td>48 h</td>
<td>20 – 15 000 Bq·m⁻³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75 g</td>
<td>48 h</td>
<td>2 – 10 000 Bq·m⁻³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cB</td>
<td>75 g</td>
<td>48 h</td>
<td>2 – 10 000 Bq·m⁻³</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A.2-2: Measuring instruments using activated charcoal

<table>
<thead>
<tr>
<th>Bauform / Design</th>
<th>Messgerätetyp (nicht maßstabsgerecht)</th>
<th>Aktivkohlemasse</th>
<th>Expositionzeit</th>
<th>Messbereich</th>
<th>Auswertung</th>
<th>Prüfcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>cA</td>
<td>1 g</td>
<td>72 h</td>
<td>10 – 100 000 Bq·m⁻³</td>
<td>Flüssigszintillation/ liquid scintillation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70 g</td>
<td>48 h</td>
<td>5 – 50 000 Bq·m⁻³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70 g</td>
<td>48 h</td>
<td>50 – 5 000 Bq·m⁻³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70 g</td>
<td>48 h</td>
<td>20 – 15 000 Bq·m⁻³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75 g</td>
<td>48 h</td>
<td>2 – 10 000 Bq·m⁻³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cB</td>
<td>75 g</td>
<td>48 h</td>
<td>2 – 10 000 Bq·m⁻³</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gammaspektrometrie gamma-ray spectrometry
A.3 Parameter der Atmosphäre im Lagerraum

Parameter of the atmosphere in the storage room

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{Rn}</td>
<td>5,3</td>
</tr>
<tr>
<td>$C_{Rn,EG}$</td>
<td>5</td>
</tr>
<tr>
<td>r.H.</td>
<td>24</td>
</tr>
<tr>
<td>$U_{r.H.}$</td>
<td>8</td>
</tr>
<tr>
<td>T</td>
<td>22,1</td>
</tr>
<tr>
<td>U_{T}</td>
<td>0,6</td>
</tr>
<tr>
<td>$\dot{H}^*:(10)$</td>
<td>46,3</td>
</tr>
<tr>
<td>$U_{\dot{H}^*:(10)}$</td>
<td>2,4</td>
</tr>
</tbody>
</table>

Der Parameter C_{Rn} ist die mittlere Radon-222-Aktivitätskonzentration, die während der Lagerung der Messgeräte im klimatisierten Lagerraum ermittelt wurde. $C_{Rn,EG}$ ist die Erkennungsgrenze der verwendeten Messeinrichtung. In der Tabelle sind weiterhin die Klimabedingungen während der Lagerzeit angegeben: Mittelwert der relativen Luftfeuchtigkeit r.H., erweiterte Messunsicherheit $U_{r.H.\:}(k=2)$, Mittelwert der Temperatur T und erweiterte Messunsicherheit der Temperatur $U_{T\:}(k=2)$.

Der Parameter $\dot{H}^\star\:(10)$ ist die mittlere Umgebungsäquivalentdosisleistung mit der erweiterten Messunsicherheit $U_{\dot{H}^\star\:(10)}\:(k=2)$.

C_{Rn} is the mean radon activity concentration determined during the storage of instruments in the air-conditioned storage room. $C_{Rn,EG}$ is the detection limit of the measuring system used for monitoring. Furthermore, in the table are given the mean value of relative humidity (r.H.), expanded relative uncertainty of relative humidity $U_{r.H.\:}(k=2)$, mean value of temperature (T), and expanded relative uncertainty of temperature $U_{T\:}(k=2)$ during the storage of instruments.

The parameter $\dot{H}^\star\:(10)$ is the mean ambient dose rate with the expanded relative uncertainty $U_{\dot{H}^\star\:(10)}\:(k=2)$.
A.4 Vergleichsprüfung für Messgeräte mit Festkörperspur- und Elektretdetektoren

Intercomparison for measuring instruments using solid state nuclear track detectors and electrets

Abbildung A.4-1: Ablaufschema

*) Messgeräte ausgepackt und messbereit

Figure A.4-1: Time course

*) Instruments unpacked and ready for measurement

Abbildung A.4-2: Zeitlicher Verlauf der Radon-Aktivitätskonzentrationen der Referenzatmosphären 1, 2, und 3

Figure A.4-2: Radon activity concentrations of the reference atmospheres 1, 2 and 3 versus time of exposure
Abbildung A.4-3: Zeitlicher Verlauf der Radon-Aktivitätskonzentration der Referenzatmosphäre 4

Figure A.4-3: Radon activity concentration of the reference atmosphere 4 versus time of exposure

Abbildung A.4-4: Temperatur und relative Luftfeuchtigkeit während der Expositionen

Figure A.4-4: Temperature and relative humidity during the exposures
<table>
<thead>
<tr>
<th>No.</th>
<th>Datum/Date</th>
<th>t [h]</th>
<th>$C_{Rn,Ref}$ [Bq·m$^{-3}$]</th>
<th>$P_{Rn,Ref}$ [kBq·h·m$^{-3}$]</th>
<th>U [%]</th>
<th>r.H. [%]</th>
<th>T [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>09.03.11 – 16.03.11</td>
<td>169,5</td>
<td>1422</td>
<td>241</td>
<td>7</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>08.03.11 – 22.03.11</td>
<td>344,0</td>
<td>5221</td>
<td>1796</td>
<td>7</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>08.03.11 – 16.03.11</td>
<td>193,5</td>
<td>9555</td>
<td>1849</td>
<td>7</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>16.03.11 – 30.03.11</td>
<td>332,3</td>
<td>9914</td>
<td>3294</td>
<td>7</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

Die Spalte **No.** gibt die Nummer der Expositionsgruppe bzw. der Radon-Referenzatmosphäre an und das **Datum** den Zeitraum, in dem die Messgeräte in den Referenzatmosphären exponiert wurden. Der Parameter $C_{Rn,Ref}$ ist der Mittelwert der Radon-222-Aktivitätskonzentration während der Expositionszeit t und $P_{Rn,Ref}$ die Radon-222-Exposition, die sich aus dem Produkt von $C_{Rn,Ref}$ und t ergibt. U ist die erweiterte relative Messunsicherheit der Radon-222-Aktivitätskonzentration, die aus der Standardmessunsicherheit multipliziert mit dem Erweiterungsfaktor $k = 2$ resultiert und den Vertrauensbereich des wahren Wertes der Messgröße mit einer statistischen Sicherheit von 95 % angibt. Die erweiterte relative Messunsicherheit wurde gemäß DAkkS-DKD-3 [7] ermittelt. Zur Charakterisierung der Referenzatmosphären sind außerdem die Klimabedingungen angegeben: Mittelwert der relativen Luftfeuchtigkeit $r.H.$ mit einer erweiterten Messunsicherheit von 8% (k=2) und Mittelwert der Temperatur T mit einer erweiterten Messunsicherheit von 0,6 °C (k=2).

