Umweltradioaktivität und Strahlenbelastung

Jahresbericht 2011
Vorwort
Seit 1958 werden die von den amtlichen Messstellen gemessenen Werte der Radioaktivität in der menschlichen Umwelt in Form von Vierteljahresberichten, seit 1968 in Jahresberichten veröffentlicht. Dieser Bericht enthält neben den Ergebnissen der Überwachung der Umweltradioaktivität Angaben über die Strahlenexposition der Bevölkerung durch verschiedene Quellen und behandelt u. a. folgende Themen:

- Quellen natürlicher und zivilisatorisch veränderter natürlicher Radioaktivität,
- Radon in Gebäuden,
- Radioaktive Stoffe in Baumaterialien und Industrieprodukten,
- Kernwaffenversuche,
- die Folgen des Reaktorunfalls von Tschernobyl,
- kerntechnische Anlagen,
- berufliche Tätigkeit,
- medizinische Anwendung,
- Umgang mit radioaktiven Stoffen in Forschung und Technik,
- radioaktive Abfälle,
- Strahlenunfälle und besondere Vorkommnisse.

Darüber hinaus werden seit 2001 auch Informationen über die nichtionisierende Strahlung (NIS) und Forschungsprojekte in diesem Bereich veröffentlicht.

Der Bericht ist in die Teile A und B gegliedert. Teil A enthält allgemeine Angaben und eine Einführung in die jeweilige Thematik, während in Teil B (graues Register) zum gleichen Thema die jährlich erhobenen Daten im Vergleich mit dem Vorjahreswert wiedergegeben und bewertet sind. Struktur und Themen sind in beiden Teilen gleich.
INHALTSVERZEICHNIS

ZUSAMMENFASSUNG ... 11
SUMMARY ... 16
RÉSUMÉ ... 20

TEIL A
ALLGEMEINE ANGABEN
(GENERAL INFORMATION)

I NATÜRLICHE UMWELTRADIOAKTIVITÄT
(NATURAL ENVIRONMENTAL RADIOACTIVITY)

1. Natürliche Umweltradioaktivität .. 28
 (Natural environmental radioactivity)
 1.1 Natürlich radioaktive Stoffe in der Umwelt .. 28
 (Natural radioactive substances in the environment)
 1.2 Natürlich radioaktive Stoffe im Boden .. 28
 (Natural radioactive substances in soil)
 1.3 Natürlich radioaktive Stoffe im Wasser .. 29
 (Natural radioactive substances in water)
 1.4 Natürlich radioaktive Stoffe in der bodennahen Atmosphäre ... 32
 (Natural radioactive substances in the atmosphere close to ground level)
 1.5 Natürlich radioaktive Stoffe in der Nahrung .. 32
 (Natural radioactive substances in foodstuff)
 1.6 Natürliche Strahlenexposition .. 34
 (Natural radiation exposure)

2. Zivilisatorisch veränderte natürliche Umweltradioaktivität .. 35
 (Technologically enhanced natural environmental radioactivity)
 2.1 Hinterlassenschaften und Rückstände aus Bergbau und Industrie .. 35
 (Relics and residues of mining and industry)
 2.2 Radon in Gebäuden .. 39
 (Radon in buildings)
 2.3 Radioaktive Stoffe in Baumaterialien und Industrieprodukten .. 40
 (Radioactive substances in building materials and industrial products)

II KÜNSTLICHE UMWELTRADIOAKTIVITÄT
(ARTIFICIAL RADIOACTIVITY IN THE ENVIRONMENT)

1. Quellen künstlicher Radioaktivität ... 46
 (Sources of artificial radioactivity)
 1.1 Kernwaffenversuche ... 46
 (Nuclear weapons tests)
 1.2 Tscherńobyl - Strahlenexposition durch den Reaktorunfall ... 48
 (Chernobyl - radiation exposure from the accident)
 1.3 Anlagen nach Atomgesetz - Allgemeine Angaben ... 49
 (Facilities according to the Atomic Energy Act - general data)

2. Aktivitätsmessungen und Messnetze .. 50
 (Activity measurements and monitoring networks)
 2.1 Luft und Niederschlag, Gamma-Ortsdosisleistung .. 53
 (Air and precipitation, ambient gamma dose rate)
 2.2 Meerwasser und Binnengewässer .. 54
 (Seawater and inland water)
2.3 Böden ... 56
(Soils)
2.4 Lebensmittel, Grund- und Trinkwasser ... 56
(Foodstuff, groundwater, and drinking water)
2.5 Bedarfsgegenstände, Arzneimittel und deren Ausgangsstoffe .. 58
(Consumer goods, pharmaceutical products and their source materials)
2.6 Abwasser und Klärschlamm .. 58
(Waste water and sewage sludge)
2.7 Abfälle .. 59
(Waste)
2.8 Inkorporationsüberwachung der Bevölkerung .. 60
(Monitoring of incorporation among the population)

III BERUFLICHE STRAHLENEXPOSITION
(OCcupational radiation exposure)
1. Personendosisüberwachung mit Dosimetern .. 62
(Monitoring with personal dosimeters)
2. Überwachung des fliegenden Personals ... 62
(Aircraft crew monitoring)
3. Überwachung von Arbeitsplätzen mit erhöhter Radonexposition .. 62
(Monitoring of radon enhanced workplaces)
4. Inkorporationsüberwachung beruflich strahlenexponierter Personen .. 62
(Incorporation monitoring of occupationally exposed persons)

IV STRAHLENEXPOSITION DURCH MEDIZINISCHE MASSNAHMEN
(Radiation exposures from medical applications)
1. Diagnostische Strahlenanwendungen ... 64
(Diagnostic applications of radiation)
1.1 Röntgendiagnostik .. 64
(X-ray diagnostics)
1.2 Nuklearmedizin, Diagnostik .. 65
(Nuclear medicine, diagnostics)
1.3 Strahlenhygienische Bewertung der Strahlenexposition durch diagnostische Maßnahmen 66
(Evaluation of exposures resulting from radio-diagnostic procedures)
1.4 Alternative Untersuchungsverfahren ... 66
(Alternative examination procedures)
1.5 Qualitätssicherung ... 66
(Quality assurance)
2. Therapeutische Strahlenanwendungen ... 67
(Therapeutic applications of radiation)
2.1 Strahlentherapie ... 67
(Radiotherapy)
2.2 Nuklearmedizinische Therapie .. 68
(Therapy with radiopharmaceuticals)
3. Medizinische Forschung ... 68
(Medical research)
4. Herzschrittmacher ... 69
(Pacemakers)

V UMGANG MIT RADIOAKTIVEN STOFFEN UND IONISIERENDER STRAHLUNG
(The handling of radioactive materials and sources of ionising radiation)
1. Grenzüberschreitende Verbringung radioaktiver Stoffe ... 72
(Border-crossing transport of radioactive material)
2. Beförderung radioaktiver Stoffe ... 75
 (Transport of radioactive material)
3. Umgang mit radioaktiven Stoffen, Betrieb von Anlagen zur Erzeugung ionisierender Strahlung, Röntgeneinrichtungen und Störanlagen ... 75
 (Handling of radioactive material, operation of devices for the production of ionising radiation and X-ray devices)
3.1 Anwender radioaktiver Stoffe ... 75
 (Users of radioactive sources)
3.2 Bestand radioaktiver Abfälle .. 76
 (Stock of radioactive waste)
3.3 Hochradioaktive Quellen (HRQ) .. 76
 (High-activity sealed sources (HASS))
3.4 Radioaktive Stoffe in Konsumgütern, Industrieerzeugnissen und technischen Strahlenquellen .. 76
 (Radioactive substances in consumer goods, industrial products and radioactive sources)
3.5 Betrieb von Anlagen zur Erzeugung ionisierender Strahlung, Röntgeneinrichtungen und Störanlagen 77
 (Operation of devices for the production of ionising radiation and X-ray devices)
4. Meldepflichtige besondere Vorkommnisse ... 78
 (Exceptional events subject to reporting)

VI NICHTIONISIERENDE STRAHLUNG
 (NON-IONISING RADIATION)
1. Physikalische Eigenschaften und Wirkungen nichtionisierender Strahlung 80
 (Physical characteristics and effects of non-ionising radiation)
1.1 Statische Felder ... 80
 (Static fields)
1.2 Niederfrequente Felder .. 81
 (Low-frequency fields)
1.3 Hochfrequente Felder .. 82
 (High-frequency fields)
1.4 Optische Strahlung .. 84
 (Optical radiation)
1.4.1 UV-Strahlung ... 84
 (UV-radiation)
1.4.2 Infrarotstrahlung ... 86
 (Infrared Radiation)
1.5 Grenzwerte ... 88
 (Limit values)

TEIL B
AKTUELLE DATEN UND DEREN BEWERTUNG
 (CURRENT DATA AND THEIR EVALUATION)
I NATÜRLICHE UMWELTRADIOAKTIVITÄT
 (NATURAL ENVIRONMENTAL RADIOACTIVITY)
1. Natürliche Umweltradioaktivität ... 90
 (Natural environmental radioactivity)
2. Zivilisatorisch veränderte natürliche Umweltradioaktivität .. 90
 (Technologically enhanced natural environmental radioactivity)
2.1 Hinterlassenschaften und Rückstände aus Bergbau und Industrie 90
 (Relics and residues of mining and industry)
2.1.1 Ableitung radioaktiver Stoffe mit Fortluft und Abwasser infolge der Tätigkeit der
 Wismut GmbH (Emissionen) .. 90
 (Discharge of radioactive substances with exhaust air and waste water as a result of the activities
 of the Wismut GmbH)
2.1.2 Überwachung der Konzentrationen radioaktiver Stoffe in den Umweltmedien in der Umgebung der Sanierungsbetriebe (Immissionen) .. 93
(Monitoring of the concentrations of radioactive substances in environmental media from areas in the vicinity of remediation facilities)

2.2 Radon in Gebäuden .. 96
(Radon in buildings)

2.3 Radioaktive Stoffe in Baumaterialien und Industrieprodukten .. 98
(Radioactive substances in building material and industrial products)

II KÜNSTLICHE UMWELTRADIOAKTIVITÄT
(ARTIFICIAL RADIOACTIVITY IN THE ENVIRONMENT)

1. Quellen künstlicher Radioaktivität .. 102
(Sources of artificial radioactivity)

1.1 Kernwaffenversuche ... 102
(Nuclear weapons tests)

1.2 Tschernobyl - Strahlenexposition durch den Reaktorunfall ... 103
(Chernobyl - radiation exposure from the accident)

1.3 Anlagen nach Atomgesetz .. 105
(Facilities according to the Atomic Energy Act)

1.3.1 Strahlenexposition durch Anlagen nach Atomgesetz ... 108
(Radiation exposure from facilities according to the Atomic Energy Act)

1.4 Sonderthema Fukushima .. 113
(Special topic Fukushima)

2. Aktivitätsmessungen und Messnetze ... 119
(Activity measurements and monitoring networks)

2.1 Luft und Niederschlag, Gamma-Ortsdosisleistung / Spurenanalyse 119
(Air and precipitation, ambient gamma dose rate / trace analysis)

2.1.1 Radionuklide in der bodennahen Luft ... 119
(Radionuclides in ground-level air)

2.1.2 Radioaktive Stoffe im Niederschlag (Gesamtdeposition) .. 127
(Total deposition of radionuclides)

2.1.3 Gamma-Ortsdosisleistung ... 131
(Ambient gamma dose rate)

2.1.4 Radioaktivität in Luft und Niederschlag in der Umgebung der Anlagen nach Atomgesetz .. 133
(Radioactivity in air and deposition in the surroundings of facilities according to the Atomic Energy Act)

2.1.5 Aktivitätsableitungen radioaktiver Stoffe mit der Fortluft aus Anlagen nach Atomgesetz ... 137
(Discharges of radioactive substances with exhaust air from facilities according to the Atomic Energy Act)

2.2 Meerwasser und Binnengewässer ... 145
(Seawater and inland water)

2.2.1 Meerwasser, Schwebstoff, Sediment .. 145
(Seawater, suspended matter, sediment)

2.2.2 Oberflächenwasser, Schwebstoff und Sediment der Binnengewässer 156
(Surface water, suspended matter, and sediment in inland water)

2.2.3 Oberflächenwasser und Sediment der Binnengewässer in der Umgebung der Anlagen nach Atomgesetz .. 169
(Surface water and sediment from inland waters in the surroundings of facilities according to the Atomic Energy Act)

2.2.4 Ableitung radioaktiver Stoffe mit dem Abwasser aus Anlagen nach Atomgesetz 177
(Discharges of radioactive substances with waste water from facilities according to the Atomic Energy Act)

2.3 Böden .. 179
(Soil)

2.3.1 Boden, Pflanzen und Futtermittel .. 179
(Soil, plants, and animal feedstuffs)

2.3.2 Boden und Bewuchs in der Umgebung der Anlagen nach Atomgesetz 186
(Soil and vegetation from the surroundings of facilities according to the Atomic Energy Act)
2.4 Lebensmittel, Grund- und Trinkwasser ... 192
 (Foodstuff, groundwater, and drinking water)
2.4.1 Grundwasser und Trinkwasser ... 192
 (Groundwater and drinking water)
2.4.2 Grundwasser und Trinkwasser in der Umgebung von Anlagen nach Atomgesetz ... 193
 (Groundwater and drinking water from the surroundings of facilities according to the Atomic Energy Act)
2.4.3 Milch und Milchprodukte ... 195
 (Milk and milk products)
2.4.4 Milch in der Umgebung von Anlagen nach Atomgesetz ... 197
 (Milk from the surroundings of facilities according to the Atomic Energy Act)
2.4.5 Fische und Produkte des Meeres und der Binnengewässer ... 200
2.4.6 Fische und Wasserpflanzen in der Umgebung von Anlagen nach Atomgesetz ... 205
 (Fish and aquatic plants from the surroundings of facilities according to the Atomic Energy Act)
2.4.7 Einzellebensmittel, Gesamtnahrung, Säuglings- und Kleinkindernahrung ... 207
 (Individual foodstuffs, whole diet, baby and infant foods)
2.4.8 Pflanzliche Nahrungsmittel in der Umgebung von Anlagen nach Atomgesetz ... 221
 (Foodstuffs of vegetable origin from the surroundings of facilities according to the Atomic Energy Act)
2.5 Bedarfsgegenstände, Arzneimittel und deren Ausgangsstoffe ... 231
 (Consumer goods, pharmaceutical products and their raw materials)
2.6 Abwasser und Klärschlamm ... 232
 (Waste water and sewage sludge)
2.7 Abfälle ... 240
 (Waste)
2.8 Inkorporationsüberwachung der Bevölkerung ... 242
 (Monitoring of incorporation among the population)

III BERUFLICHE STRAHLENEXPOSITIONEN
 (OCCUPATIONAL RADIATION EXPOSURES)
1. Personendosisüberwachung ... 250
 (Monitoring of personal dose)
1.1 Dosimeterüberwachte Personen ... 250
 (Monitoring with personal dosimeters)
1.2 Übersicht über beruflich strahlenexponierte Personen in kerntechnischen Anlagen ... 254
 (Overview of data for occupationally exposed persons employed in nuclear facilities)
2. Überwachung des fliegenden Personals ... 255
 (Aircraft crew monitoring)
3. Überwachung von Arbeitsplätzen mit erhöhter Radonexposition ... 255
 (Monitoring of radon enhanced workplaces)
4. Inkorporationsüberwachung beruflich strahlenexponierter Personen ... 256
 (Incorporation monitoring of occupationally exposed persons)

IV STRAHLENEXPOSITION DURCH MEDIZINISCHE MASSNAHMEN
 (RADIATION EXPOSURES FROM MEDICAL APPLICATIONS)
1. Diagnostische Strahlenanwendungen ... 258
 (Diagnostic applications of radiation)
1.1 Röntgendiagnostik ... 258
 (X-ray diagnostics)
1.2 Nuklearmedizin, Diagnostik ... 263
 (Nuclear medicine diagnostics)
1.3 Strahlenhygienische Bewertung der Strahlenexposition durch diagnostische Maßnahmen ... 264
 (Evaluation of radiation exposures resulting from diagnostic procedures)
1.4 Alternative Untersuchungsverfahren ... 266
 (Alternative examination procedures)
2.2 Forschung .. 314
(Research)

2.3 Zertifizierung von Solarienbetrieben .. 315
(Certification of solaria)

2.4 Hautkrebspräventionsmaßnahmen .. 316
(Skin cancer prevention measurements)

ANHANG
(ANNEX)

1. Erläuterung zu den verwendeten Begriffen .. 318
(Explanation of terms)

1.1 Strahlendosis und ihre Einheiten .. 318
(Radiation dose and related units)

1.2 Die Messung der Strahlendosen .. 319
(Measurement of radiation dose)

1.3 Äußere und innere Bestrahlung .. 320
(External and internal radiation exposure)

1.4 Stochastische und deterministische Strahlenwirkung .. 321
(Stochastic and deterministic radiation effects)

1.5 Genetische Strahlenwirkungen .. 322
(Genetic radiation effects)

1.6 Induktion bösartiger Neubildungen .. 322
(Induction of malignant neoplasms)

1.7 Risikoabschätzung .. 323
(Risk assessment)

1.8 Strahlenschutzmaßnahmen .. 325
(Radiation protection measures)

2. Physikalische Einheiten .. 325
(Physical units)

3. Glossar .. 327
(Glossary)

4. Liste der verwendeten Abkürzungen .. 332
(List of abbreviations)

5. Gesetze, Verordnungen, Richtlinien, Empfehlungen, Erläuterungen und sonstige Regelungen
zum Strahlenschutz - Auswahl .. 337
(Laws, ordinances, guidelines, recommendations, explanatory text and other regulations
concerning radiation protection - assortment)

6. Liste ausgewählter Radionuklide .. 340
(List of selected radionuclides)
ZUSAMMENFASSUNG

Die mittlere Strahlenexposition für eine Person der Bevölkerung der Bundesrepublik Deutschland im Jahr 2011 ist in der unten aufgeführten Tabelle nach den verschiedenen Strahlenquellen aufgeschlüsselt. Die mittlere effektive Dosis beträgt etwa 4 Millisievert (mSv) pro Jahr und Person und ist damit im Vergleich zum Vorjahr (3,9 mSv) wenig verändert.

EFFEKTE JAHRESDOSIS EINER PERSON DURCH IONISIERENDE STRAHLUNG IM JAHR 2011 GEMITTELT ÜBER DIE BEVÖLKERUNG DEUTSCHLANDS UND AUFGESCHLÜSSELT NACH STRAHLENURSPRUNG

<table>
<thead>
<tr>
<th>Mittlere effektive Dosis in Millisievert pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Natürliche Strahlenexposition</td>
</tr>
<tr>
<td>1.1 durch kosmische Strahlung (in Meereshöhe)</td>
</tr>
<tr>
<td>ca. 0,3</td>
</tr>
<tr>
<td>1.2 durch terrestrische Strahlung von außen</td>
</tr>
<tr>
<td>davon bei Aufenthalt im Freien (5 Std./Tag)</td>
</tr>
<tr>
<td>ca. 0,1</td>
</tr>
<tr>
<td>davon bei Aufenthalt in Häusern (19 Std./Tag)</td>
</tr>
<tr>
<td>ca. 0,3</td>
</tr>
<tr>
<td>1.3 durch Inhalation von Radonfolgeprodukten</td>
</tr>
<tr>
<td>davon bei Aufenthalt im Freien (5 Std./Tag)</td>
</tr>
<tr>
<td>ca. 1,1</td>
</tr>
<tr>
<td>davon bei Aufenthalt im Gebäude (19 Std./Tag)</td>
</tr>
<tr>
<td>ca. 0,2</td>
</tr>
<tr>
<td>1.4 durch Ingestion von natürlich radioaktiven Stoffen</td>
</tr>
<tr>
<td>ca. 0,3</td>
</tr>
<tr>
<td>Summe der natürlichen Strahlenexposition</td>
</tr>
<tr>
<td>ca. 2,1</td>
</tr>
<tr>
<td>2. Zivilisatorische Strahlenexposition</td>
</tr>
<tr>
<td>2.1 durch Fallout von Kernwaffenversuchen</td>
</tr>
<tr>
<td>< 0,01</td>
</tr>
<tr>
<td>2.2 Strahlenexposition durch den Unfall im Kernkraftwerk Tschernobyl</td>
</tr>
<tr>
<td>< 0,011</td>
</tr>
<tr>
<td>2.3 durch kerntechnische Anlagen</td>
</tr>
<tr>
<td>< 0,01</td>
</tr>
<tr>
<td>2.4 durch Anwendung radioaktiver Stoffe und ionisierender Strahlen in der Medizin* (ohne Therapie)</td>
</tr>
<tr>
<td>ca. 1,9</td>
</tr>
<tr>
<td>davon durch nuklearmedizinische Untersuchungen</td>
</tr>
<tr>
<td>ca. 0,1</td>
</tr>
<tr>
<td>Summe der zivilisatorischen Strahlenexposition</td>
</tr>
<tr>
<td>ca. 1,9</td>
</tr>
</tbody>
</table>

* Daten von 2010, Auswertungen von 2012

Im Folgenden werden Aussagen gemacht über die Strahlenexposition durch
- Natürliche Strahlenquellen,
- Hinterlassenschaften aus Bergbau und Industrie,
- Radon in Gebäuden,
- Radioaktive Stoffe in Baumaterialien und Industrieprodukten,
- Kernwaffenversuche,
- Reaktorunfalls von Tschernobyl,
- Sonderthema Fukushima,
- Kerntechnik,
- Berufliche Strahlenexposition,
- Medizinische Anwendung,
- Umgang mit radioaktiven Stoffen in Forschung und Technik,
- Radioaktive Abfälle,
- Strahlenunfälle und besondere Vorkommnisse.

Seit 2001 enthält der Bericht außerdem Informationen über nichtionisierende Strahlung und Forschungsarbeiten in diesem Bereich.
Natürliche Strahlenquellen

Hinterlassenschaften aus Bergbau und Industrie

Bei den Sanierungsarbeiten der Wismut GmbH im ehemaligen Uranerzbergbaugebiet in Sachsen und Thüringen werden über Luft und Wässer Radionuklide der Uran-/Radiumzerfallsreihe freigesetzt, die mit Genehmigung der zuständigen Behörden in die Umwelt abgeleitet werden. Eine bergbaubedingt erhöhte Radonkonzentration in der bodennahen Luft tritt nur in der unmittelbaren Nähe bergbaulicher Anlagen auf und nimmt mit zunehmender Entfernung rasch ab. Insgesamt ergibt sich aus den vorliegenden Messergebnissen für die o. g. Uranerzbergbaugebiete eine für geologisch vergleichbare Gebiete zu erwartende hohe Radonkonzentration natürlichen Ursprungs. Die Ableitung von Uran, Radium und deren Zerfallsprodukten aus bergbaulichen Anlagen in die Vorfütter der Bergbaugebiete ergibt keine oder nur geringfügige Veränderungen des natürlichen Niveaus dieser Radionuklide in den Vorfüttern. Die Ableitungen radioaktiver Stoffe (Rn-222 und langlebige Alpha-Strahler, Uran und Ra-226) mit Fortluft und Abwasser der untertägigen Grubenfelder im Bereich der Wismut-Sanierungsbetriebe unterliegen je nach Sanierungs- und Witterungsverlauf Schwankungen und weisen insgesamt eine abnehmende Tendenz auf.

Radon in Gebäuden

Der Jahresmittelwert der Aktivitätskonzentration von Radon in Aufenthaltsräumen beträgt in Deutschland ca. 50 Becquerel pro Kubikmeter (Bq/m³); dies entspricht einer mittleren jährlichen effektiven Dosis von ca. 0,9 Millisievert (mSv). In den letzten Jahren durchgeführte Messungen haben beträchtliche regionale Unterschiede der natürlichen Strahlenexposition aufgezeigt, die durch erhebliche Unterschiede in der Konzentration natürlicher radioaktiver Stoffe in Boden und Luft bedingt sind. Die Errichtung von Häusern auf Baugrund mit erhöhtem Uran- und Radiumgehalt und in geringem Maße die Verwendung von Baumaterialien mit erhöhtem Gehalt radioaktiver Stoffe bewirken eine Erhöhung der Strahlenexposition der Bevölkerung durch die Inhalation von Radon und seinen Zerfallsprodukten. Im Berichtsjahr wurden Untersuchungen zu Möglichkeiten für die Abschätzung von Jahresmittelwerten der Radonkonzentration in Innenräumen aus Messungen mit einer Dauer von deutlich unter einem Jahr durchgeführt. In den letzten Jahren wurden nationale und internationale epidemiologische Studien durchgeführt, um das gesundheitliche Risiko der Bevölkerung durch erhöhte Radon-Zerfallsprodukt-Expositionen genauer abschätzen zu können. Dabei zeigt sich eine signifikante Erhöhung des Lungenkrebsrisikos um etwa 10 % pro 100 Bq/m³.

Radioaktive Stoffe in Baumaterialien und Industrieprodukten

Aktuelle Untersuchungen der Konzentrationen der natürlichen Radionuklide Ra-226, Th-232 sowie K-40 in üblichen industriell gefertigten Baumaterialien für den Innenraumbereich bestätigten, dass die durch sie verursachte Dosis im Mittel bei etwa 0,3 Millisievert (mSv) pro Jahr liegt und in Einzelfällen bis 1 mSv pro Jahr reichen kann. Damit wird der europaweit anerkannte Maßstab zur Begrenzung der Strahlenexposition aus Baustoffen eingehalten. Es wurde auch die Abgabe von Rn-222 aus mineralischen Baumaterialien berücksichtigt, doch diese erwies sich generell als gering. Auch bei im häuslichen Bereich verwendeten Naturwerksteinmaterialien wurde festgestellt, dass diese in den überwiegenden Fällen selbst bei großflächiger Anwendung keine erhöhte Strahlenexposition verursachen.

Kernwaffentests

In den Jahren 1945 bis 1980 wurde eine große Anzahl oberirdischer Kernwaffentests durchgeführt; seit 1981 fanden nur noch unterirdische Kernwaffentests statt. Im Oktober 2006 wurde ein unterirdischer Kernwaffentest in Nordkorea durchgeführt. Im Mai 2009 wurde von der Demokratischen Volksrepublik Korea ein zweiter unterirdischer Kernwaffentest bekanntgegeben, der auch von den seismischen Messgeräten des Internationalen Messnetzes registriert wurde. Eine Freisetzung von Radionukliden (sowohl Xenon-Isotope als auch partikelgebundene Radionuklide) wurde in diesem Zusammenhang nicht nachgewiesen, was auf ein sehr gutes Containment hindeutet. Der allgemeine Pegel der Umweltradioaktivität durch die früheren Kernwaffentests in der Atmosphäre ist seit dem Kernwaffentesten-Abkommen von 1964 stetig zurückgegangen. Ihr Anteil an der gesamten Strahlenexposition des Menschen beträgt zurzeit weniger als 0,01 Millisievert (mSv) pro Jahr.

Reaktorunfall von Tschernobyl

Im April 1986 kam es im Kernkraftwerk Tschernobyl zu einem folgenschweren Reaktorunfall. In den folgenden Tagen wurden große Mengen Radionuklide in die Atmosphäre freigesetzt und über ganz Europa verteilt. In Deutschland waren vor
allem Gebiete in Süddeutschland vom radioaktiven Niederschlag betroffen. Die Bodenkontamination mit Cs-137 erreichte hier teilweise bis zu 100 000 Becquerel pro Quadratmeter (Bq/m²).

Im Jahr 2011 nahm die Strahlenbelastung infolge des Reaktorunfalls weiter geringfügig ab; die mittlere effektive Dosis betrug weniger als 0,01 Millisievert (mSv). Sie lag damit deutlich unter einem Prozent der natürlichen Strahlenexposition und wird zu rund 90 % durch die Bodenstrahlung von Cs-137 verursacht. Die mittlere effektive Dosis durch mit der Nah- rung aufgenommenes radioaktives Cäsium für das Jahr 2011 beträgt geschätzt 0,001 mSv. In Süddeutschland kann diese Strahlenexposition um eine Größenordnung höher sein. Insbesondere Wildschweinfleisch überschreitet weiterhin in eini- gen Fällen den zulässigen Höchstwert der Cs-137-Kontamination von 600 Becquerel pro Kilogramm (Bq/kg).

Sonderthema Fukushima

Gestützt auf die Verordnung (EG) Nr. 178/2002 hat die Europäische Kommission Sondervorschriften für die Einfuhr von Lebens- und Futtermitteln auf Japan erlassen. Nach der EU-Durchführungsverordnung Nr. 284/2012 dürfen Milch und Molkereierzugsnisse sowie Lebensmittel für Säuglinge und Kleinkinder maximal 50 Becquerel pro Kilogramm (Bq/kg) an Cs-137 und Cs-134 enthalten. Für sonstige Lebensmittel gilt ein Grenzwert von 100 Bq/kg.

Kerntechnik

Durch die Ableitung radioaktiver Stoffe aus Kernkraftwerken, sonstigen kerntechnischen Anlagen, aus dem ehemaligen Endlager für schwach- und mittelradioaktive Abfälle Morsleben (ERAM) und der Schachtanlage Asse II wird die mittlere Strahlenexposition der Bevölkerung nur geringfügig erhöht. Die aus diesen Ableitungen nach der „Allgemeinen Ver- waltungsvorschrift zu § 47 Strahlenschutzverordnung“ ermittelten oberen Werte der Strahlenexposition von Einzelpersonen haben die in der Strahlenschutzverordnung festgelegten Dosisgrenzwerte deutlich unterschritten. Gegenüber 2010 zeigen die gemittelten Dosen der Strahlenexposition allgemein keine wesentlichen Unterschiede. Der Beitrag der kerntechnischen Anlagen im Inland sowie im angrenzenden Ausland zur mittleren effektiven Dosis der Bevölkerung der Bundesrepublik Deutschland (s. vorstehende Tabelle) lag auch 2011 unter 0,01 Millisievert (mSv) pro Jahr.

Die Gesamtstronomerzeugung aus Kernkraftwerken verringerte sich im Jahr 2011 um 32 Terawattstunden (TWh) auf 108 TWh. Ursache des Rückganges ist das Abschalten der 8 Kernkraftwerke Biblis A und B, Neckarwestheim 1, Bruns- büttel, Isar 1, Unterweser, Philippsburg 1 und Krümmel.

Berufliche Strahlenexposition

Personen, die in Bereichen mit erhöhter Strahlung arbeiten, unterliegen der Strahlenschutzüberwachung. Dies betraf in Deutschland im Jahr 2011 ca. 390 000 Personen. Der Großteil dieser strahlenexponierten Personen wurde mit Dosimetern überwacht. Die mittlere effektive Dosis aller mit Personendosimetern überwachten Personen (ca. 349 000) lag 2011 bei 0,11 Millisievert (mSv). Bei ca. 81 % der überwachten Personen konnte während des gesamten Überwa- chungszeitraums keine zusätzliche Strahlenexposition nachgewiesen werden. Bei den Überwachten mit einer messba- ren Dosis (ca. 66 000 Personen) betrug die mittlere Jahrespersonendosis 0,58 mSv (Vorjahr: 0,66 mSv). Im Jahr 2011 wurde bei 7 Personen eine Überschreitung des Grenzwertes der Jahrespersonendosis von 20 mSv registriert.

Medizinische Anwendung

Der größte Beitrag zur zivilisatorischen Strahlenexposition der Bevölkerung wird durch die medizinische Anwendung radioaktiver Stoffe und ionisierender Strahlung, insbesondere durch die Röntgendiagnostik, verursacht. Daher erhebt das BfS seit 1991 Daten zur medizinischen Strahlenexposition in Deutschland und wertet diese aus. Die wichtigsten Datenquellen sind dabei die Kosten träger, hauptsächlich vertreten durch die kassenärztliche und kassenärztliche Bundesvereinigung und durch den Verband der privaten Krankenversicherung.

Die aktuelle Schätzung für die mittlere effektive Dosis pro Einwohner lag im Jahr 2010 bei etwa 1,9 Millisievert (mSv). Die nuklearmedizinische Diagnostik trug etwa 0,1 mSv zu dieser Strahlenexposition bei. Über den Beobachtungszeit- raum von 1996 bis 2010 ist insgesamt ein ansteigender Trend für die mittlere effektive Dosis pro Einwohner und Jahr
zu verzeichnen, obwohl die Häufigkeit von Röntgenuntersuchungen in Deutschland über den betrachteten Zeitraum alles in allem abgenommen hat. Im Jahr 2010 wurden durchschnittlich etwa 1,66 Röntgenuntersuchungen pro Einwohner durchgeführt. Der insgesamt ansteigende Trend für die mittlere effektive Dosis pro Einwohner und Jahr ist im Wesentlichen auf die stetige Zunahme der Computertomographie (CT)-Untersuchungen zurückzuführen. Die CT trug 2010 zur Gesamthäufigkeit der Röntgenuntersuchungen lediglich etwa 8 % bei, ihr Anteil an der kollektiven effektiven Dosis betrug jedoch rund 60 %.

Zwischen 2004 und Anfang 2009 wurde das qualitätsgesicherte und bevölkerungsbezogene Mammographie-Screening-Programm für alle (symptomfreien) Frauen im Alter zwischen 50 und 69 Jahren bundesweit eingeführt. Das Mammographie-Screening-Programm wird nun flächendeckend angeboten. Nehmen 70 % der anspruchsberechtigten Frauen an der Screening-Maßnahme teil, so beläuft sich unter der Annahme einer effektiven Dosis von 0,5 mSv pro Screening-Untersuchung die daraus resultierende kollektive effektive Jahresdosis auf etwa 1 800 Personen-Sv pro Jahr.

In der nuklearmedizinischen Diagnostik sind die Schildrüsen- und die Skelettszintigraphie die häufigsten Untersuchungen. Auch die Positronen-Emissions-Tomographie (PET) als nuklearmedizinisches Untersuchungsverfahren gewinnt auf Grund der hohen diagnostischen Aussagekraft des Verfahrens immer mehr an Bedeutung.

Radioaktive Abfälle

Das Bundesamt für Strahlenschutz (BfS) führt für das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) jährlich eine Erhebung radioaktiver Reststoffe und Abfälle in der Bundesrepublik Deutschland durch. Hierbei werden der Bestand an radioaktiven Reststoffen, Rohabfällen und Abklingabfällen sowie der Anfall und Bestand konditionierter radioaktiver Abfälle ermittelt.

Der Bestand konditionierter radioaktiver Abfälle mit vernachlässigbarer Wärmeentwicklung betrug am 31. Dezember 2011 101 415 Kubikmeter (m³) (2010: 96 513 m³). Der Bestand an vernachlässigbar wärmeentwickelnden radioaktiven Abfällen belief sich auf 10 372 m³ (Vorjahr: 10 295 m³) und 19 128 m³ (Vorjahr: 17 517 m³). Der Bestand konditionierter Abfälle betrug 2011 1077 927 m³ (2010: 674 m³). Es waren weitere 2515 m³ (Vorjahr: 1251 m³) wärmeentwickelnde Abfälle als Zwischenprodukte zwischengelagert.

Bis zum 31.12.2011 sind in Deutschland 14 465 ISM (Tonnen Schwemmetall = Uran + Plutonium) in Form nichtionisierender Brennelemente angefallen. Davon wurden 6662 ISM zur Wiederaufarbeitung im Ausland oder in andere Anlagen abgegeben.

Strahlenunfälle und besondere Vorkommnisse

Nichtionisierende Strahlung

Mit zunehmendem Technisierungssgrad steigt auch die Zahl der Quellen, die zu einer Exposition der allgemeinen Bevölkerung gegenüber nichtionisierender Strahlung beitragen. Dies sowie neue technische Entwicklungen stellte auch 2011 Herausforderungen für den Strahlenschutz dar. Um die Risikobeurteilung bezüglich Wirkungen elektromagnetischer Felder auf einer soliden Datenbasis leisten zu können, wurden im Rahmen des Umweltfor- schungsplanes des Bundesumweltministeriums (BMU) vom Bundesamt für Strahlenschutz (BfS) sowohl im Bereich „Sta- tischer Magnetfelder“ in der Bevölkerung zu unterstützen. Nach derzeitigem wissenschaftlichen Kenntnisstand schützen die gelten-
den Grenzwerte vor allen gesundheitlich relevanten Auswirkungen hochfrequenter elektromagnetischer Felder auf den Menschen.

SUMMARY

Since 1958, all data on environmental radioactivity from measurements performed by authorised laboratories have been published in quarterly reports and, since 1968, in annual reports. In addition to the results from environmental monitoring, these reports include data on the population exposure due to natural and man-made radiation sources.

The table below shows the mean radiation exposure of one person of the general public in the Federal Republic of Germany in 2011, broken down into the various sources of radiation. The mean effective dose is about 4 millisievert (mSv) and therefore remained almost unchanged, compared to the previous year (3.9 mSv).

The contributions to the mean annual effective dose to one person are itemised in the table. The highest contribution is caused by medical applications, especially computerised tomography examinations. Another important source of radiation exposure is the naturally occurring noble gas radon and inhalation of its progeny, which particularly accumulate in poorly ventilated rooms. It should be noted that the numerical values represent effective doses averaged over the entire population. The actual dose to an individual during a year is highly dependent on their individual circumstances.

MEAN EFFECTIVE DOSE TO ONE PERSON OF THE POPULATION IN THE FEDERAL REPUBLIC OF GERMANY DURING THE YEAR 2011

<table>
<thead>
<tr>
<th>Radiation exposure source</th>
<th>Mean effective dose (millisievert per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Radiation exposure from natural sources</td>
<td></td>
</tr>
<tr>
<td>1.1 Cosmic radiation (at sea level)</td>
<td>approx. 0.3</td>
</tr>
<tr>
<td>1.2 External terrestrial radiation</td>
<td>approx. 0.4</td>
</tr>
<tr>
<td>1.3 Inhalation of radon and its progeny</td>
<td>approx. 1.1</td>
</tr>
<tr>
<td>1.4 Ingestion of natural radioactive substances</td>
<td>approx. 0.3</td>
</tr>
<tr>
<td>Total natural radiation exposure</td>
<td>approx. 2.1</td>
</tr>
<tr>
<td>2. Radiation exposure from man-made sources</td>
<td></td>
</tr>
<tr>
<td>2.1 Fallout from nuclear weapons tests</td>
<td>< 0.01</td>
</tr>
<tr>
<td>2.2 Effects from the accident in the Chernobyl nuclear power plant</td>
<td>< 0.011</td>
</tr>
<tr>
<td>2.3 Nuclear installations</td>
<td>< 0.01</td>
</tr>
<tr>
<td>2.4 Use of radioactive substances and ionising radiation in medicine (therapy excluded)</td>
<td>approx. 1.9</td>
</tr>
<tr>
<td>Total man-made radiation exposure</td>
<td>approx. 1.9</td>
</tr>
</tbody>
</table>

* according to data from 2010, evaluation from 2012

In the following, information is given on radiation exposures due to:
- Natural radiation sources,
- Mining and industry relics,
- Radon indoors,
- Radioactive substances in building materials and industrial products,
- Nuclear weapons testing,
- Chernobyl reactor accident,
- Special topic Fukushima,
- Nuclear technology,
- Occupational radiation exposure,
- Medical applications,
- Handling of radioactive substances in research and technology,
- Radioactive waste,
- Radiation accidents and exceptional events.

Since 2001, this report has also contained information about non-ionising radiation and research in this field.

Natural radiation sources

Exposure from natural radiation sources consists of both an external and an internal component due to natural radioactive substances in the environment as well as cosmic radiation. A major source of external radiation exposure consists of both cosmic and terrestrial radiation from the natural radionuclide K-40 together with the radionuclides of the natural decay chains of U-238 and Th-232. The internal component of radiation exposure is largely caused by inhalation...
of the daughter nuclides of the natural noble gas radon (radon decay products), and partially also by the intake of natural radioactive substances with drinking water and food. Typically, natural radiation sources contribute to the effective dose to the level of 1 to 6 millisievert (mSv) per year. The nominal mean value, calculated on the basis of the dose factors set out in the EURATOM basic safety standards, is 2.1 mSv per year, resulting in particular from the inhalation of radon in buildings. An annual comparison shows that there are only slight variations in exposure to natural radiation sources. All individual contributions to the annual mean effective dose are listed in the above table.