In the No. column the number of the exposure group or reference atmosphere is indicated and in the Date column the exposure interval is given. $C_{Rn,Ref}$ is the mean activity concentration of radon-222 during the exposure time t, and $P_{Rn,Ref}$ is the exposure to radon-222 as product of $C_{Rn,Ref}$ and t. U is the expanded relative uncertainty of radon-222 activity concentration resulting from standard uncertainty of the measurement multiplied by a factor $k = 2$ (95% confidence interval). The expanded relative uncertainty has been acquired in accordance to DAkkS-DKD-3 [7]. To characterize the climatic conditions the mean value of relative humidity ($r.H.$) with an expanded relative uncertainty of 8% (k=2) and the mean value of temperature (T) with an expanded relative uncertainty of 0.6 °C (k=2) are given in the table.
A.5 Vergleichsprüfung für Messgeräte mit Aktivkohle

Intercomparison for measuring instruments using activated charcoal

Abbildung A.5-1: Ablaufschema

Figure A.5-1: Time course

Abbildung A.5-2: Zeitlicher Verlauf der Radon-Aktivitätskonzentration

Figure A.5-2: Time variation of radon activity concentration
Abbildung A.5-3: Zeitlicher Verlauf der Temperatur, der relativen Luftfeuchtigkeit und des Luftdruckes

Figure A.5-3: Time variation of temperature, relative humidity and air pressure

Tabelle A.5-1: Werte der Radon-Referenzatmosphären

Table A.5-1: Parameter of the radon reference atmospheres

<table>
<thead>
<tr>
<th>No.</th>
<th>Datum/Date</th>
<th>t [h]</th>
<th>C_{Rn,Ref} [Bq·m^{-3}]</th>
<th>U [%]</th>
<th>r.H. [%]</th>
<th>T [°C]</th>
<th>p [hPa]</th>
<th>F</th>
<th>f_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28.02. – 02.03.2011</td>
<td>48</td>
<td>2533</td>
<td>7</td>
<td>15</td>
<td>25</td>
<td>1035</td>
<td>0.4</td>
<td>0.07</td>
</tr>
<tr>
<td>2</td>
<td>28.02. – 03.03.2011</td>
<td>72</td>
<td>2547</td>
<td>7</td>
<td>15</td>
<td>25</td>
<td>1036</td>
<td>0.6</td>
<td>0.07</td>
</tr>
</tbody>
</table>

The No. column indicates the reference atmosphere. In the Date column the exposure interval is given. \(C_{\text{Ref,Ref}} \) is the mean activity concentration of radon-222 during the exposure time \(t \). \(U \) is the expanded relative uncertainty of radon-222 activity concentration resulting from standard uncertainty of the measurement multiplied by a factor \(k = 2 \) (95% confidence interval). The expanded relative uncertainty has been acquired in accordance to DAkkS-DKD-3 [7]. Additionally mean values of relative humidity (r.H.), temperature (\(T \)), air pressure (\(p \)), equilibrium factor (\(F \)) of radon-222 to its short-lived decay products and the unattached fraction of the short-lived decay products (\(f_p \)) are given. During all tests of measuring instruments using activated charcoal the air flow velocities were in the range of 12 cm\(\cdot \)s\(^{-1} \) and the intensity of turbulence was in the range of 0.8.
Ergebnisse der Vergleichsprüfung: Anzeigewerte der nichtexonierten Messgeräte mit Festkörperspur- und Elektretendetektoren (Transport- und Lagerungseffekte)

Results of the intercomparison: Indication of non-exposed instruments using solid state nuclear track detectors and electrets (influences of transit and storage)

<table>
<thead>
<tr>
<th>Prüfcode Test code</th>
<th>Messgeräteanzahl Number of Instruments</th>
<th>Messwert Indication of instrument</th>
<th>Mittelwert Mean value [kBq·h·m⁻³]</th>
<th>Standardabweichung Standard deviation [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2a</td>
<td>7</td>
<td>9,1</td>
<td>60,4</td>
<td></td>
</tr>
<tr>
<td>A2b</td>
<td>7</td>
<td>6,9</td>
<td>57,4</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>7</td>
<td>41,1</td>
<td>167,5</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>7</td>
<td>14,4</td>
<td>56,7</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>7</td>
<td>10,7</td>
<td>125,2</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>7</td>
<td>37,9</td>
<td>14,9</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>7</td>
<td>Anzeigewerte nicht angegeben / Indication values not given</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>7</td>
<td>Anzeigewerte nicht angegeben / Indication values not given</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>7</td>
<td>20,3</td>
<td>128,0</td>
<td></td>
</tr>
<tr>
<td>GA2</td>
<td>6</td>
<td>370,7</td>
<td>76,1</td>
<td></td>
</tr>
<tr>
<td>GA3</td>
<td>0</td>
<td>keine Transit-Messgeräte verwendet / no transit instruments used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA5</td>
<td>6</td>
<td>168,3</td>
<td>84,9</td>
<td></td>
</tr>
<tr>
<td>GA7</td>
<td>12</td>
<td>54,4</td>
<td>12,9</td>
<td></td>
</tr>
<tr>
<td>GA8</td>
<td>6</td>
<td>12,0</td>
<td>21,7</td>
<td></td>
</tr>
<tr>
<td>GB4</td>
<td>6</td>
<td>8,4</td>
<td>63,3</td>
<td></td>
</tr>
<tr>
<td>GB6</td>
<td>7</td>
<td>20,7</td>
<td>10,3</td>
<td></td>
</tr>
<tr>
<td>Prüfcode</td>
<td>Test code</td>
<td>Messgeräteanzahl</td>
<td>Mittelwert [kBq \cdot h \cdot m^{-3}]</td>
<td>Standardabweichung [%]</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
<td>---------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>J1 7</td>
<td></td>
<td>113,6</td>
<td>23,6</td>
<td></td>
</tr>
<tr>
<td>K1 7</td>
<td></td>
<td>73,3</td>
<td>38,9</td>
<td></td>
</tr>
<tr>
<td>L1 7</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2 7</td>
<td></td>
<td>46,1</td>
<td>23,6</td>
<td></td>
</tr>
<tr>
<td>N1 7</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2 7</td>
<td></td>
<td>6,1</td>
<td>117,9</td>
<td></td>
</tr>
<tr>
<td>N3a 7</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3b 7</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3c 7</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3d 7</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N4 7</td>
<td></td>
<td>28,7</td>
<td>67,6</td>
<td></td>
</tr>
<tr>
<td>N5 7</td>
<td></td>
<td>20,1</td>
<td>14,5</td>
<td></td>
</tr>
<tr>
<td>P1 7</td>
<td></td>
<td>10,7</td>
<td>27,9</td>
<td></td>
</tr>
<tr>
<td>P2 7</td>
<td></td>
<td>21,1</td>
<td>96,5</td>
<td></td>
</tr>
<tr>
<td>P4 7</td>
<td></td>
<td>42,1</td>
<td>38,1</td>
<td></td>
</tr>
<tr>
<td>S1 7</td>
<td></td>
<td>22,7</td>
<td>25,3</td>
<td></td>
</tr>
<tr>
<td>S2 7</td>
<td></td>
<td>22,6</td>
<td>20,3</td>
<td></td>
</tr>
<tr>
<td>T1 7</td>
<td></td>
<td>10,0</td>
<td>37,9</td>
<td></td>
</tr>
<tr>
<td>U1 7</td>
<td></td>
<td>38,1</td>
<td>63,9</td>
<td></td>
</tr>
<tr>
<td>V1 7</td>
<td></td>
<td>Anzeigewerte nicht angegeben / Indication values not given</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2 7</td>
<td></td>
<td>Anzeigewerte nicht angegeben / Indication values not given</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prüfcode</td>
<td>Messgeräteanzahl</td>
<td>Mittelwert ([\text{kBq} \cdot \text{h} \cdot \text{m}^{-3}])</td>
<td>Standardabweichung ([%])</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>Y1</td>
<td>7</td>
<td>11,7</td>
<td>135,9</td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>7</td>
<td>nicht angebbar *) / not assignable *)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erläuterungen zu A.6:

*) 5 von 7 Anzeigewerten kleiner als die Nachweisgrenze \((11 \text{kBq} \cdot \text{h} \cdot \text{m}^{-3}) \)

Remarks to A.6:
In this table the indications of the transit group instruments are given. The transit group comprises instruments which have been transported and stored under the same conditions as all others, but not exposed in reference atmospheres. Each participating laboratory was informed, which instruments belong to the transit group. For each group mean value and standard deviation were calculated and rounded as indicated.

*) 5 of 7 indication values lower than detection limit \((11 \text{kBq} \cdot \text{h} \cdot \text{m}^{-3}) \)
A.7 Ergebnisse der Vergleichsprüfung: Messgeräte mit Festkörperspur- und Elektretdetektoren

Results of the intercomparison: Measuring instruments using solid state nuclear track detectors and electrets