Mining and industry relics
In the process of remediation works carried out by Wismut GmbH in the former uranium ore mining area in Saxony and Thuringia, radionuclides of the uranium/radium decay chain are released into the air and water which are discharged into the environment with permission of the competent authorities. A mining-related increase in the concentration of radon in air close to ground level is seen only in the immediate vicinity of mining facilities; the concentration decreases with increasing distance from such facilities. The overall results of the measurements in the aforementioned uranium mining regions reveal a high radon concentration of natural origin just as expected for geologically comparable regions. The discharge of uranium and radium and their respective decay products from mining facilities into drainage areas of the mining regions does not cause an appreciable change of the natural level of these radionuclides in these drainage areas. The discharge of radioactive substances (Rn-222 and long-lived alpha emitters, uranium and Ra-226) through the exhaust air and effluents from subsurface mining facilities in areas belonging to the Wismut redevelopment project are subject to certain fluctuations, depending on the course of remediation measures and the weather, but show a decreasing tendency altogether.

Radon indoors
In Germany, the annual mean value of the radon activity concentration indoors is about 50 becquerel per cubic metre (Bq/m3), which corresponds to a mean annual effective dose of about 0.9 mSv. Measurements performed during recent years revealed considerable regional variations in natural radiation exposure, because the concentrations of natural radioactive substances in soil and air differ largely. The construction of houses on land containing increased amounts of uranium and radium, and to a lesser extent, the use of building materials containing increased amounts of radioactive substances are assumed to be responsible for the increase in population exposure due to the inhalation of radon and its decay products. In the year under report, studies were conducted as to the possibilities to estimate annual mean values of radon concentration indoors from measurements performed over clearly less than one year. During the last few years, national and international epidemiological studies were performed in order to obtain estimates of the health risk associated with increased exposures of the general public to radon decay products. The studies revealed a significant increase in lung cancer risk by about 10 % per 100 Bq/m3.

Radioactive substances in building materials and industrial products
Current analyses of ordinary industrially fabricated building materials designed for use indoors confirmed that the dose caused by their concentrations of the natural radionuclides Ra-226, Th-232, and K-40 is about 0.3 millisievert (mSv) per year on the average and may reach up to 1 mSv per year in individual cases. This means that the Europe-wide criterion accepted to limit radiation exposure from building materials is observed. Discharges of Rn-222 from mineral building materials were also accounted for, but turned out to be generally small. When investigating natural stone building materials used in dwellings it was established that in most cases these building materials do not cause enhanced radiation exposure, even when used in large amounts.

Nuclear weapons testing
Numerous atmospheric nuclear weapons tests were carried out from 1945 to 1980, but since 1981 only underground tests have been performed. One underground nuclear weapon test was conducted in Korea in October 2006. A second underground test was announced by the Democratic Peoples’ Republic of Korea in May 2009 and was also recorded by the seismic measuring devices of the International Measuring Network. There was no evidence of radionuclide release in this context (neither of Xenon isotopes nor of particle-bound radionuclides), which is suggestive of a very good containment. The general level of environmental radioactivity due to former tests in the atmosphere has steadily decreased since the Comprehensive Nuclear Test-Ban Treaty from 1964. At present its contribution to the total of human radiation exposure is less than 0.01 millisievert (mSv) per year.

Chernobyl reactor accident
In April 1986, a reactor accident occurred in the Chernobyl nuclear power plant which has had serious consequences. In the days following that accident, large amounts of radionuclides were released into the atmosphere and distributed all over Europe. In Germany, mostly areas in Southern Germany were affected by the radioactive fallout. Soil contamination with Cs-137 partially reached up to 100 000 becquerel per square metre (Bq/m2) here.

Radiation exposure resulting from the Chernobyl reactor accident decreased further, albeit marginally, in 2011; the mean effective dose was less than 0.01 millisievert (mSv). It amounts to less than one percent of the natural radiation exposure; about 90 % of this radiation is caused by Cs-137 deposited on the ground. The mean effective dose from the intake of radiocaesium with food is estimated to have been less than 0.001 mSv in 2011. In Southern Germany the lev-
els of radiation exposure may be one order of magnitude higher. In particular the concentration of Cs-137 in wild boar meat still exceeds the maximum value permissible of 600 becquerel per kilogram (Bq/kg) in some cases.

Special topic Fukushima

On 11 March 2011 a magnitude 9 earthquake occurred off the coast of Miyagi Prefecture, Japan. Shortly after that, a tsunami with flood waves up to 15 metres swamped the coastal regions. As a result, the Fukushima Daiichi nuclear plant was hit by a severe nuclear accident rated INES level 7 (i.e., the highest level of the international rating scale for nuclear accidents). Complete blackout caused a failure of heat removal, resulting in destruction of the cores of the reactor units 1 to 3. In consequence of the accident, considerable amounts of radioactive substances were released into the atmosphere. Some of the radionuclides were detectable in Germany, although the concentrations were only in a range of some millibecquerel per cubic meter (mBq/m³). Furthermore large amounts of radioactive material were also released into the Pacific Ocean but no Fukushima-derived radionuclides could be detected in the North and Baltic Sea.

Based on the Regulation (EC) No. 178/2002, the European Commission adopted special provisions on imports of food and feed from Japan. The Implementing Regulation (EU) No. 284/2012 imposed a maximum limit of 50 Becquerel per kilogram (Bq/kg) for Cs-137 and Cs-134 levels in milk and diary products as well as in food for babies and infants. The limit for other foodstuffs is 100 Bq/kg.

Nuclear technology

The emission of radioactive substances from nuclear power plants, from the former Morsleben repository for low and intermediate-level radioactive waste (ERAM) and the Asse mine contributes only insignificantly to the radiation exposure of the population. The upper values for exposures to individuals, calculated in accordance with the “General Administrative Guideline relating to § 47 of the Radiation Protection Ordinance” are clearly below the limits indicated in the Radiation Protection Ordinance. In general, the calculated radiation exposure values show no essential differences to those reported for 2010. The annual contribution from domestic nuclear installations and other installations located close to the German borders to the mean effective dose to the population of the Federal Republic of Germany remained below 0.01 millisievert (mSv) again in 2011 (see Table above). The total generation of current from nuclear power plants decreased by 32 terawatt hours (TWh) to 108 TWh in 2011. The reason for this decrease is the shut-off of the 8 nuclear power plants Biblis A and B, Neckarwestheim 1, Brunsbüttel, Isar 1, Unterweser, Philippsburg 1 and Krümmel.

Occupational radiation exposure

In Germany, all employees who might receive enhanced radiation doses during their occupation are subject to radiation protection monitoring.

The major part of these persons (approx. 390 000 in 2011) is monitored through personal dosimeters. The average annual individual dose (measured in approx. 349 000 individuals) amounted to about 0.11 millisievert (mSv) in 2011. There was no evidence of additional radiation exposure in about 81 % of all persons controlled over the entire monitoring period. An average annual individual dose of 0.58 mSv (preceding year: 0.66 mSv) was determined for all other cases with a measurable dose (approx. 66 000). In 2011, 7 individuals with annual personal doses above 20 mSv were registered. Since August 1, 2003, aircrews who are in an employment according to German Labour Law and who can receive an effective dose of at least 1 millisievert (mSv) per calendar year from cosmic radiation during the flight must be monitored. Flight attendants are not monitored with the help of dosimeters. Instead, the airlines determine the dose to the aircrews with officially approved computer programs. In 2011, this applied to approx. 39 000 individuals (preceding year: 37 000 individuals). The average annual dose of these employees amounted to 2.1 mSv (preceding year: 2.3 mSv) (in addition to natural radiation exposure).

Medical applications

The major part of man-made radiation exposure is caused by medical applications of radioactive substances and ionising radiation. Since 1991, BfS therefore has collected and analysed data on medical radiation exposure in Germany. These data are generally supplied by organisations which bear the costs of medical care, mainly the associations of the social and private health insurance.

In 2010, medical applications contributed about 1.9 millisievert (mSv) per inhabitant, of which about 0.1 mSv was due to nuclear medical diagnostic procedures. The observation period from 1996 to 2010 altogether reveals an upward trend for the mean effective dose per inhabitant and year, although the frequency of X-ray examinations conducted during this period in Germany decreased. About 1.66 X-ray examinations per inhabitant were carried out on the average in 2010. The upward trend observed at large for the mean effective dose per inhabitant and year is primarily due to the steady increase in uses of computerised tomography (CT). CT examinations had a share of only 8 per cent in the total frequency of X-ray diagnostics in 2010 but contributed about 60 % to the collective effective dose.

From 2004 to the beginning of 2009 the quality-assured, population-based Mammography Screening Program was introduced nationwide for all (symptom-free) women between 50 and 69 years of age. The Mammography Screening Program is now offered on a nationwide scale.
In nuclear medical diagnostics, thyroid and skeletal scintigraphy are the most frequent methods of examination. Positron Emission Tomography (PET), too, becomes more important as it is a tool of high diagnostic value.

It is most remarkable that the number of Magnetic Resonance Imaging (MRI), ultrasonic and CT examinations increased simultaneously from 1996 to 2010. Against expectations, however, the increase in alternative diagnostic procedures, i.e. without application of X-rays, and in particular the remarkable increase in MRI does not lead to a decreasing application frequency of CT.

Radioactive waste

By order of the Federal Minister for the Environment, Nature Conservation and Nuclear Safety (BMU), the Federal Office for Radiation Protection (BfS) conducts an annual survey of radioactive residues and nuclear waste in the Federal Republic of Germany. In this process an inventory is made of radioactive residues, primary waste and decay waste, and the accumulation and amount of conditioned radioactive waste is determined.

On 31 December 2011, the amount of conditioned radioactive waste with negligible heat generation was 101 415 cubic metre (m³) (2010: 96 513 m³). The amount of intermediate products with negligible heat generation and untreated waste was 10 372 m³ (preceeding year 10 295 m³) and 19 128 m³ (preceeding year 17 517 m³) respectively.

The amount of conditioned heat-generating waste in Germany was 727 m³ in 2011 (674 m³ in 2010). Another 1251 m³ (preceeding year 1251 m³) of heat-generating intermediates were subject to interim storage.

A total of 14 465 tons of HM (heavy metal = uranium + plutonium) of spent fuel elements was produced up to 31 December 2011 in Germany, of which 6 662 tons were delivered abroad for reprocessing.

Radiation accidents and exceptional events

Due to the stringent provisions of the radiation protection law, radiological emergencies involving persons handling sources of ionising radiation and radioactive substances are rare events. These events are summarised in this report on an annual basis. More than 80 per cent of the exceptional events reported in 2011 involved discoveries of radioactive material mostly associated with improper disposal of the radioactive substance. There was no case of substantial radiological hazard. Human or technical failure (e. g. wrong adjustment of the installation or program error) entailed erroneous irradiations in five radiation therapy departments. Subsequently, software amendments and staff trainings were made and additional surveillance was introduced. As a result of jamming of an emitter at a gammaradiography equipment one person experienced increased skin exposure. The technical failure was remedied after the incident.

Non-Ionising radiation

The growing level of technology of human environment is associated with increasing numbers of sources contributing to exposures of the general public to non-ionising radiation. Together with further technical advancements, this is a challenge for radiation protection also in 2011. In order to obtain a solid data base for evaluation of risk associated with electromagnetic fields, BFS continued to initiate and co-ordinate research projects within the scope of the Ufoplan of the Federal Environment Ministry (BMU) also in 2011. These projects covered the areas of both "Static Magnetic Fields" and "Low-frequency and high-frequency electromagnetic fields", as well as "Optical radiation". In the area of "static magnetic fields" these projects involve determination and health-related evaluation of actual exposures in magnetic resonance imaging (MRI). In the "low-frequency" area, studies have been initiated to improve the data available as to low-frequency fields and childhood leukaemia. Ongoing research in the area of "high-frequency electromagnetic fields" aims at answering the question of possible long-term risks for mobile phone use periods exceeding 10 years and the question of whether exposure, or sensitivity, to electromagnetic fields is higher in children than in adults. In addition, further research was conducted in the area of risk communication in 2011, with a view to improving communication and information, among other things, thus supporting a matter-of-fact handling of the subject "Electromagnetic fields" in the general public. The limits currently applicable most notably reflect estimates of the effects of high-frequency electromagnetic fields on human health, according to the present state of knowledge.

In the field of "Optical Radiation", especially the alarming increase in skin cancers has given reason for further research projects and for improvements of both risk communication and information procedures on the part of BFS. Among other things, BFS initiated the UV information campaign "Sonne - Aber sicher!" in 2010 and the UV-Alliance, i.e. a cooperation of medical, scientific institutions and organisations as well as Federal Authorities in 2011 and continued ongoing measurements of natural UV-radiation (UV monitoring), as well as publication of the UV-index derived from these measurements. In relation to uses of artificial UV-radiation in solaria, based on the BMU and BFS initiative, the Act on Protection against non-ionising radiation (Gesetz zur Regelung des Schutzes vor nichtionisierender Strahlung, NiSG) entered into force on August 2009. Since then, operators of solaria have been banned from permitting minors to use solaria. On the basis of this Act, the "Regulation on the Protection from adverse effects of artificial ultraviolet radiation" (UV-Protection Regulation) was published in the Federal Law Gazette (No. 37 of 25 July 2011, page 1412) on 25 July 2011 which entered into force as from 1 January 2012. Based on the criteria laid down by BFS for the voluntary certification procedure, the UV-Protection Regulation rules, among others, equipment standards, operation of solaria as well as the qualification and tasks of solaria technical staff.
Les taux de radioactivité dans l'environnement humain mesurés par les stations officielles de mesure sont publiés, sous forme de rapports trimestriels depuis 1958, et de rapports annuels depuis 1968. Ces rapports contiennent, en plus des résultats concernant la surveillance de la radioactivité de l'environnement, des données sur l'exposition du public aux rayonnements due aux sources naturelles et artificielles. Le tableau ci-dessous montre la moyenne d'exposition aux rayonnements d'une personne de la population de la République Fédérale d'Allemagne en 2011 selon les différentes sources d'exposition. Comparée à l'année précédente (3,9 millisievert (mSv)), la dose effective moyenne n'a guère changé; elle s'élève à environ 4 mSv.

Le tableau classe les contributions à la dose efficace moyenne reçue par une personne par an. Le part le plus important provient des applications médicaux, en particulier des examens de tomodensitométrie. Une autre source essentielle d'exposition aux rayonnement est le radon, un gaz rare d'origine naturel ainsi que l'inhalation de ces derives qui s'accumulent surtout dans des prèses mal aérées. Il convient de noter que les données représentent des doses efficaces moyennées sur toute la population. La vraie dose an-nuelle reçue par une personne depend fortement des circonstan-ces individuelles.

DOSE EFFICACE MOYENNE RECEUE PAR UNE PERSONNE DE LA POPULATION DE LA REPUBLIQUE FEDERALE D'ALLEMAGNE EN 2011

<table>
<thead>
<tr>
<th>Dose efficace moyenne millisievert par an</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Exposition naturelle par source</td>
</tr>
<tr>
<td>1.1 rayonnements cosmiques (au niveau de la mer)</td>
</tr>
<tr>
<td>1.2 rayonnements terrestres externes</td>
</tr>
<tr>
<td>- dont à l'extérieur (5 h/jour)</td>
</tr>
<tr>
<td>- dont à l'intérieur des maisons (19 h/jour)</td>
</tr>
<tr>
<td>1.3 produits de filiation de radon (par inhalation)</td>
</tr>
<tr>
<td>- dont à l'extérieur (5 h/jour)</td>
</tr>
<tr>
<td>- dont à l'intérieur des maisons (19 h/jour)</td>
</tr>
<tr>
<td>1.4 ingestion de substances radioactives naturelles</td>
</tr>
<tr>
<td>2.1 retombées des essais nucléaires</td>
</tr>
<tr>
<td>2.2 accident dans la centrale nucléaire de Tchernobyl</td>
</tr>
<tr>
<td>2.3 installations nucléaires</td>
</tr>
<tr>
<td>2.4 applications médicales de substances radioactives et de rayonnements ionisants* (sans thérapie)</td>
</tr>
<tr>
<td>- dont examens en médecine nucléaire</td>
</tr>
</tbody>
</table>

| Chiffre total de l'exposition naturelle aux rayonnements | env. 2,1 |
|---|

2. Exposition artificielle par source

<table>
<thead>
<tr>
<th>Dose efficace moyenne millisievert par an</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 retombées des essais nucléaires</td>
</tr>
<tr>
<td>2.2 accident dans la centrale nucléaire de Tchernobyl</td>
</tr>
<tr>
<td>2.3 installations nucléaires</td>
</tr>
<tr>
<td>2.4 applications médicales de substances radioactives et de rayonnements ionisants* (sans thérapie)</td>
</tr>
<tr>
<td>- dont examens en médecine nucléaire</td>
</tr>
</tbody>
</table>

| Chiffre total de l'exposition artificielle aux rayonnements | env. 1,9 |

* données de l’année 2010, évaluation faite en 2012

Le présent résumé expose les principaux résultats concernant l'exposition aux rayonnements due
- aux sources naturelles de rayonnements,
- aux anciens sites miniers et industriels,
- au radon dans les bâtiments,
- aux substances radioactives contenues dans les matériaux de construction et les produits industriels,
- aux essais nucléaires,
- à l’accident du réacteur de Tchernobyl,
- au sujet particulier: Fukushima,
- au génie nucléaire,
- à l’exposition professionnelle aux rayonnements,
- aux applications médicales,
- à la manipulation de substances radioactives dans le domaine de la recherche et des technologies,
- aux déchets radioactifs,
- aux accidents radiologiques et événements particuliers.

Depuis 2001, le rapport contient également des informations sur les rayonnements non-ionisants et les travaux de recherche menés dans ce domaine.
Sources naturelles de rayonnements

L'exposition naturelle aux rayonnements se compose d'une contribution externe et interne, causée par les substances radioactives naturelles présentes dans l'environnement et par les rayonnements cosmiques. La contribution externe est due essentiellement au rayonnement cosmique ainsi qu'au rayonnement émis par le radioisotope naturel potassium-40 et les radionucléides appartenant aux chaînes de désintégration de l'uranium-238 et du thorium-232, rayonnement provenant du sol et des bâtiments. La contribution interne de l'exposition aux rayonnements est causée particulièrement par l'inhalation des descendants du gaz rare radon d'origine naturelle (dits produits de filiation), et partiellement par l'ingestion de substances radioactives naturelles contenues dans l'alimentation, y compris l'eau potable. La dose efficace annuelle typique due aux sources naturelles de rayonnements varie entre 1 et 6 millisieverts (mSv). En appliquant les facteurs de dose définis dans les normes de base EURATOM, on arrive à une valeur moyenne nominale de 2,1 mSv par an, dont la source est principalement le radon à l'intérieur des maisons. L'exposition naturelle aux rayonnements ne varie que faiblement d'un an à l'autre. La part des diverses sources contribuant à la dose efficace moyenne par an est indiquée dans le tableau ci-dessus.

Anciens sites miniers et industriels

Les travaux d'assainissement que la société Wismut GmbH est en train d'effectuer dans l'ancienne région d'extraction de minerais d'uranium en Saxe et Thuringe occasionnent la libération de radionucléides de la chaîne de désintégration de l'uranium/du radium dans l'air et dans les eaux. Ces radionucléides sont rejettés dans l'environnement avec l'autorisation des autorités compétentes. Ce n'est qu'à proximité immédiate des installations minières que les activités minières causent des concentrations élevées de radon dans l'air au niveau du sol, le taux diminuant rapidement avec la distance. Globalement, les mesures réalisées font état de concentrations de radon élevées dans les régions uranières mentionnées ci-dessus, qu'il faut attendre dans des régions avec une géologie comparable. Elles sont donc apparentement d'origine naturelle. Les rejets liquides d'uranium, de radium et de leurs produits de désintégration provenant des installations minières dans les régions uranières n'ont aucune influence, ou seulement une influence négligeable sur le niveau naturel de ces radionucléides dans le milieu récepteur. Les rejets liquides et gazeux de substances radioactives (radon-222 et émetteurs alpha à vie longue, uranium et radium-226) provenant des mines souterraines dans la région où des travaux d'assainissement sont effectués par la société Wismut varient selon les influences météorologiques et le progrès de l'assainissement, mais dans l'ensemble ils présentent une tendance à la baisse.

Radon dans les bâtiments

La valeur moyenne annuelle de la concentration d'activité du radon dans les parties habitées des bâtiments s'élève à 50 becquerel par mètre cube (Bq/m\(^3\)) en Allemagne, ce qui est équivalent à une dose efficace moyenne de 0,9 millisievert (mSv) par an. Les mesures effectuées dans les parties habitées des bâtiments s'élève à environ 0,3 millisievert (mSv) par an, dont la source est principalement le radon à l'intérieur des maisons. L'exposition naturelle aux rayonnements ne varie que faiblement d'un an à l'autre. La part des diverses sources contribuant à la dose efficace moyenne par an est indiquée dans le tableau ci-dessus.