<table>
<thead>
<tr>
<th>Expositionsgruppe</th>
<th>Prüfcode</th>
<th>Messgerätezahl</th>
<th>Indication of instrument</th>
<th>Standardabweichung [%]</th>
<th>Vergleich mit Referenzwerten</th>
<th>rel. Messabweichung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Number of instruments</td>
<td>Mean value [kBq⋅h⋅m⁻³]</td>
<td></td>
<td>Reference value P₉₀,₉₀ [kBq⋅h⋅m⁻³]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A2a</td>
<td>7</td>
<td>259,9</td>
<td>13,1</td>
<td>241</td>
<td>7,8</td>
</tr>
<tr>
<td></td>
<td>A2b</td>
<td>7</td>
<td>273,9</td>
<td>11,6</td>
<td></td>
<td>13,6</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>7</td>
<td>242,4</td>
<td>6,9</td>
<td></td>
<td>0,6</td>
</tr>
<tr>
<td></td>
<td>A6</td>
<td>7</td>
<td>232,0</td>
<td>8,6</td>
<td></td>
<td>-3,7</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>7</td>
<td>228,4</td>
<td>18,0</td>
<td></td>
<td>-5,2</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>7</td>
<td>232,6</td>
<td>8,4</td>
<td></td>
<td>-3,5</td>
</tr>
<tr>
<td></td>
<td>B4</td>
<td>7</td>
<td>276,9</td>
<td>3,9</td>
<td></td>
<td>14,9</td>
</tr>
<tr>
<td></td>
<td>B6</td>
<td>7</td>
<td>257,1</td>
<td>10,9</td>
<td></td>
<td>6,7</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>7</td>
<td>186,0</td>
<td>6,1</td>
<td></td>
<td>-22,8</td>
</tr>
<tr>
<td></td>
<td>D1</td>
<td>7</td>
<td>232,8</td>
<td>13,7</td>
<td></td>
<td>-3,4</td>
</tr>
<tr>
<td></td>
<td>GA2</td>
<td>nicht exponiert / not exposed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GA3</td>
<td>nicht exponiert / not exposed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GA5</td>
<td>nicht exponiert / not exposed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GA7</td>
<td>12</td>
<td>230,6</td>
<td>7,7</td>
<td></td>
<td>-4,3</td>
</tr>
<tr>
<td></td>
<td>GA8</td>
<td>nicht exponiert / not exposed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GB4</td>
<td>6</td>
<td>248,2</td>
<td>7,5</td>
<td></td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>GB6</td>
<td>7</td>
<td>250,1</td>
<td>4,6</td>
<td></td>
<td>3,8</td>
</tr>
<tr>
<td></td>
<td>J1</td>
<td>7</td>
<td>223,9</td>
<td>18,7</td>
<td></td>
<td>-7,1</td>
</tr>
<tr>
<td>Expositionsgruppe</td>
<td>Prüfcode</td>
<td>Test code</td>
<td>Messgerätezahl</td>
<td>Mittelwert [kBq h⁻¹ m⁻³]</td>
<td>Standardabweichung [%]</td>
<td>Referenzwert [kBq h⁻¹ m⁻³]</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>1</td>
<td>K1</td>
<td>7</td>
<td>95,0</td>
<td>45,8</td>
<td></td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>L1</td>
<td>7</td>
<td>227,4</td>
<td>5,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>7</td>
<td>240,9</td>
<td>7,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N1</td>
<td>7</td>
<td>225,4</td>
<td>8,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>7</td>
<td>288,1</td>
<td>16,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N3a</td>
<td>7</td>
<td>248,4</td>
<td>8,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N3b</td>
<td>7</td>
<td>251,4</td>
<td>8,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N3c</td>
<td>7</td>
<td>220,9</td>
<td>8,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N3d</td>
<td>7</td>
<td>224,8</td>
<td>9,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N4</td>
<td>7</td>
<td>146,4</td>
<td>17,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N5</td>
<td>7</td>
<td>177,7</td>
<td>7,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>7</td>
<td>263,3</td>
<td>7,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>7</td>
<td>231,4</td>
<td>9,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>7</td>
<td>256,7</td>
<td>4,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>7</td>
<td>233,7</td>
<td>6,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>7</td>
<td>213,6</td>
<td>11,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>7</td>
<td>203,9</td>
<td>6,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U1</td>
<td>7</td>
<td>245,6</td>
<td>7,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V1</td>
<td>7</td>
<td>201,3</td>
<td>3,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V2</td>
<td>7</td>
<td>209,9</td>
<td>28,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y1</td>
<td>7</td>
<td>217,9</td>
<td>16,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expositionsgruppe</td>
<td>Prüfcode</td>
<td>Messgerätezahl</td>
<td>Mittelwert [kBq·h·m⁻³]</td>
<td>Standardabweichung [%]</td>
<td>Vergleich mit Referenzwerten</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of Instruments</td>
<td></td>
<td></td>
<td>Reference value $\bar{P}_{Rn,Ref}$ [kBq·h·m⁻³]</td>
<td>rel. Messabweichung [%]</td>
</tr>
<tr>
<td>1 Z1</td>
<td>7</td>
<td>7</td>
<td>241,9</td>
<td>6,3</td>
<td>241</td>
<td>0,4</td>
</tr>
<tr>
<td>2 A2a</td>
<td>7</td>
<td>7</td>
<td>2141,1</td>
<td>14,3</td>
<td>1796</td>
<td>19,2</td>
</tr>
<tr>
<td></td>
<td>A2b</td>
<td>7</td>
<td>1832,1</td>
<td>9,8</td>
<td>19,2</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>7</td>
<td>1716,7</td>
<td>4,0</td>
<td>-4,4</td>
<td>-4,0</td>
</tr>
<tr>
<td></td>
<td>A6</td>
<td>7</td>
<td>1424,9</td>
<td>5,7</td>
<td>-20,7</td>
<td>-2,0</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>7</td>
<td>1818,3</td>
<td>4,6</td>
<td>1,2</td>
<td>-3,1</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>7</td>
<td>1683,6</td>
<td>3,5</td>
<td>-6,3</td>
<td>-3,3</td>
</tr>
<tr>
<td></td>
<td>B4</td>
<td>7</td>
<td>2302,0</td>
<td>7,2</td>
<td>28,2</td>
<td>-2,0</td>
</tr>
<tr>
<td></td>
<td>B6</td>
<td>7</td>
<td>1864,1</td>
<td>3,3</td>
<td>3,8</td>
<td>-1,2</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>7</td>
<td>1324,1</td>
<td>12,5</td>
<td>-26,3</td>
<td>-3,1</td>
</tr>
<tr>
<td></td>
<td>D1</td>
<td>7</td>
<td>1743,0</td>
<td>2,4</td>
<td>-3,0</td>
<td>-3,1</td>
</tr>
<tr>
<td></td>
<td>GA2</td>
<td>6</td>
<td>1746,3</td>
<td>30,9</td>
<td>-2,8</td>
<td>-3,1</td>
</tr>
<tr>
<td></td>
<td>GA3</td>
<td>6</td>
<td>1889,3</td>
<td>4,3</td>
<td>5,2</td>
<td>-2,0</td>
</tr>
<tr>
<td></td>
<td>GA5</td>
<td>6</td>
<td>1726,8</td>
<td>7,2</td>
<td>-3,9</td>
<td>-2,0</td>
</tr>
<tr>
<td></td>
<td>GA7</td>
<td>nicht exponiert / not exposed</td>
<td>1885,9</td>
<td>4,2</td>
<td>-2,8</td>
<td>-2,0</td>
</tr>
<tr>
<td></td>
<td>GA8</td>
<td>6</td>
<td>1427,0</td>
<td>15,5</td>
<td>-20,5</td>
<td>-3,1</td>
</tr>
<tr>
<td></td>
<td>GB4</td>
<td>nicht exponiert / not exposed</td>
<td>1743,0</td>
<td>2,4</td>
<td>-3,0</td>
<td>-3,1</td>
</tr>
<tr>
<td></td>
<td>GB6</td>
<td>nicht exponiert / not exposed</td>
<td>1723,7</td>
<td>3,6</td>
<td>-4,0</td>
<td>-3,1</td>
</tr>
<tr>
<td></td>
<td>J1</td>
<td>7</td>
<td>1691,4</td>
<td>2,3</td>
<td>-5,8</td>
<td>-2,0</td>
</tr>
<tr>
<td></td>
<td>K1</td>
<td>7</td>
<td>749,6</td>
<td>5,2</td>
<td>-58,3</td>
<td>-3,1</td>
</tr>
<tr>
<td></td>
<td>L1</td>
<td>7</td>
<td>1723,7</td>
<td>3,6</td>
<td>-4,0</td>
<td>-3,1</td>
</tr>
<tr>
<td>Expositionsgruppe</td>
<td>Prüfcode</td>
<td>Test code</td>
<td>Messgerätezahl</td>
<td>Mittelwert $[\text{kBq \cdot h \cdot m}^{-3}]$</td>
<td>Standardabweichung [%]</td>
<td>Vergleich mit Referenzwerten</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>2 L2 7</td>
<td>1824,3</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1 7</td>
<td>1643,1</td>
<td>3,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2 7</td>
<td>1972,3</td>
<td>3,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3a 7</td>
<td>1762,9</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3b 7</td>
<td>1776,3</td>
<td>2,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3c 7</td>
<td>1746,7</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3d 7</td>
<td>1758,9</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N4 7</td>
<td>1055,1</td>
<td>7,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N5 7</td>
<td>1068,6</td>
<td>15,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1 7</td>
<td>1774,6</td>
<td>9,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2 7</td>
<td>1621,3</td>
<td>5,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4 7</td>
<td>1731,7</td>
<td>7,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1 7</td>
<td>1788,0</td>
<td>5,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2 7</td>
<td>1784,7</td>
<td>5,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1 7</td>