Substances radioactives contenues dans les matériaux de construction et les produits industriels

Des études récentes portant sur les concentrations des radionucléides naturels radium-226, thorium-232 et potassium-40 dans les matériaux de construction courants produits industriellement pour l'usage à l'intérieur des bâtiments confirment que la dose annuelle moyenne qu'ils provoquent s'élève à environ 0,3 millisievert (mSv) et qu'elle peut atteindre, dans des cas exceptionnels, jusqu'à 1 mSv. Ceci est conforme à la norme de limitation de la radioexposition due aux matériaux de construction reconnue au niveau européen. Les études ont aussi analysé le dégagement de radon-222 des matériaux de construction minéraux, mais celui-ci n'est généralement qu'une faible. Il en est de même des pierres naturelles utilisées à l'intérieur des bâtiments. Les études ont révélé que, dans la plupart des cas, ce matériau ne cause pas d'exposition élevée, même s'il est utilisé sur une surface étendue.

Essais nucléaires

De 1945 à 1980, un grand nombre d'essais nucléaires a été réalisé dans l'atmosphère ; depuis 1981, seuls des essais nucléaires souterrains ont été effectués. En octobre 2006, un essai nucléaire souterrain a eu lieu en Corée du Nord. En mai 2009, la République Populaire Démocratique de Corée a fait part d'un deuxième essai nucléaire souterrain qui a été également enregistré par les dispositifs de mesure sismique du réseau de mesure international. Aucun relâchement de radionucléides (ni isotopes xénon ni radionucléides liés aux particules) n'a été détecté dans ce contexte, ce qui indique un très bon confinement. Le niveau moyen de radioactivité de l'environnement causé par les essais atmosphériques effectués par le passé a constamment baissé depuis le Traité interdisant les essais d'armes nucléaires de 1964. Actuellement, il représente une contribution inférieure à 0,01 millisievert (mSv) par an à la radioexposition totale de l'homme.
Accident du réacteur de Tchernobyl

En avril 1986 un accident grave de réacteur est survenu à la centrale nucléaire de Tchernobyl. Dans les journées suivantes, une grande quantité de radionucléides a été dégagée dans l'atmosphère et s'est répandue sur toute l'Europe. En Allemagne c'étaient surtout les régions du Sud qui ont souffert des rejets de radionucléides. La contamination en Cs-137 des sols y atteignait en partie jusqu'à 100.000 becquerel par mètre carré (Bq/m²).

En 2011, l'exposition aux rayonnements en conséquence de cet accident a continué à diminuer faiblement; la dose efficace moyenne due au radiocésium ingéré avec la nourriture est estimée à 0,001 mSv. En Allemagne du Sud, cette exposition peut atteindre 0,01 mSv. Dans cette région, c'est surtout la contamination en Cs-137 de la viande de sanglier qui surpasse la valeur maximale autorisée de 600 becquerel par kilo (Bq/kg) dans quelques cas.

Sujet particulier: Fukushima

Le 11 mars 2011 un séisme de 9 s'est produit au large des côtes de la Préfecture de Miyagi au Japon. Peu après, la région côtière a été submergée par un tsunami avec des raz de marée atteignant jusqu'à 15 mètres. Par conséquent, un severe accident nucléaire fut déclaré à Fukushima. Six réacteurs à eau légère ont été détruits. Par la suite de l'accident, une pléiade de radionucléides artificiels a été rejetée dans l'atmosphère. Plusieurs des radionucléides libérés ont été démontrés en Allemagne, les concentrations cependant ne représentaient que quelques millibecquerel par mètre cube. En outre une grande quantité desusbtances radioactives a été déverse dans l'Océan Pacifique. Cependant aucune trace d'émissions radioactives en provenance de Fukushima n'a été décelée en Mer du Nord et en Baltique.

Génie nucléaire

Les rejets de matières radioactives provenant des CNPE, d’autres installations nucléaires, de l’ancien centre de stockage définitif de déchets radioactifs à faible et moyenne activité de Morsleben (ERAM) et de la mine de Asse ne causent qu’une faible augmentation de la radioexposition moyenne de la population. Les valeurs supérieures de la radioexposition des individus, déterminées conformément au Règlement administratif général au paragraphe 47 du Règlement sur la Protection contre les rayonnements (Allgemeine Verwaltungsvorschrift zu § 47 Strahlenschutzverordnung), sont restées néanmoins inférieures aux limites de dose fixées par le Règlement sur la protection contre les rayonnements. De manière générale, les niveaux de radioexposition calculés n’ont pas changé considérablement par rapport à 2010. En 2011, les installations nucléaires allemandes, ainsi que celles des pays voisins, ont de nouveau apporté une contribution de moins de 0,01 millisievert (mSv) par an à la dose efficace moyenne de la population de la République fédérale d’Allemagne. La production totale d'électricité d'origine nucléaire a baissé par 32 térawattheures (TWh) à 108 TWh. La cause de cette baisse est la mise à l'arrêt de 8 centrales nucléaires : Biblis A et B, Neckarwestheim 1, Brunsbüttel, Isar 1, Unterweser, Philippsburg 1 et Krümmel.

Exposition professionnelle aux rayonnements

En Allemagne, toute personne travaillant dans un secteur à rayonnement élevé est soumise à une surveillance à des fins de radioprotection. En 2011 près de 390 000 personnes étaient affectées en Allemagne. La plus grande part de ces personnes exposées aux rayonnements a été surveillée à l'aide de dosimètres. La dose efficace moyenne de toutes les personnes surveillées de cette manière (environ 349 000) était de 0,11 millisievert (mSv) en 2011. Pour environ 81 % des personnes surveillées, aucune exposition supplémentaire aux rayonnements n’a pu être démontrée pendant toute la période de surveillance. Les personnes surveillées chez lesquelles une dose a pu être constatée (environ 66 000) ont présenté une dose individuelle moyenne annuelle de 0,58 mSv (année précédente: 0,66 mSv). En 2011, 7 personnes ont été touchées par un dépassement de la limite de dose annuelle réglementaire de 20 mSv.

Depuis le 1er août 2003, le personnel navigant soumis au droit du travail allemand et susceptible de recevoir une dose efficace d’au moins 1 mSv par année civile due aux rayonnements cosmiques est soumis à surveillance. La surveillance du personnel navigant n’est pas effectuée à l’aide de dosimètres. Les compagnies aériennes utilisent plutôt des programmes de calcul agréés par les autorités compétentes afin de déterminer la dose reçue par le personnel navigant. En 2011, environ 39 000 personnes étaient affectées par cette réglementation (année précédente: 37 000 personnes). Leur dose moyenne annuelle s’élevait à 2,1 mSv (année précédente: 2,3 mSv) en plus de l’exposition naturelle.

Applications médicales

En 2010, la radioexposition médicale était d’environ 1,9 millisievert (mSv) par habitant. Les procédures de diagnostic en médecine nucléaire représentaient environ 0,1 mSv de cette exposition. Il ne reste pas moins qu'on constate globa-
lement une tendance à la hausse en ce qui concerne la dose efficace moyenne par habitant et par an dans la période de référence 1996 à 2010 bien que la fréquence des examens radiographiques en Allemagne a néanmoins baissé globalement durant cette période. En moyenne, environ 1,66 examens radiographiques ont été réalisés par habitant en 2010. La tendance à la hausse de la dose efficace moyenne résulte pour l’essentiel de l’augmentation constante du nombre d’exams tomodensitométriques (scanner). Bien que les examens tomodensitométriques ne représentaient qu’environ 8 % de tous les examens radiographiques en 2010, sa part dans la dose efficace collective constituait cependant près de 60 %.

Entre 2004 et le début de 2009 le programme de dépistage mammographique (intégrant une démarche assurance qualité) a été introduit à l’échelle nationale pour toutes les femmes (asymptomatiques) agées entre 50 et 69 ans. Aujourd’hui, ce programme est offert partout dans le pays.

En ce qui concerne le diagnostic en médecine nucléaire, les scintigraphies de la glande thyroïde et du squelette sont les examens les plus fréquents. De même, la tomodiagraphe à émission de positrons (PET) gagne en importance en tant que méthode diagnostique en médecine nucléaire en vertu de sa grande validité diagnostique.

Il est remarquable que l’imagerie par résonance magnétique (IRM), les échographies et la tomodensitométrie ont tous progressés en même temps entre 1996 et 2010. Contre toute attente, l’accroissement de procédures d’examen alternatives, c’est-à-dire sans application de rayons X, surtout la hausse considérable de l’IRM - n’a donc pas entraîné une application décroissante de la tomodensitométrie.

Déchets radioactifs

L’Office fédéral de Radioprotection (BfS) procède annuellement à un recensement des résidus et déchets radioactifs en R.F.A pour le compte du Ministère fédéral de l’Environnement, de la Protection de la Nature et de la Sûreté nucléaire (BMU). Cette exercice détermine le stock de résidus, déchets primaires et déchets de désactivation radioactifs, ainsi que la quantité des déchets radioactifs conditionnés nouveaux et anciens.

Au 31 décembre 2011, le stock de déchets radioactifs peu thermogènes conditionnés était de 101 415 mètre cube (m³). Le stock de produits intermédiaires et de déchets non-traités peu thermogènes était de 10 372 m³ (année précédente: 10 295 m³) et de 19 128 m³ (année précédente: 17 517 m³) respectivement.

Le stock de déchets radioactifs thermogènes conditionnés s’élevait à 727 m³ (année précédente: 674 m³) en 2011. D’autres 1251 m³ (année précédente: 1251 m³) de déchets thermogènes étaient entreposés en tant que produits intermédiaires. Jusqu’au 31 décembre 2011, la quantité de métaux lourds (uranium + plutonium) provenant d’éléments combustibles irradiés s’élevait à 14 465 tonnes en Allemagne. De cette quantité, 6662 tonnes de métaux lourds ont été exportées afin d’être retraitées à l’étranger.

Accidents radiologiques et événements particuliers

Grâce aux dispositions juridiques strictes en matière de radioprotection, rares sont les incidents soumis à déclaration impliquant des personnes en contact avec des rayonnements ionisants ou des matières radioactives. Le présent rapport rassemble ces incidents chaque année. Plus de 80 % des incidents déclarés au cours de l’année 2011 avait trait à la découverte de matériau radioactif, le plus souvent dû à des activités d’élimination irrégulières de la substance radioactive. Aucun des incidents entraînait une menace radiologique. Par suite d’erreur humaine ou machine (p. e. erreur de réglage ou erreur logiciel) des expositions erronees sont survenues dans cinq établissements de radiodépistographe. Par la suite, on a modifié le logiciel et mis en oeuvre des formations ainsi que institué des contrôles additionnels. Dû à un emetteur coincé d’un appareil de radiographie par rayons gamma, une personne subit une exposition accrue à l’étranger.

Rayonnements non ionisants

L’avancée technologique provoque une augmentation du nombre de sources contribuant à une exposition du public aux rayonnements non ionisants. En 2011, ce phénomène en combinaison avec les développements techniques les plus récents a de nouveau posé des défis en matière de radioprotection. Afin de permettre une évaluation, sur la base de données solides, des risques présentés par les champs électromagnétiques, l’Office fédéral de radioprotection (BfS) a continué, en 2011, à initier et à coordonner des projets de recherche dans le cadre du plan de recherche environnemental du Ministère de l’Environnement (BMU) tant dans le domaine des champs magnétiques statiques que dans les domaines des champs électromagnétiques de basse et de haute fréquence.

Les programmes de dépistage mammographique, d’hémodialyse, de radiothérapie ont suscité un débat public important concernant les liens éventuels entre l’exposition aux champs électromagnétiques et les maladies chroniques. Les chiffres sur les examens IRM, et les scintigraphies nucléaires ont connu une importante croissance à l’occasion de lancement de programmes de dépistage tels que le dépistage mammographique et d’autres types de dépistage de cancer. Cependant, il est à noter que la qualité des données et des méthodes de mesure sont insuffisantes. La population a été exposée à un niveau de champs électromagnétiques très faible mais le degré de risque demeure inconnu.

En ce qui concerne les rayonnements optiques, c'est surtout la croissance inquiétante du nombre de cancers de la peau qui justifie d'initier de nouveaux projets de recherche et d'améliorer la communication des risques et les mesures d'informations du BfS. C'est pourquoi le BfS a lancé, entre autres, la campagne d'information UV „Sonne - Aber sicher!” en 2010, initié l'Alliance UV, une coopération d'établissements et organisations médicaux, scientifiques et d'autorités fédérales en 2011 ainsi que continué de mesures visant à réduire l'exposition de la population aux rayonnements UV (surveillance UV) et la publication de l'index UV basé sur les résultats des mesures. En ce qui concerne l'utilisation de rayonnement UV artificiel des solariums c'est grâce à l'initiative du BMU et du BfS que la loi relative à la protection contre les rayonnements non ionisants (Gesetz zur Regelung des Schutzes vor nichtionisierender Strahlung NiSG) est entré en vigueur en août 2009. Il est désormais interdit aux opérateurs de solariums de permettre aux mineurs l'utilisation des bancs solaires. Basé sur cette loi, le „règlement relatif à la protection contre les effets néfastes de rayonnements ultraviolets artificiels” (UVSV) a été publié le 25 Juillet 2011 au Journal officiel de la République fédérale d'Allemagne (No. 37 du 25.07.2011, p1412) et est entré en vigueur le 1 Janvier 2012. Reposant sur les critères de la procédure de certification volontaire cheminés par le BfS règle entre autres des standards relatifs aux équipements, l'opération de solariums ainsi que la qualification professionnelle et les tâches du personnel spécialisé de solarium.
TEIL A
ALLGEMEINE ANGABEN
(Stand 31.12.2011)

(GENERAL INFORMATION)

I NATÜRLICHE UMWELTRADIOAKTIVITÄT

(NATURAL ENVIRONMENTAL RADIOACTIVITY)

Bearbeitet vom Bundesamt für Strahlenschutz
HISTORISCHE UND GESETZLICHE GRUNDLAGEN DER ÜBERWACHUNG
(HISTORICAL AND LEGAL BASIS OF SURVEILLANCE)

Die Auswirkungen der von 1945 bis 1980 durchgeführten oberirdischen Kernwaffentests sowie der großtechnische Ein-
satz der Kernenergie seit den 60er und 70er Jahren machten die Konzeption entsprechender Kontrollsysteme zur Um-
welt- bzw. Umgebungüberwachung notwendig. In der Bundesrepublik Deutschland regelt das Strahlenschutzvorsorge-
gesetz (StrVG) die Zuständigkeiten, Überwachungssysteme und Messprogramme für die Kontrolle der Radioaktivität
in der Umwelt. Durch die Strahlenschutzverordnung (StrlSchV) und das Atomgesetz (AtG) wird dies in der Umgebung
kerntechnischer Anlagen geregelt.

Überwachung der Umwelt

Die Freisetzung radioaktiver Stoffe durch die oberirdischen Kernwaffentests nach 1945 lieferte einen nicht vernach-
lässigbaren Beitrag zur Strahlenexposition der Bevölkerung mit der Folge, dass schon in den 50er Jahren von der Bun-
desrepublik Deutschland Deutschland Messsysteme zur Umweltüberwachung aufgebaut wurden:

- 1955 - 1956: Der Deutsche Wetterdienst (DWD) ging auf „radioaktive Beimen-
gungen“ und deren Ausbreitung zu überwachen.
- Mit Artikel 35 des Vertrages zur Gründung der Europäischen Atomgemeinschaft (EURATOM) vom 25. März 1957
 wurde die Mitgliedstaaten verpflichtet, die notwendigen Einrichtungen zur ständigen Überwachung der Radioaktivi-
 tätsgesetzes von Luft, Wasser und Boden sowie zur Überwachung der Einhaltung der Strahlenschutz-Grundnormen
 zu schaffen. Artikel 36 des EURATOM-Vertrages verpflichtet zur regelmäßigen Berichterstattung über die
 aktuelle Umweltradioaktivität. Die Verpflichtungen aus Artikel 35 und 36 des EURATOM-Vertrages werden mittels
 der amtlichen Radioaktivitätsmessstellen des Bundes und der Länder erfüllt. Die Pflicht zur jährlichen Übermittlung
 der gemessenen Daten an die Europäische Kommission wird durch das BfS wahrgenommen.
- 1960: In Vereinbarungen zwischen dem zuständigen Bundesministerium (Bundesministerium für Atomkernener-
gie und Wasserwirtschaft) und den Ländern wurden die Grundzüge der Überwachungsmaßnahmen festgelegt, die im
 Wesentlichen noch heute gültig sind.

Der Reaktorunfall von Tschernobyl am 26. April 1986 war Anlass, die Zuständigkeiten für die Umweltüberwachung neu
zur gleichen und das rechtliche Instrumentarium zur Schadensbegrenzung zu ergänzen. Ziel des daraufhin verabschie-
deten Strahlenschutzvorsorgegesetzes (StrVG) vom 19. Dezember 1986 ist es, zum Schutz der Bevölkerung die Radio-
aktivität in der Umwelt zu überwachen und im Falle von Ereignissen „mit möglichen nicht unerheblichen radiologischen
Auswirkungen“ die radioaktive Kontamination in der Umwelt und die Strahlenexposition des Menschen durch angemes-
sen Maßnahmen so gering wie möglich zu halten.

Die §§ 2 und 3 des Strahlenschutzvorsorgegesetzes grenzen die Aufgabenzuständigkeit zwischen Bund und Ländern
ab. Die großräumige Überwachung der Medien Luft und Wasser sowie die Ermittlung der Gamma-Ortsdosisleistung ist
gemäß § 2 dem Bund zugewiesen. Die Überwachung der anderen Umweltemedien wird dagegen in Bundesauftragsver-
waltung nach § 3 StrVG von den Messstellen der Länder wahrgenommen.

Auf dieser gesetzlichen Grundlage wurde in den nachfolgenden Jahren das Integrierte Mess- und Informationssystem
zur Überwachung der Umweltaktivität (IMIS) geschaffen, in dem die nach den §§ 2 und 3 StrVG ermittelten Daten
bundeseinheitlich zusammengeführt werden.

1988 wurde im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit (BMU) ein Routine-
messprogramm zur Entnahme und Messung von Umweltproben zwischen den Bundes- und Länderbehörden abge-
stimmt und in den Folgejahren umgesetzt. Das Programm enthält verbindliche Vorgaben für die Durchführung der
routinemäßigen Überwachungsmaßnahmen durch die zuständigen Behörden des Bundes und der Länder und stellt ein
bundeseinheitliches Vorgehen sicher.

Ebenso wurde 1995 im Auftrag des BMU zwischen den Bundes- und Landesbehörden ein Intensivmessprogramm abge-
stimmt, das im Falle erhöhter Freisetzung radioaktiver Stoffe in die Umwelt an die Stelle des Routinemessprogramms
tritt. Auf der Grundlage der §§ 2 und 3 StrVG werden hierin umfangreichere Aktivitätsmessungen in kürzeren zeitlichen
Abständen vorgeschrieben, mit denen schnell die radiologische Lage erfasst und eventuell erforderliche Vorsorgemaß-
nahmen zur Minimierung der Strahlenexposition durch die jeweils zuständigen Bundes- bzw. Landesministerien emp-
fohlen werden können.