<td>1525,4</td>
<td>4,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U1 7</td>
<td>1835,4</td>
<td>1,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1 7</td>
<td>1499,7</td>
<td>2,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2 7</td>
<td>1537,6</td>
<td>12,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1 7</td>
<td>1763,7</td>
<td>4,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z1 7</td>
<td>1679,7</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 A2a 7</td>
<td>2390,9</td>
<td>13,8</td>
<td></td>
<td>1849</td>
<td>29,3</td>
<td></td>
</tr>
<tr>
<td>Expositionsgruppe</td>
<td>Prüfcode</td>
<td>Test code</td>
<td>Messgerätezahl</td>
<td>Mittelwert [kBq⋅h⋅m⁻³]</td>
<td>Standardabweichung [%]</td>
<td>Vergleich mit Referenzwerten</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Referenzwert [kBq⋅h⋅m⁻³]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rel. Messabweichung [%]</td>
</tr>
<tr>
<td>3</td>
<td>A2b</td>
<td>7</td>
<td>7</td>
<td>2093,6</td>
<td>15,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>7</td>
<td>7</td>
<td>1832,6</td>
<td>5,4</td>
<td>13,2</td>
</tr>
<tr>
<td></td>
<td>A6</td>
<td>7</td>
<td>7</td>
<td>1463,4</td>
<td>8,7</td>
<td>-0,9</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>7</td>
<td>7</td>
<td>1928,0</td>
<td>4,4</td>
<td>-20,9</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>7</td>
<td>7</td>
<td>1799,4</td>
<td>4,1</td>
<td>-2,7</td>
</tr>
<tr>
<td></td>
<td>B4</td>
<td>7</td>
<td>7</td>
<td>2435,3</td>
<td>8,8</td>
<td>31,7</td>
</tr>
<tr>
<td></td>
<td>B6</td>
<td>7</td>
<td>7</td>
<td>1936,1</td>
<td>2,7</td>
<td>4,7</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>7</td>
<td>7</td>
<td>1372,6</td>
<td>13,8</td>
<td>-25,8</td>
</tr>
<tr>
<td></td>
<td>D1</td>
<td>7</td>
<td>7</td>
<td>1845,4</td>
<td>1,7</td>
<td>-0,2</td>
</tr>
<tr>
<td></td>
<td>GA2</td>
<td>6</td>
<td>6</td>
<td>1637,7</td>
<td>7,3</td>
<td>-11,4</td>
</tr>
<tr>
<td></td>
<td>GA3</td>
<td>6</td>
<td>6</td>
<td>2026,2</td>
<td>5,9</td>
<td>9,6</td>
</tr>
<tr>
<td></td>
<td>GA5</td>
<td>6</td>
<td>6</td>
<td>1765,8</td>
<td>2,5</td>
<td>-4,5</td>
</tr>
<tr>
<td></td>
<td>GA7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht exponiert / not exposed</td>
</tr>
<tr>
<td></td>
<td>GA8</td>
<td>6</td>
<td>6</td>
<td>1629,3</td>
<td>17,3</td>
<td>-11,9</td>
</tr>
<tr>
<td></td>
<td>GB4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht exponiert / not exposed</td>
</tr>
<tr>
<td></td>
<td>GB6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht exponiert / not exposed</td>
</tr>
<tr>
<td></td>
<td>J1</td>
<td>7</td>
<td>7</td>
<td>1725,4</td>
<td>3,2</td>
<td>-6,7</td>
</tr>
<tr>
<td></td>
<td>K1</td>
<td>7</td>
<td>7</td>
<td>1115,1</td>
<td>20,8</td>
<td>-39,7</td>
</tr>
<tr>
<td></td>
<td>L1</td>
<td>7</td>
<td>7</td>
<td>1806,6</td>
<td>2,2</td>
<td>-2,3</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>7</td>
<td>7</td>
<td>1895,7</td>
<td>4,0</td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td>N1</td>
<td>7</td>
<td>7</td>
<td>1730,7</td>
<td>2,4</td>
<td>-6,4</td>
</tr>
<tr>
<td>Expositionsgruppe</td>
<td>Prüfcode</td>
<td>Test code</td>
<td>Messgerätezahl</td>
<td>Messwert (Mean value) [kBq·h·m⁻³]</td>
<td>Standardabweichung [Standard deviation] [%]</td>
<td>Vergleich mit Referenzwerten</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mittelwert</td>
<td>Standardabweichung [Standard deviation] [%]</td>
<td>rel. Messabweichung [Relative error] [%]</td>
</tr>
<tr>
<td>3</td>
<td>N2</td>
<td>7</td>
<td></td>
<td>2074,4</td>
<td>4,0</td>
<td>12,2</td>
</tr>
<tr>
<td></td>
<td>N3a</td>
<td>7</td>
<td></td>
<td>1856,4</td>
<td>3,6</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>N3b</td>
<td>7</td>
<td></td>
<td>1858,6</td>
<td>3,9</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>N3c</td>
<td>7</td>
<td></td>
<td>1852,1</td>
<td>2,7</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td>N3d</td>
<td>7</td>
<td></td>
<td>1862,3</td>
<td>2,8</td>
<td>0,7</td>
</tr>
<tr>
<td></td>
<td>N4</td>
<td>7</td>
<td></td>
<td>1099,3</td>
<td>11,0</td>
<td>-40,5</td>
</tr>
<tr>
<td></td>
<td>N5</td>
<td>7</td>
<td></td>
<td>1260,0</td>
<td>9,2</td>
<td>-31,9</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>7</td>
<td></td>
<td>1824,4</td>
<td>9,4</td>
<td>-1,3</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>7</td>
<td></td>
<td>1761,6</td>
<td>3,9</td>
<td>-4,7</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>7</td>
<td></td>
<td>1779,7</td>
<td>4,9</td>
<td>-3,7</td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>7</td>
<td></td>
<td>1921,1</td>
<td>5,0</td>
<td>3,9</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>7</td>
<td></td>
<td>1858,0</td>
<td>6,8</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>7</td>
<td></td>
<td>1562,7</td>
<td>3,6</td>
<td>-15,5</td>
</tr>
<tr>
<td></td>
<td>U1</td>
<td>7</td>
<td></td>
<td>1931,3</td>
<td>1,6</td>
<td>4,5</td>
</tr>
<tr>
<td></td>
<td>V1</td>
<td>7</td>
<td></td>
<td>1613,1</td>
<td>2,2</td>
<td>-12,8</td>
</tr>
<tr>
<td></td>
<td>V2</td>
<td>7</td>
<td></td>
<td>1695,1</td>
<td>15,5</td>
<td>-8,3</td>
</tr>
<tr>
<td></td>
<td>Y1</td>
<td>7</td>
<td></td>
<td>1934,6</td>
<td>3,4</td>
<td>4,6</td>
</tr>
<tr>
<td></td>
<td>Z1</td>
<td>7</td>
<td></td>
<td>1845,7</td>
<td>6,7</td>
<td>-0,2</td>
</tr>
<tr>
<td>4</td>
<td>A2a</td>
<td>7</td>
<td></td>
<td>3653,9</td>
<td>17,2</td>
<td>10,9</td>
</tr>
<tr>
<td></td>
<td>A2b</td>
<td>7</td>
<td></td>
<td>3211,1</td>
<td>13,7</td>
<td>-2,5</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>7</td>
<td></td>
<td>3193,6</td>
<td>8,6</td>
<td>-3,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1849</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3294</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expositionsgruppe</td>
<td>Prüfcode</td>
<td>Test code</td>
<td>Messgerätezahl</td>
<td>Messwert [kBq·h·m⁻³]</td>
<td>Standardabweichung [%]</td>
<td>Vergleich mit Referenzwerten</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of Instruments</td>
<td>Mittelwert</td>
<td>[kBq·h·m⁻³]</td>
<td>Standardabweichung [%]</td>
</tr>
<tr>
<td>4</td>
<td>A6</td>
<td>7</td>
<td>2459,7</td>
<td>7,0</td>
<td>3294</td>
<td>-25,3</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>7</td>
<td>3294,9</td>
<td>2,4</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>7</td>
<td>3173,0</td>
<td>1,4</td>
<td>-3,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B4</td>
<td>7</td>
<td>4234,6</td>
<td>8,9</td>
<td>28,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B6</td>
<td>7</td>
<td>3395,4</td>
<td>1,3</td>
<td>3,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>7</td>
<td>2282,1</td>
<td>5,1</td>
<td>-30,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D1</td>
<td>7</td>
<td>3251,7</td>
<td>2,6</td>
<td>-1,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GA2</td>
<td>6</td>
<td>3171,5</td>
<td>6,5</td>
<td>-3,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GA3</td>
<td></td>
<td>nicht exponiert / not exposed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GA5</td>
<td>6</td>
<td>3368,5</td>
<td>6,1</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GA7</td>
<td></td>
<td>nicht exponiert / not exposed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GA8</td>
<td>6</td>
<td>2851,2</td>
<td>6,2</td>
<td>-13,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GB4</td>
<td></td>
<td>nicht exponiert / not exposed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GB6</td>
<td></td>
<td>nicht exponiert / not exposed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J1</td>
<td>7</td>
<td>2983,4</td>
<td>2,2</td>
<td>-9,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K1</td>
<td>7</td>
<td>1449,0</td>
<td>33,1</td>
<td>-56,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L1</td>
<td>7</td>
<td>2997,3</td>
<td>0,9</td>
<td>-9,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>7</td>
<td>3249,7</td>
<td>2,1</td>
<td>-1,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N1</td>
<td>7</td>
<td>2946,7</td>
<td>3,0</td>
<td>-10,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>7</td>
<td>3466,4</td>
<td>3,4</td>
<td>5,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N3a</td>
<td>7</td>
<td>3072,5</td>
<td>2,5</td>
<td>-6,7</td>
<td></td>
</tr>
</tbody>
</table>
Erläuterungen zu A.7:

<table>
<thead>
<tr>
<th>Expositionsgruppe</th>
<th>Prüfcode</th>
<th>Messgerätezahl</th>
<th>Mittelwert [kBq·h·m⁻³]</th>
<th>Standardabweichung [%]</th>
<th>Referenzwert P<sub>Rn,Ref</sub> [kBq·h·m⁻³]</th>
<th>rel. Messabweichung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>N3b</td>
<td>7</td>
<td>3068,4</td>
<td>2,5</td>
<td>3294</td>
<td>-6,9</td>
</tr>
<tr>
<td></td>
<td>N3c</td>
<td>7</td>
<td>3087,4</td>
<td>1,9</td>
<td>3294</td>
<td>-6,3</td>
</tr>
<tr>
<td></td>
<td>N3d</td>
<td>7</td>
<td>3086,3</td>
<td>2,2</td>
<td>3294</td>
<td>-6,3</td>
</tr>
<tr>
<td></td>
<td>N4</td>
<td>7</td>
<td>1876,6</td>
<td>11,0</td>
<td>3294</td>
<td>-43,0</td>
</tr>
<tr>
<td></td>
<td>N5</td>
<td>7</td>
<td>1848,6</td>
<td>7,8</td>
<td>3294</td>
<td>-43,9</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>7</td>
<td>3409,7</td>
<td>4,4</td>
<td>3294</td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>7</td>
<td>2873,6</td>
<td>3,8</td>
<td>3294</td>
<td>-12,8</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>7</td>
<td>3280,7</td>
<td>2,9</td>
<td>3294</td>
<td>-0,4</td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>7</td>
<td>3388,1</td>
<td>3,6</td>
<td>3294</td>
<td>2,9</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>7</td>
<td>3489,9</td>
<td>4,7</td>
<td>3294</td>
<td>5,9</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>7</td>
<td>2889,0</td>
<td>4,1</td>
<td>3294</td>
<td>-12,3</td>
</tr>
<tr>
<td></td>
<td>U1</td>
<td>7</td>
<td>3478,0</td>
<td>1,8</td>
<td>3294</td>
<td>5,6</td>
</tr>
<tr>
<td></td>
<td>V1</td>
<td>7</td>
<td>2846,1</td>
<td>1,9</td>
<td>3294</td>
<td>-13,6</td>
</tr>
<tr>
<td></td>
<td>V2</td>
<td>7</td>
<td>3275,3</td>
<td>10,7</td>
<td>3294</td>
<td>-0,6</td>
</tr>
<tr>
<td></td>
<td>Y1</td>
<td>7</td>
<td>3071,1</td>
<td>4,1</td>
<td>3294</td>
<td>-6,8</td>
</tr>
<tr>
<td></td>
<td>Z1</td>
<td>7</td>
<td>3186,7</td>
<td>5,0</td>
<td>3294</td>
<td>-3,3</td>
</tr>
</tbody>
</table>
Remarks to A.7:
The indications of the radon instruments tested were assigned to the exposure groups. It was the responsibility of each participating measuring service, to take account of the indications of the transit group instruments for the indications of the exposed instruments. For each group mean value and standard deviation were calculated. The net exposure (difference between the mean values of the exposure group and the transit group) was not calculated by the organizers. The reference exposure is the exposure to radon which instruments have received. The reference exposure is traced back to the national standard and is considered as the conventionally true value used for the exposure group. The relative error is the difference between mean value and reference exposure related to reference exposure (given in percent). Mean value, standard deviation and relative error are rounded as indicated.
A.8 Ergebnisse der Vergleichsprüfung: Messgeräte mit Aktivkohle