Die Messprogramme für den Normalbetrieb (Routinemessprogramm) und den Intensivbetrieb (Intensivmessprogramm)
werden von der Allgemeinen Verwaltungsdirektion zum Integrierten Mess- und Informationssystem zur Überwa-

Überwachung der Umgebung kerntechnischer Anlagen

Zur Überwachung der Umweltaktivität erwuchs durch die Inbetriebnahme von Forschungsreaktoren in der Bun-
desrepublik Deutschland in den Jahren 1957 und 1958 und den späteren großtechnischen Einsatz der Kernspaltung
zur Energiegewinnung zusätzlich die Aufgabe der Umgebungüberwachung kerntechnischer Anlagen (Emission und
Immission). Die rechtlichen Verpflichtungen dazu leiten sich aus dem Atomgesetz und der Strahlenschutzverordnung
ab und werden sowohl von den Betreibern der Anlage selbst als auch von unabhängigen Messstellen der Länder um-

Überwachung der Umgebung bei bergbaulichen und anderen Tätigkeiten in den neuen Bundesländern

Tabelle 1 Übersicht über die Verwaltungsbehörden des Bundes zur Überwachung der Umwelt- bzw. Umgebungsradioaktivität gemäß StrVG bzw. REI (Leitstellen)

<table>
<thead>
<tr>
<th>Deutscher Wetterdienst, Zentralamt</th>
<th>Messung von Luft und Niederschlag, Ausbreitungsprognose, Spurenanalyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offenbach am Main</td>
<td></td>
</tr>
<tr>
<td>Physikalisch-Technische Bundesanstalt</td>
<td>Spurenanalyse, Bereitstellung von Aktivitätsnormalen</td>
</tr>
<tr>
<td>Braunschweig</td>
<td></td>
</tr>
<tr>
<td>Bundesanstalt für Gewässerkunde, Koblenz</td>
<td>Bundeswasserstraßen, oberirdische Gewässer</td>
</tr>
<tr>
<td></td>
<td>Oberflächenwasser, Schwebstoff und Sediment</td>
</tr>
<tr>
<td>Bundesamt für Seeschifffahrt und Hydrographie, Hamburg</td>
<td>Nord- und Ostsee einschließlich Küstengewässer</td>
</tr>
<tr>
<td></td>
<td>Meerwasser, Schwebstoff und Sediment</td>
</tr>
<tr>
<td>Johann Heinrich von Thünen-Institut, Institut für Fischereiökologie, Hamburg</td>
<td>Fische, Fischprodukte, Krusten- und Schalentiere, Wasser-</td>
</tr>
<tr>
<td></td>
<td>pflanzen, Plankton</td>
</tr>
<tr>
<td>Max-Rubner-Institut, Institut für Sicherheit und Qualität bei Milch und Fisch, Kiel</td>
<td>Boden, Bewuchs, Futtermittel und Nahrungsmittel pflanzlicher</td>
</tr>
<tr>
<td></td>
<td>und tierischer Herkunft</td>
</tr>
<tr>
<td>Bundesamt für Strahlenschutz, Salzgitter</td>
<td>Inkorporationsüberwachung der Bevölkerung</td>
</tr>
<tr>
<td>Fachbereich Strahlenschutz und Gesundheit</td>
<td>Trinkwasser, Grundwasser, Abwasser, Klärschlamm und</td>
</tr>
<tr>
<td>Fachbereich Strahlenschutz und Umwelt</td>
<td>Abfälle</td>
</tr>
<tr>
<td></td>
<td>Umweltradioaktivität, die aus bergbaulicher Tätigkeit in</td>
</tr>
<tr>
<td></td>
<td>Gegenwart natürlich radioaktiver Stoffe (besonders Radon und seine</td>
</tr>
<tr>
<td></td>
<td>Folgeprodukte) stammt</td>
</tr>
<tr>
<td></td>
<td>Bedarfsgegenstände, Arzneimittel und deren Ausgangsstoffe</td>
</tr>
<tr>
<td></td>
<td>Fortluftüberwachung kerntechnischer Anlagen</td>
</tr>
<tr>
<td></td>
<td>Gamma-Ortsdosileistung, Spurenanalyse, Zusammenfassung der vom Bund</td>
</tr>
<tr>
<td></td>
<td>ermittelten Daten über Luft und Niederschlag</td>
</tr>
<tr>
<td></td>
<td>Abwasserüberwachung kerntechnischer Anlagen</td>
</tr>
</tbody>
</table>
1. Natürliche Umweltradioaktivität
(Natural environmental radioactivity)

1.1 Natürlich radioaktive Stoffe in der Umwelt
(Natural radioactive substances in the environment)

Natürlich radioaktive Stoffe - natürliche Radionuklide - sind seit jeher Bestandteil unserer Umwelt. Ihrem Ursprung nach unterscheidet man drei Gruppen natürlich radioaktiver Stoffe:
- Radionuklide ohne Zerfallsreihen,
- Radionuklide der natürlichen Zerfallsreihen,
- Radionuklide, die ständig durch kosmische Strahlung erzeugt werden.

Die für den Strahlenschutz wichtigen Radionuklide stammen aus den natürlichen Zerfallsreihen:
- Uran-Radium-Zerfallsreihe, ausgehend von U-238 mit einer HWZ von 4,5 Milliarden Jahren,
- Actinium-Zerfallsreihe, ausgehend von U-235 mit einer HWZ von 0,7 Milliarden Jahren,

Von diesen drei Zerfallsreihen liefern die Uran-Radium- und die Thorium-Zerfallsreihe den größten Beitrag zur natürlichen Strahlenexposition.

Zur dritten Gruppe gehören Radionuklide, die ständig durch die primäre kosmische Strahlung in der Atmosphäre erzeugt werden, z. B. H-3 (HWZ 12,3 Jahre), Be-7 (HWZ 53,3 Tage), Kohlenstoff-14 (HWZ 5 730 Jahre) und Na-22 (HWZ 2,6 Jahre).

Überall dort, wo Uran und Thorium im Erdboden vorhanden sind, entstehen als radioaktive Zerfallsprodukte Isotope des Edelgases Radon, die besonders mobil sind. Aus U-238 entsteht über Ra-226 das Rn-222 (HWZ 3,8 Tage); aus Th-232 über die Zwischenprodukte Ra-228 und Ra-224 das Rn-220 (HWZ 55,6 Sekunden) und aus dem U-235 das Rn-219 (HWZ 3,96 Sekunden). Auf Grund der längeren HWZ sind in der Regel die Zerfallsprodukte von Urangesätzen besonders relevant.

Zur Festlegung der Strahlenexposition sind die Messergebnisse eines Bodens für die Strahlenexposition von Bedeutung. Die Abbildung 1.1-1 zeigt die Entstehung des Rn-222 und seiner Zerfallsprodukte in der bodennahen Luft.

1.2 Natürlich radioaktive Stoffe im Boden
(Natural radioactive substances in soil)

Tabelle 1.2.1 Typische Werte für die spezifische Aktivität verschiedener Bodenarten
(Typical values for the specific activity of different soil consistencies)

<table>
<thead>
<tr>
<th>Bodenart</th>
<th>K-40</th>
<th>Th-232</th>
<th>U-238</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fahlerede</td>
<td>650</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>Schwarzerde</td>
<td>400</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Bleicherde</td>
<td>150</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Mooroden</td>
<td>100</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

In Tabelle 1.2.2 sind Ergebnisse von Messungen der spezifischen Aktivität von Bodenproben aus den Regionen des Uran-und Kupferschweizerbergs auf. Auf Grund der genannten Bergbauregionen sind die mittleren Werte der spezifischen Aktivität höher als in anderen Regionen. So beträgt der mittlere spezifische Ra-226-Gehalt in der Regel etwa 70 Bq/kg, während als mittlerer Wert für das gesamte Bundesgebiet 40 Bq/kg ermittelt worden sind.
Teil A - I - NATÜRLICHE UMWELTRADIOAKTIVITÄT - 29 -

Tabelle 1.2-2 Typische Bereiche der spezifischen Aktivität von Ra-226 in Böden
(Typical areas for specific Ra-226 activity in soil)

<table>
<thead>
<tr>
<th>Gebiet</th>
<th>Wertebereich spez. Ra-226-Aktivität (Bq/kg TM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raum Mansfeld (Sachsen-Anhalt)</td>
<td>17 – 64</td>
</tr>
<tr>
<td>Raum Aue (Sachsen)</td>
<td>27 – 80*</td>
</tr>
<tr>
<td>Erzgebirgisches Becken</td>
<td>18 – 130</td>
</tr>
<tr>
<td>Thüringer Bergbaurevier</td>
<td>21 – 170†</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>8 – 12</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>9 – 15</td>
</tr>
<tr>
<td>Übriges Bundesgebiet</td>
<td></td>
</tr>
</tbody>
</table>

* Einzelwerte bis 300 Bq/kg
† Einzelwerte bis 400 Bq/kg

1.3 Natürlich radioaktive Stoffe im Wasser
(Natural radioactive substances in water)

Natürliche Radionuklide in Oberflächenwässern (einschließlich Meereswässer), Grund-, Quell- und Stollenwässern und insbesondere in Trinkwässern wurden im Rahmen von verschiedenen Umweltüberwachungsprogrammen und Forschungsvorhaben ermittelt. Typische Werte sind in Tabelle 1.3-1 zusammengefasst.

Im Oberflächenwasser der Binnengewässer sind von den primordialen Radionuklden insbesondere K-40, U-238 mit Tochternukliden (TN), U-235 mit TN und Th-232 mit TN relevant. Bezüglich ihrer Aktivitätskonzentrationen weisen diese Radionuklide praktisch keine zeitliche Abhängigkeit auf. Ausgeprägt und typisch sind jedoch die regionalen Schwankungen, die mit den unterschiedlichen geologischen Verhältnissen in Deutschland zu erklären sind. Hinzu kommen noch die kosmogenen Radionuklide H-3 und Be-7 (siehe Tabelle 1.3-1).

Tabelle 1.3-1 Natürliche radioaktive Stoffe in Gewässern und Sedimenten
(Natural radioactive substances in bodies of water and sediments)

<table>
<thead>
<tr>
<th>Kompartiment</th>
<th>Radionuklid</th>
<th>Wertebereich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aktivitätskonzentration (mBq/l)</td>
<td></td>
</tr>
<tr>
<td>Grundwasser</td>
<td>H-3</td>
<td>< 40 - 400</td>
</tr>
<tr>
<td></td>
<td>K-40</td>
<td>11 - 15 000</td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>1 - 200</td>
</tr>
<tr>
<td></td>
<td>Ra-226</td>
<td>< 4 - 400</td>
</tr>
<tr>
<td></td>
<td>Rn-222 und kurzlebige Folgeprodukte</td>
<td>2000 - 1 500 000</td>
</tr>
<tr>
<td></td>
<td>Th-232</td>
<td>0,4 - 70</td>
</tr>
<tr>
<td>Oberflächenwasser der Binnengewässer</td>
<td>H-3</td>
<td>- 1000*</td>
</tr>
<tr>
<td>(Daten aus Routinemessprogramm zum StrVG)</td>
<td>Be-7</td>
<td>- 500</td>
</tr>
<tr>
<td></td>
<td>K-40</td>
<td>30 - 1000</td>
</tr>
<tr>
<td></td>
<td>Th-232</td>
<td>< 10 - 100</td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>< 10</td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>< 10 - 100</td>
</tr>
<tr>
<td>Schwebstoff und Sediment der Binnengewässer</td>
<td>Be-7</td>
<td>- 1000</td>
</tr>
<tr>
<td>(Daten aus Routinemessprogramm zum StrVG)</td>
<td>K-40</td>
<td>50 - 1000</td>
</tr>
<tr>
<td></td>
<td>Th-232</td>
<td>< 10 - 100</td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>< 10</td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>< 10 - 100</td>
</tr>
<tr>
<td>Meerwasser</td>
<td>H-3</td>
<td>20 - 100†</td>
</tr>
<tr>
<td>(Daten des Bundesamtes für Seeschifffahrt und Hydrographe und aus der Literatur)</td>
<td>Be-7</td>
<td>1,1 - 3,4</td>
</tr>
<tr>
<td></td>
<td>C-14</td>
<td>5,5 - 6,7</td>
</tr>
<tr>
<td></td>
<td>Si-32</td>
<td>0,0002 - 0,0033</td>
</tr>
<tr>
<td></td>
<td>K-40</td>
<td>11 800 - 12 300</td>
</tr>
<tr>
<td></td>
<td>Rb-87</td>
<td>104 - 105 [2]</td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>40 - 41 [3]</td>
</tr>
<tr>
<td></td>
<td>Th-234</td>
<td>0,6 - 6,8</td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>41 - 43 [3]</td>
</tr>
<tr>
<td></td>
<td>Th-230</td>
<td>0,001 - 0,0038 [4]</td>
</tr>
<tr>
<td></td>
<td>Ra-226</td>
<td>0,8 - 8</td>
</tr>
<tr>
<td></td>
<td>Pb-210</td>
<td>0,4 - 2</td>
</tr>
<tr>
<td></td>
<td>Po-210</td>
<td>0,6 - 1,9</td>
</tr>
<tr>
<td></td>
<td>Th-232</td>
<td>0,0004 - 0,029</td>
</tr>
<tr>
<td></td>
<td>Ra-228</td>
<td>0,8 - 8</td>
</tr>
<tr>
<td></td>
<td>Th-228</td>
<td>0,004 - 0,3</td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>1,87 - 1,93 [3]</td>
</tr>
</tbody>
</table>
Teil A

Tabelle 1.3-2 Konzentrationen wichtiger natürlicher Radionuklide im Trinkwasser

<table>
<thead>
<tr>
<th>Radionuklid</th>
<th>Medianwert</th>
<th>Wertebereich**</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-238</td>
<td>3,2</td>
<td>< 0,5 - 100</td>
</tr>
<tr>
<td>U-234</td>
<td>5,3</td>
<td>< 0,5 - 170</td>
</tr>
<tr>
<td>U-235</td>
<td>0,15</td>
<td>< 0,2 - 4,6</td>
</tr>
<tr>
<td>Ra-226</td>
<td>4,8</td>
<td>< 0,5 - 33</td>
</tr>
<tr>
<td>Ra-226 (Mineralwasser)</td>
<td>23</td>
<td>< 0,5 - 310</td>
</tr>
<tr>
<td>Th-232</td>
<td>0,5 (0,1)*</td>
<td>< 0,1 - 4</td>
</tr>
<tr>
<td>Th-228</td>
<td>1 (0,2)*</td>
<td>< 0,2 - 6</td>
</tr>
<tr>
<td>Ra-228</td>
<td>4,6</td>
<td>< 0,5 - 26</td>
</tr>
<tr>
<td>Rn-222</td>
<td>5900</td>
<td><1000 - 122 000</td>
</tr>
<tr>
<td>Pb-210</td>
<td>2,3</td>
<td>< 0,2 - 24</td>
</tr>
<tr>
<td>Po-210</td>
<td>1,4</td>
<td>< 0,1 - 10</td>
</tr>
</tbody>
</table>

* Bei den in Klammern angegebenen Werten handelt es sich um Schätzwerte, die sich aus dem Verhältnis der Werte aus Gebieten erhöhter Radioaktivität (Erzgebirge/Vogtland) zum Gesamtgebiet der Bundesrepublik Deutschland ergeben (für Ra-226 beträgt der Faktor etwa 4).

** Die oberen Grenzen für die angegebenen Wertebereiche werden durch die 95 %-Perzentile gebildet.

Aus den Messungen der Rn-222-Konzentrationen in Trinkwassern Deutschlands (Gesamtbestand der vorliegenden 2476 Daten) ergibt sich ein Median von 5,9 Becquerel pro Liter (Bq/l) bei einem 95 %-Perzentil von etwa 120 Bq/l. Etwa 10 % der Werte liegen oberhalb von 50 Bq/l; der höchste Wert betrug 1850 Bq/l. Die Messungen der Radon-222-Konzentrationen erfolgten zum größten Teil bei Endverbrauchern, z. B. in Privathaushalten, zum kleineren Teil in Wasserversorgungsanlagen; bei letzteren ergab sich ein Median von 7,5 Bq/l [1].

Literatur
1.4 Natürlich radioaktive Stoffe in der bodennahen Atmosphäre

(Natural radioactive substances in the atmosphere close to ground level)

In der bodennahen Luft befinden sich die für die Strahlenexposition wichtigen radioaktiven Isotope des Edelgases Radon (siehe Abschnitt 1.1) und deren Zerfallsprodukte. Die übrigen Radionuklide der Uran- und Thoriumzerfallsreihen sind bei den natürlicherweise auftretenden Staubkonzentrationen für die Strahlenexposition von untergeordneter Bedeutung. Dasselbe gilt für die kosmogenen Radionuklide (z. B. H-3, Be-7, C-14, Na-22).

Die Konzentrationen des entsprechenden Radonisotops der Th-232-Zerfallsreihe, Rn-220, sind in Deutschland deutlich niedriger als die des Rn-222. Als durchschnittliche Konzentration wird der Wert 0,15 Bq/m³ geschätzt. Auf die Radonkonzentration in Gebäuden wird im nachfolgenden Kapitel I, Teil 2.1 näher eingegangen.

<table>
<thead>
<tr>
<th>U-238</th>
<th>U-234</th>
<th>Th-230</th>
<th>Ra-226</th>
<th>Pb-210</th>
<th>Po-210</th>
<th>Th-232</th>
<th>Ra-228</th>
<th>Th-228</th>
</tr>
</thead>
<tbody>
<tr>
<td>µBq/m³</td>
<td>µBq/m³</td>
<td>µBq/m³</td>
<td>µBq/m³</td>
<td>µBq/m³</td>
<td>µBq/m³</td>
<td>µBq/m³</td>
<td>µBq/m³</td>
<td>µBq/m³</td>
</tr>
<tr>
<td>0,8 - 2,0</td>
<td>1,4 - 2,0</td>
<td>0,6 - 1,7</td>
<td><1,3 - 6,3</td>
<td>200 - 670</td>
<td>26 - 48</td>
<td>0,4 - 1,2</td>
<td>0,6</td>
<td>1,0 - 1,2</td>
</tr>
</tbody>
</table>

1.5 Natürlich radioaktive Stoffe in der Nahrung

(Natural radioactive substances in foodstuff)

In den Jahren 2000 bis 2003 sind umfangreiche Untersuchungen der natürlichen Radioaktivität in Nahrungsmitteln in der gesamten Bundesrepublik vom Bundesamt für Strahlenschutz durchgeführt worden. Tabelle 1.5-1 gibt einen Überblick über die Mittelwerte und die Wertebereiche in Deutschland gemessener Gehalte natürlich radioaktiver Stoffe in Nahrungsmittelgruppen.
Tabelle 1.5-1
Spezifische Aktivität natürlich radioaktiver Stoffe in Nahrungsmitteln (Median-Werte)
(Specific activity of natural radioactive substances in foodstuffs-median values)

<table>
<thead>
<tr>
<th>Produkt</th>
<th>U-238</th>
<th>U-234</th>
<th>Ra-226</th>
<th>Pb-210</th>
<th>Po-210</th>
<th>Th-230</th>
<th>Th-232</th>
<th>Ra-228</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milch</td>
<td>0,002</td>
<td>0,005</td>
<td>0,004</td>
<td>0,011</td>
<td>0,001</td>
<td>0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fische (Süßwasser)</td>
<td>0,004</td>
<td>0,006</td>
<td>0,007</td>
<td>0,032</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleisch (Rind)</td>
<td>0,001</td>
<td>0,001</td>
<td>0,008</td>
<td>0,018</td>
<td>0,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Getreide</td>
<td>0,011</td>
<td>0,011</td>
<td>0,160</td>
<td>0,365</td>
<td>0,010</td>
<td>0,009</td>
<td>0,190</td>
<td></td>
</tr>
<tr>
<td>Obst</td>
<td>0,002</td>
<td>0,005</td>
<td>0,014</td>
<td>0,040</td>
<td>0,001</td>
<td>0,001</td>
<td>0,018</td>
<td></td>
</tr>
<tr>
<td>Blattgemüse</td>
<td>0,012</td>
<td>0,011</td>
<td>0,037</td>
<td>0,130</td>
<td>0,006</td>
<td>0,004</td>
<td>0,056</td>
<td></td>
</tr>
<tr>
<td>Wurzelgemüse</td>
<td>0,005</td>
<td>0,002</td>
<td>0,030</td>
<td>0,022</td>
<td>0,006</td>
<td>0,004</td>
<td>0,045</td>
<td></td>
</tr>
<tr>
<td>sonstiges Gemüse</td>
<td>0,002</td>
<td>0,004</td>
<td>0,010</td>
<td>0,028</td>
<td>0,001</td>
<td>0,001</td>
<td>0,020</td>
<td></td>
</tr>
</tbody>
</table>

Die spezifische Aktivität natürlich radioaktiver Stoffe in der Gesamtnahrung des Menschen (feste und flüssige Form), die in der gemischten Kost unterschiedlicher Gemeinschaftseinrichtungen über einen längeren Zeitraum bestimmt wurde, zeigt Tabelle 1.5-2. Die durchschnittliche jährliche Aufnahme natürlich radioaktiver Stoffe mit der Nahrung kann aus diesen repräsentativen Daten abgeschätzt werden.