Results of intercomparison: Measuring instruments using activated charcoal

<table>
<thead>
<tr>
<th>Expositionzeit</th>
<th>Expositionsgruppe</th>
<th>Prüfcode</th>
<th>Mittelwert [C_{Rn}] [Bq \cdot m^{-3}]</th>
<th>Standardabweichung [%]</th>
<th>Referenzwert [C_{Rn,Ref}] [Bq \cdot m^{-3}]</th>
<th>rel. Messabweichung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 h</td>
<td>1</td>
<td>cA2</td>
<td>2936,5</td>
<td>8,0</td>
<td>2547</td>
<td>15,3</td>
</tr>
<tr>
<td>72 h</td>
<td>2</td>
<td>cB2</td>
<td>2470,9</td>
<td>4,3</td>
<td>2533</td>
<td>-2,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cB3</td>
<td>2458,3</td>
<td>3,4</td>
<td></td>
<td>-2,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cB6</td>
<td>2057,5</td>
<td>3,5</td>
<td></td>
<td>-18,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cB7</td>
<td>2674,0</td>
<td>3,8</td>
<td></td>
<td>5,6</td>
</tr>
</tbody>
</table>

Erläuterungen zu A.8:

Remarks to A.8:

The indications of the radon instruments tested were assigned to the exposure groups. For each group mean value and standard deviation were calculated. The reference value of the radon activity concentration is the mean value during the time of exposure. The radon activity concentration is traced back to national standard and is considered as the conventionally true value used for the exposure group. The relative error is the difference between mean value and reference value related to the reference value (given in percent). Mean value, standard deviation, and relative error are rounded as indicated.
Bisher erschienene BfS-SW-Berichte
(vorher BfS-AR-, BfS-IAR-, BfS-ST- und BfS-AS-Berichte)

BfS-IAR-1/90
Zähringer, M.; Bieringer, P.; Kromer, B.; Sartorius, H.; Weiss, W.
Entwicklung, Erprobung und Einsatz von Schnellmessmethoden zur nuklidspezifischen Bestimmung atmosphärischer Kontaminationen.
Freiburg, August 1990

BfS-IAR-2/97
Zähringer, M.; Sempau, J.
Calibration Factors for Dose Rate Probes in Environmental Monitoring Networks Obtained from Monte-Carlo-Simulations
Freiburg, Februar 1997

BfS-IAR-3/98
Weiss, W.; Kelly, G.N.; French, S.
Decision Support for Emergency Response - How Best Can it be Improved?
Freiburg, September 1998

BfS-AR-1/01
Bieringer, J. u. P.
Länder / BfS in Augsburg und die DWD-Stationen.
Freiburg, März 2001

BfS-ST-1/92
Berlin, August 1992

BfS-ST-2/92
Umweltradioaktivität in den ostdeutschen Ländern.
Jahresbericht 1990.
Berlin, September 1992

BfS-ST-3/92
Berlin, November 1992

BfS-ST-4/93
Teil 1: M. Beyermann, B. Höfs, Teil 2: I. Gans, M. Beyermann, M. Lönnig
Teil 1: Radonmessungen in Gebäuden mit Aktivkohledetektoren und Flüssigszintillations-Spektrometrie
Berlin, Juli 1993

BfS-ST-5/93
Sarenio, O.; Will, W.
Qualitätssicherung der Dosisleistungsmessungen im Grundpegelbereich.
Berlin, September 1993
Bisher erschienene BfS-SW-Berichte
(vorher BfS-AR-, BfS-IAR-, BfS-ST-und BfS-AS-Berichte)

BfS-ST-6/95
Schmidt, V.; Feddersen, Ch.; Ullmann, W.
Untersuchungen zur Aussagefähigkeit von passiven Meßsystemen zur Bestimmung der Strahlenexposition durch Radon und kurzlebige Radonfolgeprodukte.
Berlin, Juni 1995

BfS-ST-7/95
Bünger, T.; Obrikat, D.; Rühle, H.; Viertel, H.
Berlin, August 1995

BfS-ST-8/96
Kraus, W.
Strahlenexposition und Strahlenschutzdosimetrie
Berlin, April 1996

BfS-St-9/96
Umweltradioaktivität im Ostthüringer Bergbaugebiet.
Berlin, Juli 1996

BfS-ST-10/96
Hamel, P.; Lehmann, R.; Kube, G.; Couball, B.; Leißring, B.
Modellhafte Sanierung radonbelasteter Wohnungen in Schneeberg.
Berlin, Oktober 1996

BfS-ST-11/97
Beyermann, M.; Naumann, M.; Sarenio, O.; Schkade U.-K.; Will, W.
Erfahrungen zur Qualitätsüberwachung bei der Ermittlung der Umweltradioaktivität im Rahmen der Meßprogramme zum Projekt "Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten (Altlastenkaster)".
Berlin, Februar 1997

BfS-ST-12/97
Bünger, T.; Obrikat, D.; Rühle, H., Viertel, H.
Berlin, Februar 1997

BfS-ST-13/97
Will, W.; Borsdorf, K.-H.; Mielcarek, J.; Malinowski, D.; Sarenio, O.
Ortsdosisleistung der terrestrischen Gammastrahlung in den östlichen Bundesländern Deutschlands.Berlin, August 1997

BfS-ST-14/97
Will, W.; Borsdorf, K.-H.
Ortsdosisleistung der terrestrischen Gammastrahlung in Deutschland.
Lehmann, R.; Kemski, J.; Siehl, A.
Radonkonzentration in Wohngebäuden der Bundesrepublik Deutschland.
Berlin, November 1997
Bisher erschienene BfS-SW-Berichte
(vorher BfS-AR-, BfS-IAR-, BfS-ST- und BfS-AS-Berichte)

BfS-ST-15/98
Bünger, T.; Obrikat, D.; Rühle, H.; Viertel, H.
Ergänzung zum Jahresbericht 1995 des BMU "Umweltradioaktivität und Strahlenbelastung".
Berlin, März 1998

BfS-ST-16/99
Bünger, T.; Obrikat, D.; Rühle, H.; Viertel, H.
Ergänzung zum Jahresbericht 1996 des BMU "Umweltradioaktivität und Strahlenbelastung".
Berlin, März 1999

BfS-AS-1/00
Bünger, T.; Obrikat, D.; Rühle, H.; Viertel, H.
Ergänzung zum Jahresbericht 1997 des BMU "Umweltradioaktivität und Strahlenbelastung".
Berlin, Februar 2000

BfS-AS-2/00
Jun, J.-S.∗; Guggenberger, R.; Dalheimer, A.
∗) Department of Physics, Chungnam National University, Taejon 305-764, Korea
A Comparative Study on the CL Dosimetric Characteristics of German and Korean Sugar and Sorbite.
Berlin, Oktober 2000

Ab 1. Februar 2003 SW

BfS-SW-01/03
Will, W.; Mielcarek, J.; Schkade, U.-K.
Ortsdosisleistung der terrestrischen Gammastrahlung in ausgewählten Regionen Deutschlands.
Salzgitter, Juni 2003

BfS-SW-02/03
Gregor, J.; Raguse, R.; Voß, W.
Einsatz des Entscheidungshilfesystems RODOS in Deutschland
Salzgitter, Juli 2003

BfS-SW-03/06
Beck, Thomas; Ettenhuber, E.
Überwachung von Strahlenexpositionen bei Arbeiten
Leitfaden für die Umsetzung der Regelung nach Teil 3 Kapitel 1 und 2 StrlSchV
Salzgitter, März 2006

BfS-SW-04/09
urn:nbn:de:0221-2009042344
Beck, Thomas
Spezielle Anforderungen an Geräte zur Bestimmung der Strahlenexposition durch Radon- und Radonzerfallsprodukte
Salzgitter, April 2009
Bisher erschienene BfS-SW-Berichte

(vorher BfS-AR-, BfS-IAR-, BfS-ST- und BfS-AS-Berichte)

BfS-SW-05/09
urn:nbn:de:0221-2009120417
Dushe, C.; Gehrcke, K.; Kümmel, M.; Müller, S.
Ergebnisse der Radonmessungen in der bodennahen Luft der Bergbauregionen
Salzgitter, Dezember 2009

BfS-SW-06/09
urn:nbn:de:0221-20100319945
Beyermann, M.; Bünger, T.; Gehrcke, K.; Obrikat, D.
Strahlenexposition durch natürliche Radionuklide im Trinkwasser in der Bundesrepublik Deutschland
Salzgitter, Dezember 2009

BfS-SW-07/10
urn:nbn:de:0221-20100329966
Berechnungsgrundlagen zur Ermittlung der Strahlenexposition infolge bergbaubedingter Umweltradioaktivität (Berechnungsgrundlagen - Bergbau)
Salzgitter, März 2010

BfS-SW-08/10
urn:nbn:de:0221-201008113016
Beck, T.; Buchröder, H.; Döring, J.; Foerster, E.; Schmidt, V.
Messgeräte zur Bestimmung der Radon-Aktivitätskonzentration oder der Radonexposition – Vergleichsprüfung 2010
Instrument to Measure Radon Activity Concentration or Exposure to Radon – Interlaboratory Comparison 2010
Salzgitter, November 2010

BfS-SW-09/11
urn:nbn:de:0221-201109056212
Calculation Guide Mining
Calculation Guide for the Determination of Radiation Exposure due to Environmental Radioactivity Resulting from Mining
Department Radiation Protection and Environment
Salzgitter, September 2011

BfS-SW-10/11
urn:nbn:de:0221-201109216413
Foerster, E.; Beck, T.; Buchröder, H.; Döring, J.; Schmidt, V.
Messgeräte zur Bestimmung der Radon-Aktivitätskonzentration oder der Radonexposition – Vergleichsprüfung 2011
Instrument to Measure Radon Activity Concentration or Exposure to Radon – Interlaboratory Comparison 2011
Fachbereich Strahlenschutz und Umwelt
Salzgitter, Oktober 2011