Tabelle 1.5-2
Spezifische Aktivität natürlich radioaktiver Stoffe in der Gesamtnahrung
(gemischte Kost aus Gemeinschaftseinrichtungen)
(Specific activity of natural radioactive substances in the general diet
mixed diet from public institutions))

<table>
<thead>
<tr>
<th>Radionuklid</th>
<th>Mittelwert</th>
<th>Wertebereich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>spezifische Aktivität (Bq/kg FM)</td>
<td></td>
</tr>
<tr>
<td>U-238</td>
<td>0,008</td>
<td>0,001 - 0,020</td>
</tr>
<tr>
<td>U-234</td>
<td>0,012</td>
<td>0,004 - 0,036</td>
</tr>
<tr>
<td>Th-230</td>
<td>0,002</td>
<td>0,001 - 0,004</td>
</tr>
<tr>
<td>Ra-226</td>
<td>0,021</td>
<td>0,006 - 0,042</td>
</tr>
<tr>
<td>Pb-210</td>
<td>0,029</td>
<td>0,010 - 0,115</td>
</tr>
<tr>
<td>Th-232</td>
<td>0,001</td>
<td>0,001 - 0,004</td>
</tr>
<tr>
<td>Ra-228</td>
<td>0,030</td>
<td>0,019 - 0,069</td>
</tr>
</tbody>
</table>

Tabelle 1.5-3
Natürlich radioaktive Stoffe im Menschen (nach UNSCEAR [1,2])
(Natural radioactive substances in man - (UNSCEAR)[1,2])

<table>
<thead>
<tr>
<th>Radionuklid</th>
<th>Aktivität (Bq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-3</td>
<td>20</td>
</tr>
<tr>
<td>C-14</td>
<td>3500</td>
</tr>
<tr>
<td>K-40</td>
<td>4000</td>
</tr>
<tr>
<td>Rb-87</td>
<td>600</td>
</tr>
<tr>
<td>U-238</td>
<td>0,5</td>
</tr>
<tr>
<td>Ra-226</td>
<td>1,2</td>
</tr>
<tr>
<td>Pb-210</td>
<td>18</td>
</tr>
<tr>
<td>Po-210</td>
<td>15</td>
</tr>
<tr>
<td>Th-232</td>
<td>0,2</td>
</tr>
<tr>
<td>Th-228</td>
<td>0,4</td>
</tr>
<tr>
<td>Ra-228</td>
<td>0,4</td>
</tr>
</tbody>
</table>
1.6 Natürliche Strahlenexposition
(Natural radiation exposure)

Die natürliche Strahlenexposition setzt sich aus mehreren Komponenten zusammen, wobei zwischen der äußeren Strahlenexposition terrestrischen und kosmischen Ursprungs und der inneren Strahlenexposition durch die Aufnahme radioaktiver Stoffe über Inhalation und Ingestion unterschieden wird.

Äußere Strahlenexposition

Ein wesentlicher Beitrag zur äußeren Strahlenexposition stammt von der terrestrischen Komponente der \(\gamma \)-Strahlung, die auf den Gehalt der Böden an Radionukliden der Thorium- und der Uran-Radium-Reihe sowie an K-40 zurückzuführen ist.

Im Freien ist die Strahlenexposition von der spezifischen Aktivität in der obersten Bodenschicht bis zu 50 cm Tiefe abhängig. Im Mittel wurden für die terrestrische Komponente der \(\gamma \)-Ortsdosisleistung im Freien 57 Nanosievert pro Stunde (nSv/h) Photonenäquivalentdosis (entspricht 0,1 Millisievert pro Jahr (mSv/a) mittlere effektive Dosis in Deutschland) bestimmt. Höhere \(\gamma \)-Ortsdosisleistungen, lokal auch über 200 nSv/h, wurden insbesondere über an der Oberfläche anstehenden Granitmassiven und über natürlichen Böden dieser Regionen, z. B. in den Süddeutschen Gebieten, im Bayerischen Wald und im Schwarzwald gemessen.

In Gebäuden wird die externe Strahlenexposition vorwiegend von der spezifischen Aktivität der verwendeten Baustoffe und nur zu einem geringen Teil durch die Beschaffenheit des Untergrundes bestimmt (Mittelwert der \(\gamma \)-Ortsdosisleistung: 80 nSv/h, Wertebereich von 20 - 700 nSv/h).

Die durch die terrestrische Strahlung verursachte effektive Dosis der Bevölkerung beträgt im Bundesgebiet im Mittel etwa 0,4 Millisievert pro Jahr (mSv/a), davon entfallen auf den Aufenthalt im Freien ca. 0,1 mSv/a und auf den Aufenthalt in Gebäuden etwa 0,3 mSv/a, wobei die höhere Dosis hauptsächlich der längeren Aufenthaltsdauer geschuldet ist.

Zur externen Strahlenexposition trägt weiterhin die kosmische Strahlung bei. Sie besteht primär aus der hochenergetischen Teilchenstrahlung der Galaxis und einer solaren Komponente, die in den äußeren Luftschichten der Erde die sekundäre kosmische Strahlung erzeugen. Den wesentlichen Anteil zur Strahlenexposition liefert die direkt ionisierende Komponente der sekundären kosmischen Strahlung, die in Meereshöhe eine \(\gamma \)-Ortsdosisleistung von 32 nSv/h erzeugt; sie nimmt mit der Höhe über dem Meeresspiegel zu (Verdopplung bei jeweils 1500 m Höhenzunahme). Die effektive Dosisleistung der Neutronenkomponente beträgt demgegenüber nur 3,6 nSv/h, sie steigt mit zunehmender Höhe stark an und beträgt in üblichen Reiseflughöhen das Tausendfache. Insgesamt ergibt sich für die kosmische Strahlenexposition in Meereshöhe eine mittlere effektive Dosis von ca. 0,3 mSv/a.

Innere Strahlenexposition

Wesentlich zur inneren Strahlenexposition trägt die Inhalation des Rn-222 und seiner kurzlebigen Zerfallsprodukte bei. Das Radon selbst verursacht eine vergleichsweise geringe Strahlenexposition. Den weitaus größten Beitrag (90 - 95 %) liefern seine kurzlebigen Zerfallsprodukte, die meist an Aerosole angelagert oder in nicht angelagerter Form beim Einatmen im Atemtrakt und in der Lunge abgeschieden werden und dort durch \(\alpha \)-Strahlung die Strahlenexposition hervorrufen. Der wesentliche Teil der gesamten effektiven Dosis, die der Mensch durch natürliche Strahlenquellen erhält, resultiert aus der Strahlenexposition durch Radon-Zerfallsprodukte.

Unter durchschnittlichen Bedingungen beträgt die jährliche effektive Dosis aus der Radonexposition in Gebäuden im Mittel etwa 0,9 mSv und im Freien etwa 0,2 mSv. Allerdings muss auf den großen Variationsbereich der Radonkonzentrationen verwiesen werden.

Die effektive Dosis, die durch Inhalation der übrigen Radionuklide der Zerfallsreihen zustande kommt, beträgt nur 5 \(\mu \)Sv/a und wird vor allem durch Pb-210 verursacht. Für die Exposition durch Rn-220 wird im UNSCEAR Report 2000 eine jährliche effektive Dosis von 0,1 mSv angegeben [1].

Die innere Strahlenexposition durch Kalium-40 wird durch den Kaliumgehalt des Körpers bestimmt, da 0,0118 % des natürlichen Isotopengemisches von Kalium auf das radioaktive Isotop K-40 entfallen. Der Kalium-Gehalt im Körper eines Erwachsenen mit 73 kg beträgt 132 g. Das entspricht einer Aktivität von 4000 Bq (s. Tabelle 1.5-3). Daraus ergibt sich eine jährliche effektive Dosis von 0,165 mSv. Eine entsprechende Berechnung für Kinder ergibt 0,185 mSv pro Jahr. Dieser Wert ist nicht beeinflussbar, da er durch die biologischen und chemischen Prozesse sowie die natürliche relative Häufigkeit von K-40 bedingt ist.

Gesamte Strahlenexposition

Aus der Inhalation und Ingestion natürlich radioaktiver Stoffe ergibt sich im Mittel ein Wert von etwa 1,4 mSv pro Jahr. Für die Summe aus äußerer und innerer Strahlenexposition durch natürliche Radionuklide erhält man einen mittleren Wert von ca. 1,8 mSv pro Jahr. Die externe kosmische Strahlung trägt zusätzlich mit 0,3 mSv pro Jahr zur Gesamt-Strahlenexposition bei. Bei üblichen Lebens- und Ernährungsgewohnheiten in Deutschland ergibt sich unter Verwendung der in den EURATOM-Grundnormen festgelegten Dosisfaktoren für eine Person der Bevölkerung rechnerisch eine jährliche effektive Dosis von 2,1 mSv. In Anbetracht der Variationsbereiche der einzelnen Komponenten, insbesondere der Exposition durch Radon und den nach der Direktive 96/29 EURATOM zu betrachtenden sechs Altersgruppen ergibt sich für die durchschnittlichen Verhältnisse eine effektive Dosis im Bereich zwischen 2 und 3 mSv.

Im UNSCEAR Report von 2008 wird für die durchschnittlichen Verhältnisse in der nördlichen Hemisphäre ein vergleichbarer Zahlenwert von 2,4 mSv angegeben. Die sich nach dem UNSCEAR Report für die einzelnen Komponenten ergebenden Anteile an der Gesamtexposition sind in der Abbildung 1.6-1 graphisch dargestellt [1,2].

Abbildung 1.6-1 Mittlere jährliche effektive Dosis der Bevölkerung der nördlichen Hemisphäre durch natürliche Strahlenquellen (UNSCEAR)

(Lean annual effective dose of the population from natural radiation sources in the northern hemisphere - UNSCEAR)

Literatur

2. **Zivilisatorisch veränderte natürliche Umweltradioaktivität**

* (Technologically enhanced natural environmental radioactivity)

2.1 **Hinterlassenschaften und Rückstände aus Bergbau und Industrie**

* (Relics and residues of mining and industry)

Abbildung 1.6-1 Mittlere jährliche effektive Dosis der Bevölkerung der nördlichen Hemisphäre durch natürliche Strahlenquellen (UNSCEAR)

(Mean annual effective dose of the population from natural radiation sources in the northern hemisphere - UNSCEAR)
Infolge der geologischen Situation in Deutschland liegt der Schwerpunkt der aus der Sicht des Strahlenschutzes zu be-rücksichtigenden Hinterlassenschaften in den Bundesländern Sachsen, Sachsen-Anhalt und Thüringen, wo sowohl der historische Bergbau (Silber, Kupfer, Zinn u. a. Nichteisenmetalle) als auch der Uranbergbau betrieben wurde und zu zahlreichen Halden, Schächten und anderen Hinterlassenschaften geführt hat.

Hinterlassenschaften der Uranproduktion in Sachsen und Thüringen

- Aue/Königstein (Standorte Schlema – Alberoda, Pöhla, Königstein und Gittersee in Sachsen) und
- Ronneburg (Standorte Ronneburg und Seelingstädt (Thüringen) sowie Crossen (Sachsen)).

Schwerpunkt der überzähligen Arbeiten ist die Sanierung von Halden und Absetzanlagen, wobei die Gestaltung der Landschaft um Ronneburg und den Kurort Bad Schlema beispielhaft die Rekultivierung und Einbindung der ehemaligen Bergbauflächen in die Landschaft dokumentieren. Die Verwahrung der ehemaligen Absetzanlagen der Erzaufbereitung (Konturierung, Endabdeckung und Behandlung der Sickerwässer) schreitet kontinuierlich voran.

In Teil B - I - 2.1 werden die Werte der jährlichen Ableitungen radioaktiver Stoffe mit Fortluft und Abwasser (Genehmigungswerte und Werte der Ableitungen) angegeben und vor dem Hintergrund der langjährige Entwicklung diskutiert.

Um einen Überblick über die Immissionssituation in den betroffenen Regionen zu geben, werden darüber hinaus auch Daten von Messstellen zur Überwachung
- des Luft (Werte der Rn-222-Konzentration in der bodennahe Atmosphäre) und
- der Oberflächengewässer (Werte der Urankonzentration und Ra-226-Aktivitätskonzentration in Vorflutern mit regionaler und überregionaler Bedeutung)

angegeben und bewertet. Die Bewertung dieser Daten orientiert sich jeweils am geogen bedingten Konzentrationsniveau der natürlichen Radioaktivität und berücksichtigt ebenfalls den langjährigen Trend.

Hinterlassenschaften des historischen Bergbaus in Sachsen, Sachsen-Anhalt und Thüringen

1 Hier sind im Wesentlichen Abwetter von Untertage gemeint
Die im Projekt erhobenen Daten und Informationen zu den bergbaulichen Hinterlassenschaften stehen den für den Vollzug des Strahlenschutzrechtes zuständigen Landesbehörden als Grundlage für die nur fall- und standortbezogen zu treffende Entscheidung über Nutzungsmöglichkeiten oder Sanierungsnötigung zur Verfügung.

Hinterlassenschaften aus der Industrie

Im Ergebnis der intensiven industriellen Entwicklung, die sich seit Mitte des 19. Jahrhunderts in Deutschland vollzog, entstand eine Vielzahl von Rückständen mit erhöhter natürlicher Radioaktivität, für die keine Verwendungsmöglichkeiten bestanden und die auf kostengünstigste Weise durch Deponierung in der Umwelt beseitigt wurden. Gesichtspunkte des Umweltschutzes, des Grundwasserschutzes, aber auch des Strahlenschutzes waren nicht bekannt oder/und wurden nicht berücksichtigt. Es entstanden Deponien mit ganz unterschiedlichen Ausmaßen, in denen diese Rückstände teilweise mit anderen Materialien (z. B. Hausmüll) vermischten wurden.

Zu den möglichen Mengen solcher Rückstände gibt es zurzeit nur eine grobe Schätzung des BFS, die auf industriegeschichtlichen Recherchen aufbaut. Danach wird das Gesamtvolumen der in Deutschland seit Beginn der Industrialisierung abgelagerten Rückstände von sechs Industriebereichen dominiert und kann eine Größenordnung von 100 Mio. m³ erreichen. Da nur wenige Standorte mit Ablagerungen solcher Rückstände bekannt und ausreichend untersucht sind, sind kaum zuverlässige Aussagen über deren radiologische Bedeutung möglich. Die folgende Tabelle 2.2-1 gibt einen Überblick über die Industriebereiche und die jeweils abgeschätzte Menge der deponierten Rückstände.

Tabelle 2.1-1 Abschätzung der Menge von industriellen Hinterlassenschaften mit erhöhter natürlicher Radioaktivität (> 0,2 Bq/g) 2003

(> 0,2 Bq/g) 2003

<table>
<thead>
<tr>
<th>Industriebereich / Prozess</th>
<th>Art der Rückstände</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schlämmen</td>
</tr>
<tr>
<td>Primärförderung von Rohöl und Erdgas</td>
<td>-</td>
</tr>
<tr>
<td>Verarbeitung von Rohphosphat zur Herstellung von Phosphorsäure und Düngemitteln</td>
<td>-</td>
</tr>
<tr>
<td>Roheisenmetallurgie einschließlich Rauchgasreinigung</td>
<td>2 – 3 Mio. m³</td>
</tr>
<tr>
<td>Aufbereitung von Bauxit zur Aluminiumgewinnung (Bayer-Verfahren)</td>
<td>14 – 35 Mio. m³</td>
</tr>
<tr>
<td>Rauchgasreinigung bei der Verbrennung von Steinkohle</td>
<td>-</td>
</tr>
<tr>
<td>Aufbereitung von Grundwasser zu Trinkwasser (Eisen- und Manganfällung)</td>
<td>2 – 7 Mio. m³</td>
</tr>
<tr>
<td>Summe</td>
<td>18 – 45 Mio. m³</td>
</tr>
<tr>
<td>Gesamt</td>
<td>ca. 25 – 100 Mio. m³</td>
</tr>
</tbody>
</table>

1Reinigungsschlämmen und Ablagerungen an Pumpen, Rohren und Filtern

Aktuelle Rückstände aus Industrie und Bergbau mit erhöhter natürlicher Radioaktivität

Rückstände mit erhöhter natürlicher Radioaktivität sowie deren Verbleib werden grundsätzlich durch die zuständigen Landesbehörden, denen der Vollzug der Strahlenschutzaufsicht obliegt, erfasst.

Im Auftrag des BfS wurden in den letzten Jahren Schätzungen der jährlich in der Bundesrepublik Deutschland zu erwartenden Rückstandsmengen durchgeführt. Tabelle 2.1-2 gibt hierzu eine Übersicht.

Tabelle 2.1-2 Abschätzung der jährlichen Mengen industrieller Rückstände mit erhöhter natürlicher Radioaktivität (> 0,2 Bq/g) 2003 (Estimation of the annual amount of industrial residues with enhanced natural radioactivity, > 0.2 Bq/g) 2003

<table>
<thead>
<tr>
<th>Zuordnung der Rückstände gemäß Strahlenschutzverordnung (StrlSchV)</th>
<th>Masse [t/a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ablagerungen aus der Erdöl- und Erdgasindustrie</td>
<td>20 – 60</td>
</tr>
<tr>
<td>Anlagenteile mit Ablagerungen aus der Erdöl- und Erdgasindustrie</td>
<td>20 – 400</td>
</tr>
<tr>
<td>Schlämme aus der Erdöl- und Erdgasindustrie</td>
<td>50 – 250</td>
</tr>
<tr>
<td>Rückstände aus der Aufbereitung von Phosphorgipsen</td>
<td>100</td>
</tr>
<tr>
<td>Rotschlämme aus der Bauxitverarbeitung</td>
<td>600.000</td>
</tr>
<tr>
<td>Rückstände aus der Tantal-Produktion</td>
<td>unbekannt</td>
</tr>
<tr>
<td>Pyrochloresschlacken</td>
<td>30</td>
</tr>
<tr>
<td>Sinterstäube aus der Roheisenmetallurgie</td>
<td>5000</td>
</tr>
<tr>
<td>Hochofenschlämme aus der Roheisenmetallurgie</td>
<td>30.000</td>
</tr>
<tr>
<td>Stäube aus der Nichteisen-Primärmetallurgie</td>
<td>30.000</td>
</tr>
<tr>
<td>Sonstige uran- und thoriumhaltige Rückstände</td>
<td>100</td>
</tr>
</tbody>
</table>

Insbesondere bei der Förderung und Verarbeitung von Erdöl und Erdgas können Rückstände mit vergleichsweise hohen Konzentrationen an natürlichen Radionukliden anfallen. Es handelt sich um Inkrustierungen in Aggregaten und Rohrleitungen, die sich über lange Betriebszeiträume absetzen und die die im geförderten Ergas bzw. Erdöl mitgeführte Radioaktivität aufnehmen. Die Rückstände werden - ggf. nach Gewinnung noch enthaltener Wertstoffe (z. B. Quecksilber) - beseitigt, d. h. deponiert. Hierfür wird geprüft, ob die in der Strahlenschutzverordnung für den betreffenden Beseitigungsweg (z. B. Deponierung unter Tage) angegebenen Überwachungsgrenzen (spezifische Aktivität in Bq/g) und sonstigen Anforderungen eingehalten sind. Ist dies der Fall, können die Rückstände ohne weitere Strahlenschutzmaßnahmen beseitigt werden. Der vorgeschriebene Dosisrichtwert wird dann eingehalten. Allerdings liegen die spezifischen Aktivitäten bis Rückständen aus der Erdgas- und Erdölverarbeitung meist erheblich über den Überwachungsgrenzen. Sie können einige 10 bis mehrere 100 Bq/g (Ra-226, Ra-228), in Ausnahmefällen sogar 1.000 Bq/g betragen. Soweit jedoch der Inhaber der Rückstände für den vorgesehenen Beseitigungsweg nachweisen kann, dass der Richtwert für die Bevölkerungsexposition in Höhe von 1 mSv/a eingehalten wird und hierfür keine fortgesetzten Strahlenschutzmaßnahmen erforderlich sind, entfällt die zuständige Strahlenschutzbehörde auf Antrag die Rückstände aus der Strahlenschutzüberwachung. Ist die Entlassung aus der Überwachung nicht möglich, verbleiben die Rückstände im Regime des Strahlenschutzes. Die zuständige Landesbehörde kann in diesen Fällen anordnen, wie die Rückstände zu beseitigen sind und welche Schutzmaßnahmen Anwendung finden müssen. Auch bei anderen neuen Bereichen zur Nutzung natürlicher Ressourcen, deren Rückstände in der Strahlenschutzverordnung noch nicht aufgeführt werden, laufen vergleichbare Prozesse ab wie bei der Erdöl-/Erdgasförderung. Dazu gehört die Nutzung der tiefen Geothermie, bei der in den Rohren und Anlagen ebenfalls Ablagerungen entstehen. Wie erste Erfahrungen zeigen, weisen diese hinsichtlich der möglichen Radionuklidanreicherungen erhebliche Unterschiede auf, die durch die jeweils genutzten geologischen Formationen in Deutschland bedingt sind.

Zum Beispiel wurden in den vergangenen Jahren im Bereich des Schrottrecyclings Metallteile aufgefunden, die Ablagerungen natürlicher Radionuklide aus der Erdgas- und Erdölverarbeitung aufwiesen. Diese Rückstände, die überwiegend ausländischen Schrottlieferern zuzuordnen waren, wurden sichergestellt und sachgerecht beseitigt bzw. ins Ausland zurückgeführt.

2.2 Radon in Gebäuden
(Radon in buildings)

Radon und seine Zerfallsprodukte werden vom Menschen mit der Atemluft im Freien und in Gebäuden aufgenommen. Während das Edelgas Radon zum größten Teil wieder ausgeatmet wird, werden seine Zerfallsprodukte (von Bedeutung sind hier die radioaktiven Schwermetalle Po-218, Bi-214, Pb-214 und Po-214) im Atemtrakt angelagert. Die dort beim radioaktiven Zerfall auftretende Strahlung führt zu einer Exposition, die in Deutschland zu einer mittleren effektiven Dosis von insgesamt 1,1 Millisievert pro Jahr (mSv/a) führt. Davon werden der Strahlenexposition durch Radon in Gebäuden 0,9 mSv/a zugerechnet. Andere Organe werden durch Radon und seine Zerfallsprodukte nach derzeitiger Kenntnis weitaus weniger belastet.

- Es zeigt sich ein klarer Anstieg des Lungenkrebsrisikos mit steigender Radonkonzentration,
- dieser Zusammenhang ist auch für lebenslange Nichtraucher nachweisbar,
- eine signifikante Risikoerhöhung wurde ab einem Konzentrationsintervall von 100 – 199 Becquerel pro Kubikmeter (Bq/m³) festgestellt,

Die Radonkonzentration in Gebäuden variiert in Deutschland in einem breiten Bereich. Der bundesweite Jahresmittelwert in Wohnräumen beträgt ungefähr 50 Bq/m³ Raumluft. Während die Mehrzahl der Messwerte unter diesem Wert liegt, wurden in einigen Fällen auch Konzentrationen von einigen Tausend Becquerel pro Kubikmeter gemessen.

Sowohl die bisher in über 60.000 Häusern durchgeführten Radonmessungen als auch die Untersuchungen der Bodenluft zeigen, dass es große Gebiete gibt, in denen auf Grund der geologischen Verhältnisse keine erhöhten Radonkonzentrationen in Gebäuden vorkommen und in denen deshalb keine besonderen Maßnahmen gegen den Eintritt von Bodenradon erforderlich sind.

Aktuelle Daten zu Radon in Gebäuden sind in Teil B - I - 2.2 dargestellt.

Literatur

[1] Lungenkrebsrisiko durch Radonexposition in Wohnungen, verabschiedet auf der 199. Sitzung der Strahlenschutzkommission am 21./22. April 2005
2.3 Radioaktive Stoffe in Baumaterialien und Industrieprodukten

(Radioactive substances in building materials and industrial products)

Wie die Tabelle 2.3-1 zeigt, variiert die spezifische Aktivität natürlicher Radionuklide auch innerhalb der einzelnen Materialarten in einem großen Bereich. Unter den Natursteinen besitzen vor allem kieselsäurereiche Magmagesteine vergleichsweise hohe spezifische Aktivitäten natürlicher Radionuklide.

Von den natürlichen Radionukliden in Baumaterialien geht im Wesentlichen eine äußere Exposition durch Gammastrahlung und eine innere Strahlenexposition durch Inhalation von in die Raumluft freigesetztem Radon und den daraus entstehenden Zerfallsprodukten aus.

In Deutschland erfolgt auf Grund der Vorgaben des Kreislaufwirtschafts- und Abfallgesetzes zunehmend eine Verwendung von Rückständen in der Baustoffindustrie.

<table>
<thead>
<tr>
<th>Tabelle 2.3-1 Spezifische Aktivität natürlicher Radionuklide in Baustoffen und Industrieprodukten (Specific activity of natural radionuclides in building materials and industrial products)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baustoffe und sonstige Materialien</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>spezifische Aktivität (Bq/kg TM)</td>
</tr>
<tr>
<td>Granit</td>
</tr>
<tr>
<td>Granodiorit</td>
</tr>
<tr>
<td>Syenit</td>
</tr>
<tr>
<td>Dolerit</td>
</tr>
<tr>
<td>Gneis</td>
</tr>
<tr>
<td>Diabas</td>
</tr>
<tr>
<td>Basalt</td>
</tr>
<tr>
<td>Granit</td>
</tr>
<tr>
<td>Grauwacke</td>
</tr>
<tr>
<td>Phonolit</td>
</tr>
<tr>
<td>Amphibolit</td>
</tr>
<tr>
<td>Serpentinit</td>
</tr>
<tr>
<td>Quarzporphyr</td>
</tr>
<tr>
<td>Porphyrstoff</td>
</tr>
<tr>
<td>Orthophyph</td>
</tr>
<tr>
<td>Laminophyph</td>
</tr>
<tr>
<td>Augitophyph</td>
</tr>
<tr>
<td>Hornblendeschiefen</td>
</tr>
<tr>
<td>Frucht-/Phycodenschiefer</td>
</tr>
<tr>
<td>Baustoffe und sonstige Materialien</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Oolit</td>
</tr>
<tr>
<td>Augit</td>
</tr>
<tr>
<td>Kalkstein/Marmor</td>
</tr>
<tr>
<td>Travertin</td>
</tr>
<tr>
<td>Gips, Anhydrit</td>
</tr>
<tr>
<td>Flintstein</td>
</tr>
<tr>
<td>Kaolin</td>
</tr>
<tr>
<td>Lava</td>
</tr>
<tr>
<td>Tuff, Bims</td>
</tr>
<tr>
<td>Ton, Lehm</td>
</tr>
<tr>
<td>Finalbaustoffe, Bindemittel</td>
</tr>
<tr>
<td>Ziegel/Klinker</td>
</tr>
<tr>
<td>Beton</td>
</tr>
<tr>
<td>Kalksandstein, Porenbeton</td>
</tr>
<tr>
<td>Leichtbeton (nicht spezifiziert)</td>
</tr>
<tr>
<td>Leichtbetonsteine mit Zuschlag aus:</td>
</tr>
<tr>
<td>Bims</td>
</tr>
<tr>
<td>Blähten, Blähschiefer</td>
</tr>
<tr>
<td>Schlaceke</td>
</tr>
<tr>
<td>Ziegelsplitt</td>
</tr>
<tr>
<td>Hohlblocksteine</td>
</tr>
<tr>
<td>Holzwolle-Leichtbauplatten</td>
</tr>
<tr>
<td>Wandfliesen</td>
</tr>
<tr>
<td>Asbestzement</td>
</tr>
<tr>
<td>Schammotte</td>
</tr>
<tr>
<td>Ofenkachel</td>
</tr>
<tr>
<td>Schlackenwolle</td>
</tr>
<tr>
<td>Schlämmkreide</td>
</tr>
<tr>
<td>Zement (nicht spezifiziert)</td>
</tr>
<tr>
<td>Portlandzement</td>
</tr>
<tr>
<td>Hüttenzement</td>
</tr>
<tr>
<td>Tonerdenschmelzzement</td>
</tr>
<tr>
<td>Kalk, Kalkhydrat</td>
</tr>
<tr>
<td>Fertigmörtel, Fertigputz</td>
</tr>
<tr>
<td>Mineralische Roh- und industrielle Abfallstoffe, sonstige Materialien</td>
</tr>
<tr>
<td>Schlaceke</td>
</tr>
<tr>
<td>Cu-Schlaceke, neue Produktion</td>
</tr>
<tr>
<td>P-Schlaceke</td>
</tr>
<tr>
<td>Ni-Schlaceke</td>
</tr>
<tr>
<td>Ni-Mn-Schlaceke</td>
</tr>
<tr>
<td>Al-Schlaceke</td>
</tr>
<tr>
<td>Fe-Cr-Si-Schlaceke</td>
</tr>
<tr>
<td>Sn-Schlaceke</td>
</tr>
<tr>
<td>Siemens-Martin-Schlaceke</td>
</tr>
<tr>
<td>Pb-Schlaceke</td>
</tr>
<tr>
<td>S-Schlaceke</td>
</tr>
<tr>
<td>Frischschlaceke</td>
</tr>
<tr>
<td>Thomaschlaceke (Belgien)</td>
</tr>
<tr>
<td>Baustoffe und sonstige Materialien</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Stahlschlacke</td>
</tr>
<tr>
<td>Kupolofenschlacke</td>
</tr>
<tr>
<td>Verblasofenschlacke</td>
</tr>
<tr>
<td>Kesselschlacke</td>
</tr>
<tr>
<td>Hochofenschlacke</td>
</tr>
<tr>
<td>Bergbaubraum</td>
</tr>
<tr>
<td>Aufbereitungsrückstände</td>
</tr>
<tr>
<td>(Nichturanindustrie)</td>
</tr>
<tr>
<td>Braunkohlenfiltersasche (Osteuropa)</td>
</tr>
<tr>
<td>Flugasche (nicht spezifiziert)</td>
</tr>
<tr>
<td>Chemiegips aus:</td>
</tr>
<tr>
<td>Apatit (GUS)</td>
</tr>
<tr>
<td>Phosphorit (GUS)</td>
</tr>
<tr>
<td>Rauchgasentschwefelung</td>
</tr>
<tr>
<td>Flusspat</td>
</tr>
<tr>
<td>Schwerspat</td>
</tr>
<tr>
<td>Feldspat</td>
</tr>
<tr>
<td>Bauxit (Ungarn)</td>
</tr>
<tr>
<td>Bauxit (Zaire)</td>
</tr>
<tr>
<td>Bauxit (Guayana)</td>
</tr>
<tr>
<td>Bauxit (Rotschlam)</td>
</tr>
<tr>
<td>Eisenerz (Brasilien)</td>
</tr>
<tr>
<td>Eisenerz (Indien)</td>
</tr>
<tr>
<td>Rohphosphat (nicht spezifiziert)</td>
</tr>
<tr>
<td>Apatit (GUS)</td>
</tr>
<tr>
<td>Phosphorit (GUS)</td>
</tr>
<tr>
<td>Phosphat (Marokko)</td>
</tr>
<tr>
<td>Phosphat (GUS - Kola)</td>
</tr>
<tr>
<td>Magnetit (Erzgebirge)</td>
</tr>
<tr>
<td>Mikrolithkonzentrat (Mosambique)</td>
</tr>
<tr>
<td>Tantalkonzentrat (Mosambique)</td>
</tr>
<tr>
<td>Monazitsand (Indien, Sri Lanka)</td>
</tr>
<tr>
<td>Monazitkonzentrat (Mosambique)</td>
</tr>
<tr>
<td>Silberkonzentrat (Erzgebirge)</td>
</tr>
<tr>
<td>Blähton und Blähschiefer</td>
</tr>
<tr>
<td>Hüttenbims</td>
</tr>
<tr>
<td>Poresinter</td>
</tr>
<tr>
<td>Düngemittel (nicht spezifiziert)</td>
</tr>
<tr>
<td>Superphosphate</td>
</tr>
<tr>
<td>(Deutschland)</td>
</tr>
<tr>
<td>(USA)</td>
</tr>
<tr>
<td>(GUS)</td>
</tr>
<tr>
<td>(Belgien)</td>
</tr>
<tr>
<td>PK-Dünger (Deutschland)</td>
</tr>
<tr>
<td>PN-Dünger (Deutschland)</td>
</tr>
<tr>
<td>(GUS)</td>
</tr>
<tr>
<td>(USA)</td>
</tr>
<tr>
<td>NPK-Dünger (Deutschland)</td>
</tr>
<tr>
<td>Baustoffe und sonstige Materialien</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>(GUS)</td>
</tr>
<tr>
<td>(Belgien)</td>
</tr>
<tr>
<td>Koks</td>
</tr>
<tr>
<td>Steinkohle</td>
</tr>
<tr>
<td>Braunkohle</td>
</tr>
<tr>
<td>Bitumen, Teer</td>
</tr>
</tbody>
</table>

Literatur

II KÜNSTLICHE UMWELTRADIOAKTIVITÄT

(ARTIFICIAL RADIOACTIVITY IN THE ENVIRONMENT)

Bearbeitet vom Bundesamt für Strahlenschutz, vom Deutschen Wetterdienst, der Physikalisch-Technischen Bundesanstalt, von der Bundesanstalt für Gewässerkunde, dem Bundesamt für Seeschifffahrt und Hydrographie, vom Johann Heinrich von Thünen-Institut und vom Max-Rubner-Institut
1. Quellen künstlicher Radioaktivität
(Source of artificial radioactivity)

1.1 Kernwaffenversuche
(Nuclear weapons tests)

Die Umweltradioaktivität bedingt durch Kernwaffenversuche ist seit Inkrafttreten des internationalen „Vertrages über die Einstellung von Kernwaffenversuchen in der Atmosphäre, im Weltraum und unter Wasser“ im Jahr 1963 ständig rück-

Zivile und wissenschaftliche Nutzung des internationalen Messnetzes

Tabelle 1.1-1 Anzahl der Kernwaffenversuche in den Jahren 1945 - 2011 b)
(Number of nuclear weapons tests in the years 1945 - 2011 b)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>USA</th>
<th>Russland a)</th>
<th>Großbritannien</th>
<th>Frankreich</th>
<th>China</th>
<th>Indien</th>
<th>Pakistan</th>
<th>Nordkorea</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>d</td>
<td>c</td>
<td>d</td>
<td>c</td>
<td>d</td>
<td>c</td>
<td>d</td>
<td>c</td>
</tr>
<tr>
<td>1945</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1946</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jahr</td>
<td>USA</td>
<td>Russland</td>
<td>Großbritannien</td>
<td>Frankreich</td>
<td>China</td>
<td>Indien</td>
<td>Pakistan</td>
<td>Nordkorea</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----------</td>
<td>----------------</td>
<td>------------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>1947</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1948</td>
<td>3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1949</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951</td>
<td>16</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1952</td>
<td>10</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1953</td>
<td>11</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td>6</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>14</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td>17</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1957</td>
<td>23</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958</td>
<td>52</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1959</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961</td>
<td>10</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1962</td>
<td>40</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1963</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1964</td>
<td>48</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td>39</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>49</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td>42</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>72</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>41</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>60</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>28</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>32</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>27</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>25</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>23</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>20</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>23</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>20</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>15</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>14</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>16</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>18</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>19</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>18</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>17</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>14</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>16</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>18</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>15</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>10</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>9</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>8</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Teil A - II - Künstliche Umweltradioaktivität

1.2 Tschernobyl - Strahlenexposition durch den Reaktorunfall

(Chernobyl - radiation exposure from the accident)

Tschernobyl

Insgesamt ergibt sich für die Bevölkerung in der Bundesrepublik Deutschland eine durch Radionuklide aus dem Reaktorunfall von Tschernobyl verursachte mittlere effektive Dosis, die schon seit einigen Jahren unter 15 µSv liegt. Diese Strahlenexposition wird zu mehr als 90 % durch die Bodenstrahlung von abgelagertem Cs-137 verursacht und wird entsprechend der Halbwertszeit dieses Radionuklids von ca. 30 Jahren in den folgenden Jahren um etwa 2,3 % pro Jahr zurückgehen. Im Vergleich zur mittleren effektiven Dosis durch natürliche Strahlenquellen von 2100 µSv pro Jahr ist der Dosisbeitrag durch Tschernobyl in Deutschland sehr gering (siehe Tabelle Seite 11).

Tabelle 1.2-1 Mittlere effektive Dosis durch den Reaktorunfall in Tschernobyl für Erwachsene in Deutschland

(Mean effective dose to adults in Germany from the Chernobyl accident)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>externe Strahlenexposition (mSv/a)</th>
<th>interne Strahlenexposition (mSv/a)</th>
<th>gesamte Strahlenexposition (mSv/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>ca. 0,07a</td>
<td>ca. 0,04b</td>
<td>ca. 0,11</td>
</tr>
<tr>
<td>1987</td>
<td>ca. 0,03</td>
<td>ca. 0,04c</td>
<td>ca. 0,07</td>
</tr>
<tr>
<td>1988</td>
<td>ca. 0,025</td>
<td>ca. 0,015d</td>
<td>ca. 0,04</td>
</tr>
<tr>
<td>1989</td>
<td>ca. 0,02</td>
<td>ca. 0,01</td>
<td>ca. 0,03</td>
</tr>
<tr>
<td>1990</td>
<td>ca. 0,02</td>
<td>< 0,01</td>
<td>ca. 0,025</td>
</tr>
<tr>
<td>1991-1993</td>
<td>< 0,02</td>
<td>< 0,01</td>
<td>< 0,02</td>
</tr>
<tr>
<td>1994</td>
<td>< 0,02</td>
<td>< 0,01</td>
<td>< 0,02</td>
</tr>
<tr>
<td>1995-1999</td>
<td>< 0,015</td>
<td>< 0,001</td>
<td>< 0,02</td>
</tr>
<tr>
<td>ab 2000</td>
<td>< 0,012</td>
<td>< 0,001</td>
<td>< 0,015</td>
</tr>
</tbody>
</table>

a) Im Münchner Raum um etwa den Faktor 4, im Berchtesgadener Raum und anderen hoch belasteten Gebieten um etwa den Faktor 10 höher; dies gilt in etwa auch für die folgenden Jahre
b) In Bayern um etwa den Faktor 4, in Südbayern um etwa den Faktor 6 höher
c) In Bayern um etwa den Faktor 3, in Südbayern um etwa den Faktor 6 höher
d) Die regionalen Unterschiede sind nicht mehr so stark ausgeprägt wie in den Vorjahren
e) Die mittlere effektive Dosis wird ab 1991 fast ausschließlich durch die Bodenstrahlung des deponierten Cs-137 verursacht

Literatur

1.3 Anlagen nach Atomgesetz - Allgemeine Angaben
(Facilities according to the Atomic Energy Act - general data)

Der aktuelle Bestand kerntechnischer Anlagen in der Bundesrepublik Deutschland ist in Teil B - II - 1.3 dargestellt. Für die Ableitung radioaktiver Stoffe aus kerntechnischen Anlagen und die daraus resultierende Strahlenexposition der Bevölkerung gelten die Vorschriften der Strahlenschutzverordnung (StrlSchV). Die Begrenzung der Ableitung radioaktiver Stoffe ist in § 47 StrlSchV geregelt. Für die Planung, die Errichtung, den Betrieb, die Stilllegung, den sicheren Ein- schluss und den Abbau von Anlagen oder Einrichtungen sind hier jeweils Grenzwerte für die durch Ableitungen radioaktiver Stoffe mit Luft und Wasser aus diesen Anlagen oder Einrichtungen bedingte Strahlenexposition von Einzelpersonen der Bevölkerung im Kalenderjahr festgelegt. Für die effektive Dosis beispielsweise beträgt der Grenzwert jeweils 300 µSv über Luft bzw. Wasser, für die Schilddrüsendosis 900 µSv pro Jahr.

Die im Rahmen der Emissionsüberwachung bei Kernkraftwerken erforderlichen Messungen, die Dokumentation der Messergebnisse und die Berichterstattung an die jeweils zuständige Aufsichtsbehörde sind gemäß den sicherheitstech-

Der Betrieb und damit der Übergang der Gesamtverantwortung auf das BFS erfolgte zum 1.1.2009.

2. Aktivitätsmessungen und Messnetze
(Activity measurements and monitoring networks)

Die Überwachung der Radioaktivität in der Umwelt erfolgt zum Schutz der Bevölkerung und soll eine Beurteilung ermöglichen, in welchem Maße der Mensch und die Umwelt ionisierender Strahlung durch Kontaminationen ausgesetzt sind.

Überwachung der Umweltradioaktivität

Die Länder ermitteln in ihren ca. 50 Messlabors die Radioaktivität:

- in Lebensmitteln,
- in Futtermitteln,
- in Trinkwasser, Grundwasser und in oberirdischen Gewässern,
- in Abwässern, im Klärschlamm, in Abfällen,
- in und auf dem Boden sowie
- in Pflanzen.

Die Probenahmen erfolgen in regelmäßigen Zeitabständen an festgelegten Orten, die möglichst repräsentativ für einen größeren Bereich sind.

Ergänzend zu den Messungen zur Überwachung der Ableitungen aus kerntechnischen Anlagen werden Messungen in der Umgebung durchgeführt (Immissionsüberwachung). Sie dienen als zusätzliche Kontrolle der Einhaltung von Dosisgrenzwerten und damit indirekt auch der Ableitungen. Die hierzu erforderlichen Nachweisgrenzen für Dosisleistungs-

Nachweisgrenzen bei radiometrischen Verfahren

In der Kernstrahlungsmesstechnik ist die Nachweisgrenze ein spezieller, berechneter Wert einer Größe (z. B. Aktivität, Aktivitätskonzentration, spezifische Aktivität), der mit einem vorgegebenen Richtwert (bisweilen als geforderte Nachweisgrenze bezeichnet) verglichen wird, um zu entscheiden, ob ein Messverfahren für einen bestimmten Messzweck geeignet ist.

Literatur

2.1 Luft und Niederschlag, Gamma-Ortsdosisleistung

(Air and precipitation, ambient gamma dose rate)

Das Bundesamt für Strahlenschutz (BfS), der Deutsche Wetterdienst (DWD) und die Physikalisch-Technische Bundesanstalt (PTB) sind mit der Überwachung der Radioaktivität in der Atmosphäre gesetzlich beauftragt.

Zur kontinuierlichen Überwachung der Gamma-Ortsdosisleistung (ODL) betreibt das BfS ein automatisches Messnetz mit ca. 1800 Messstellen. Zusätzlich werden an der Messstation Schauinsland kontinuierlich die Aktivitätskonzentrationen von alpha- und beta-Strahlern sowie gasförmiger radioaktiver Iodisotope in der bodennahen Luft überwacht (ABI-Station, Alpha-Beta-Iod). Die Station ist Teil des ABI-Messnetzes, welches zum 01.01.2008 vom BfS in die Zuständigkeit des DWD übertragen wurde. Weiterhin verfügt das BfS über 6 Messfahrzeuge, die mit Messsystemen zur In-situ-Gamma-Spektrometrie ausgerüstet sind. Diese werden zur nuklidspezifischen Bestimmung der Beiträge der Bodenaktivität (natürlichen und insbesondere künstlichen Ursprungs) zur Gamma-Ortsdosisleistung an den Messstellen (Sondenstandorte) des ODL-Messnetzes eingesetzt. Im Ereignisfall dienen sie zur schnellen Ermittlung der Aktivität frisch auf dem Boden deponierter Radionuklide.

Die Messungen im Rahmen der Emissions- und Immissionsüberwachung werden vom Genehmigungsinhaber durchgeführt; zusätzlich erfolgen als Kontrolle Messungen durch unabhängige Messstellen.

Die aktuellen Messdaten der γ-Ortsdosisleistung sowie die ermittelten Aktivitätskonzentrationen künstlicher Radionuklide in Luft und Niederschlag sind in Teil B - II - 2.1 zusammengestellt. Ebenfalls werden dort die aktuellen Daten bzgl. der Ableitung radioaktiver Stoffe mit der Fortluft kerntechnischer Anlagen berichtet.

2.2 Meerwasser und Binnengewässer

(Seawater and inland water)

Meerwasser

Die Kontamination von Nord- und Ostsee durch künstliche Radionuklide unterscheidet sich vom terrestrischen Bereich hinsichtlich der Quellen, der langen Transportwege und der besonderen Mechanismen ihres Verhaltens im marinen Milieu.

In Nord- und Ostsee können künstliche Radionuklide aus folgenden Quellen nachgewiesen werden:
- Globaler Fallout aus den atmosphärischen Kernwaffentests der 50er und 60er Jahre,
- Ableitungen aus den Wiederaufarbeitungsanlagen in Sellafield (UK) und La Hague (F),
- Fallout aus dem Reaktorunfall von Tschernobyl 1986 und
- Ableitungen aus kerntechnischen Einrichtungen wie Kernkraftwerken und Forschungsreaktoren.

Sedimente

Die Oberflächensedimente der Ostsee weisen mehrfach höhere spezifische Aktivitäten als diejenigen der Nordsee auf. Diese Aussage gilt in den meisten Fällen auch für natürliche Radionuklide. Dies ist zum einen darauf zurückzuführen, dass sich Radionuklide eher an feinkörnigen Sedimenten, die in der Ostsee häufiger sind als in der Nordsee, anlagern, zum anderen liegt dies auch darin begründet, dass die geringere Turbulenz im Wasser der Ostsee zur Sedimentation dieser feineren Partikel führt. Auch die höhere Flächendeposition des Tschernobyl-Eintrags auf das Gebiet der westlichen Ostsee spiegelt sich in den erhöhten Aktivitäten wider (aktuelle Messdaten siehe Teil B - II - 2.2.1).

Binnengewässer

Die deutschen Binnengewässer werden nach den Vorgaben des StrVG großräumig auf radioaktive Stoffe hin überwacht. Zuständig hierfür sind die Bundesanstalt für Gewässerkunde (BfG) für die Bundeswasserstraßen und die Länder für die übrigen Binnengewässer. Darüber hinaus wird die aquatische Umgebung kerntechnischer Anlagen von den amtlichen Messstellen der Länder speziell nach den Bestimmungen der StrlSchV mit der REI überwacht.

Bei den Radionukliden in Binnengewässern handelt es sich zu einem um Radionuklide natürlichen, d. h. kosmogenen und primordialen, Ursprungs: H-3, Be-7, K-40 sowie die Nuklide der Thorium- und Uran-Zerfallsreihen. Zum anderen können die abgelagerten Radionuklide aber auch resuspendiert werden und somit in die Wassersäule zurückgelangen.

Die Konzentration der natürlichen Radionuklide unterliegt im Allgemeinen keinen kurzfristigen Veränderungen und bedarf daher nicht der ständigen Überwachung, obwohl diese derzeit den Hauptanteil an der Strahlenexposition durch Radionuklide in der Umwelt beiträgt. Im Rahmen der o. g. Überwachungsaufgaben werden daher besonders die künstlichen Radionuklide regelmäßig überwacht, um ihre zeitlichen Veränderungen und ihre möglichen Auswirkungen auf Mensch und Umwelt zu verfolgen. Die diesbezüglichen Ergebnisse für die jährliche Berichterstattung sind in Teil B - II - 2.2 dieses Berichts jeweils für Überwachung nach dem StrVG bzw. der REI zusammengefasst und erläutert.

TEIL A - II - KÜNSTLICHE UMWELTRADIOAKTIVITÄT - 55 -
2.3 Böden (Soils)

In Teil B - II - 2.3.1 werden Messwerte von als Weiden oder Wiesen genutzte Böden, von Ackerböden und Waldböden erhoben und dargestellt.

In der Vegetationsperiode werden verschiedene Pflanzenproben gamma-spektrometrisch gemessen. Im Vordergrund stehen dabei Proben solcher Pflanzen, die als Futtermittel dienen, insbesondere Weide- und Wiesenbewuchs. Die Kontamination des pflanzlichen Materials geht leicht zurück, was vor allem auf Verdünnungs- und Bindungseffekte im Boden zurückzuführen ist.

Auch in der Umgebung kerntechnischer Anlagen ist die radioökologische Situation nach wie vor durch die zurückliegenden Depositionen nach den Kernwaffenversuchen der sechziger Jahre und nach dem Tschernobylunfall 1986 geprägt. Die aktuellen Messwerte aus der Umgebung kerntechnischer Anlagen sind in Teil B - II - 2.3.2 zusammengefasst.

2.4 Lebensmittel, Grund- und Trinkwasser (Foodstuff, groundwater, and drinking water)

Grundwasser und Trinkwasser

Im Rahmen der Überwachung von Grund- und Trinkwasser nach dem Routinemessprogramm (RMP) zum Strahlenschutzzweckgesetz (StrVG) und der Umgebungsüberwachung kerntechnischer Anlagen (Richtlinie zur Emissions- und Immissionsüberwachung, REI) werden von den amtlichen Messstellen der Bundesländer Radionuklidkonzentrationen bestimmt und dem BfS mitgeteilt. Die Messergebnisse des Berichtsjahres werden in Teil B II 2.4.1 (RMP) bzw. Teil B - II - 2.4.2 (REI) beispielhaft für die Radionuklide K-40, Co-60, Cs-137 und H-3 sowie für die Summenparameter Gesamt-Alpha und Gesamt-Beta dargestellt.

Die Überwachung von Grundwasser wird im Rahmen des RMP an ca. 60 Probenahmestellen (Wasserwerke und Notbrunnen) und im Rahmen der REI an ca. 150 Probenahmestellen vorgenommen. Untersucht werden im Rahmen der REI vorrangig Grundwässer aus Notbrunnen oder Grundwassermessstellen, die in der Regel nicht für die Trinkwassergewinnung herangezogen werden. Die Auswahl der Probenahmestelle berücksichtigt geologische Gegebenheiten und insbesondere die unterschiedliche Beeinflussung der Grundwasser durch Niederschlag und Oberflächenwasser.
Die Trinkwasserüberwachung wird an Reinwässern sowie an ungeschützten und geschützten Rohwässern aus Wasserwerken vorgenommen. Reinwasser ist das vom Wasserwerk an den Verbraucher abgegebene Trinkwasser, das aus der Reinigung von Rohwasser resultiert. Ungeschütztes Rohwasser ist Oberflächenwasser aus Flüssen, Seen und Talsperren. Geschützte Rohwässer sind Karst- und Kluffgrundwasser einschließlich Stollenwasser, mit aufbereitetem oder nicht aufbereitetem Oberflächenwasser angereichertes Grundwasser und Porengroundwasser. Im Rahmen des Routinemessprogramms werden aus ca. 11 verschiedenen Wasserwerken Trinkwässer untersucht, die durch Aufbereitung ungeschützter und geschützter Rohwässer von jeweils ca. 40 Probenahmestellen entstehen oder als nicht aufbereitete Trinkwässer abgegeben werden. Im Rahmen der Umgebungüberwachung kerntechnischer Anlagen (REI) werden zusätzlich jeweils an ca. 20 Probenahmestellen Rein- und Rohwasserproben analysiert.

Fische und Produkte des Meeres und der Binnengewässer

Unter dem Aspekt der Lebensmittelüberwachung werden im Rahmen des Routinemessprogramms (RMP) nach dem Strahlenschutzvorsorgegesetz (StrVG) von den Messstellen der Bundesländer spezifische Aktivitäten in Fischen, Krustentieren und Schalentieren aus den Bereichen der Binnengewässer, Meere sowie in entsprechender importierter Ware ermittelt. Zur Bewertung der großräumigen Verteilung von Radionukliden in den europäischen Meeren werden durch die Leitstelle im Nordatlantik und seinen Randmeeren, insbesondere der Nord- und Ostsee, zusätzlich jährlich mindestens zwei Beprobungskampagnen durchgeführt. Im Normalbetrieb werden die Fischproben nach Veraschung auf die gammaspektrometrisch detektierbaren Radionuklide Cs-137 und Cs-134, sowie nach radiochemischer Aufbereitung der Asche auf Sr-90 untersucht.

In der Leitstelle werden die Proben aus Nord- und Ostsee zusätzlich auf Befunde von Pu-(239+240), Pu-238 und Am-241 analysiert. Die Ergebnisse des Messprogrammes sind in Teil B - II - Kapitel 2.4.5 zusammengestellt und bewertet.

Tabelle 2.4-1 Cs-137 Aktivitätskonzentration in Fischen unterschiedlicher Lebensräume von 1994 bis 2010 gemessen im Routinemessprogramm

(Activity concentrations of Cs-137 in fish of different habitats analysed in the routine monitoring programme between 1994 and 2010)

<table>
<thead>
<tr>
<th>Gewässer</th>
<th>Region</th>
<th>Median der spez. Cs-137-Aktivität in Bq/kg FM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1994-2010</td>
<td>1994-2001</td>
</tr>
<tr>
<td>Binnenseen</td>
<td>Süddeutschland</td>
<td>3,31</td>
</tr>
<tr>
<td></td>
<td>Mitteldeutschland</td>
<td>0,16</td>
</tr>
<tr>
<td></td>
<td>Norddeutschland</td>
<td>3,32</td>
</tr>
<tr>
<td>Fischteiche</td>
<td>Süddeutschland</td>
<td>0,19</td>
</tr>
<tr>
<td></td>
<td>Mitteldeutschland</td>
<td>0,20</td>
</tr>
<tr>
<td></td>
<td>Norddeutschland</td>
<td>0,53</td>
</tr>
<tr>
<td>Fließgewässer</td>
<td>Süddeutschland</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td>Mitteldeutschland</td>
<td>0,19</td>
</tr>
<tr>
<td></td>
<td>Norddeutschland</td>
<td>0,53</td>
</tr>
<tr>
<td></td>
<td>Nordsee</td>
<td>0,35</td>
</tr>
<tr>
<td></td>
<td>Ostsee</td>
<td>5,45</td>
</tr>
</tbody>
</table>
Für die Umgebungsüberwachung kerntechnischer und klinischer Anlagen (nach REI) dienen hauptsächlich Wasser- und Pflanzen als Indikatoren für im Fließgewässer vorhandene künstliche Radionuklide, die aus Ableitungen kerntechnischer und klinischer Anlagen stammen. Die Daten werden von den Messstellen der Länder und den Betreibern der jeweiligen Anlage jährlich, nach Fließgewässer, kerntechnischer Anlage und Radionuklid gruppiert, zusammengefasst und übermittelt; die entsprechenden Daten sind in Teil B - II - Kapitel 2.4.6 zu finden.

Lebensmittel

Zusätzliche Messungen der Leitstelle für Boden, Bewuchs, Futtermittel und Nahrungsmittel pflanzlicher und tierischer Herkunft an Milchpulverproben aus dem gesamten Bundesgebiet, die monatlich das gesamte Jahr über durchgeführt werden, fließen ebenfalls in die Berichterstattung über Umweltradioaktivität ein.

Die Messwerte für Einzel- oder Lebensmittel, Gesamtnahrung, Säuglings- und Kleinkindernahrung werden in diesem Bericht nur in komprimierter Form wiedergegeben. Die aktuellen Daten hierzu finden Sie in Teil B - II - 2.4.7.

Literatur

2.5 Bedarfsgegenstände, Arzneimittel und deren Ausgangsstoffe

(Consumer goods, pharmaceutical products and their source materials)

Die Leitstelle für Arzneimittel und deren Ausgangsstoffe sowie Bedarfsgegenstände ist nach § 11 Abs. 9 Nr. 15 StrVG unter anderem für die Zusammenfassung, Aufbereitung und Dokumentation der Radioaktivitätsmessdaten der genannten Produktgruppen zuständig.

Die Strahlenexposition, die aus der Anwendung der untersuchten Proben resultiert, ist im Vergleich zur natürlichen Strahlenexposition (in Deutschland durchschnittlich 2,1 mSv pro Jahr) als sehr gering (<10 µSv/a) einzuschätzen. Bei konkretem Verdacht werden Bedarfsgegenstände untersucht, die unmittelbar mit dem menschlichen Körper oder mit Lebensmitteln in Kontakt kommen können.

2.6 Abwasser und Klärschlamm

(Waste water and sewage sludge)

Im Rahmen der Überwachung der Umweltradioaktivität durch die amtlichen Messstellen der Länder nach dem Strahlenschutzvorsorgegesetz (StrVG) sind auch kommunale bzw. häusliche Abwässer und die bei der biologischen Abwasserreinigung in Kläranlagen anfallenden Klärschlämme zu untersuchen. Beide Umweltmedien sind im aquatischen Be-

Literatur

2.7 Abfälle
(Waste)

In der Überwachung der Umweltraadioaktivität durch die amtlichen Messstellen der Länder nach dem Strahlenschutzvorsorgegesetz (StRVG) werden nur solche Abfälle untersucht, die von radioökologischer Bedeutung sein können. Darüber hinaus werden über radiochemische Verfahren die Aktivitäten von Sr-90 sowie Plutonium- und Uranisotope in Berliner Klärschlammschlämme gemessen. Die Messergebnisse des Berichtsjahres wurden in Teil B - II - 2.6 dokumentiert.

2.8 Inkorporationsüberwachung der Bevölkerung

(Monitoring of incorporation among the population)

III BERUFLICHE STRAHLENEXPOSITION

(OCCUPATIONAL RADIATION EXPOSURE)

Bearbeitet vom Bundesamt für Strahlenschutz
In der Bundesrepublik Deutschland begann die gesetzlich geregelte Überwachung beruflich strahlenexponierter Personen Ende der 60er Jahre. In der ehemaligen DDR begann die gesetzliche Überwachung beruflich strahlenexponierter Personen im Jahr 1957. Nach der Wiedervereinigung der beiden deutschen Staaten wurden etwas über 300.000 Personen überwacht.

Die Meldungen aus diesen vier Bereichen werden zentral im Strahlenschutzregister des Bundesamtes für Strahlenschutz zusammengeführt und dort u. a. auf Einhaltung der Dosisgrenzwerte personenbezogen ausgewertet. Der gesetzlich festgelegte Grenzwert der Jahresdosis beträgt einheitlich für die Summe aus allen Bereichen 20 mSv pro Jahr.

1. **Personendosisüberwachung mit Dosimetern**
 (Monitoring with personal dosimeters)

 Alle beruflich strahlenexponierten Personen, bei denen die Möglichkeit einer erhöhten Strahlenexposition von außen bestehen, werden mit Personendosimetern überwacht, die von vier behördlich bestimmten Messstellen ausgegeben und ausgewertet werden. Die Daten werden zentral an das Strahlenschutzregister des Bundesamtes für Strahlenschutz übermittelt.

 Aktuelle Daten über die berufliche Strahlenexposition sind im Teil B - III - 1 enthalten.

2. **Überwachung des fliegenden Personals**
 (Aircraft crew monitoring)

 Die Betreiber von Flugzeugen ermitteln mit amtlich zugelassenen Rechenprogrammen die Dosis des Flugpersonals und geben diese Werte über das Luftfahrt-Bundesamt an das Strahlenschutzregister des BfS weiter. Das Strahlenschutzregister führt für fliegendes Personal regelmäßig detaillierte Auswertungen durch, die als separater Bericht des BfS veröffentlicht werden (http://nbn-resolving.de/urn:nbn:de:0221-201108016029).

 Die aktuellen Daten zur Überwachung des fliegenden Personals sind in Teil B - III - 2 dargestellt.

3. **Überwachung von Arbeitsplätzen mit erhöhter Radonexposition**
 (Monitoring of radon enhanced workplaces)

 Nach § 95 der StrlSchV hat derjenige, der in eigener Verantwortung eine Arbeit ausübt oder ausüben lässt, die einem der in der Anlage XI dieser Verordnung genannten Arbeitsfelder zuzuordnen ist, eine auf den Arbeitsplatz bezogene Abschätzung der Strahlenexposition durchzuführen (§ 95 Abs. 1). Wird dabei eine erhöhte Strahlenexposition festgestellt, so ist die Arbeit bei der zuständigen Behörde anzeigebedürftig (§ 95 Abs. 2) und für die betroffenen Personen ist die Körperdosis zu ermitteln. Dazu werden repräsentative Messungen an Arbeitsplätzen durchgeführt und die Körperdosis der Beschäftigten berechnet.

 Für die Beschäftigten der Wismut GmbH, die Arbeiten zur Stilllegung und Sanierung der Betriebsanlagen und Betriebsstätten des Uranerzbergbaus durchführen, werden die durch Inhalation von Radionukliden der Uranzerfallsreihe und die durch äußere Gammastrahlung verursachten Körperdosen ermittelt. Dazu werden Messungen mit personenge tragenen Geräten durchgeführt.

 Die aktuellen Daten zur Überwachung von Arbeitsplätzen mit erhöhter Radonexposition sind in Teil B - III - 3 dargestellt.

4. **Inkorporationsüberwachung beruflich strahlenexponierter Personen**
 (Incorporation monitoring of occupationally exposed persons)

 Diese jährlich gemessenen Daten der Inkorporationsmessstellen sind im Teil B - III - 4 dieses Berichts dargestellt.
IV STRAHLENEXPOSITION DURCH MEDIZINISCHE MASSNAHMEN
(RADIATION EXPOSURES FROM MEDICAL APPLICATIONS)

Bearbeitet vom Bundesamt für Strahlenschutz
1. Diagnostische Strahlenanwendungen
(Diagnostic applications of radiation)

In der diagnostischen Medizin werden bei der Anwendung ionisierender Strahlung und radioaktiver Stoffe sowohl hinsichtlich der Indikationsstellung einer Untersuchung als auch bezüglich der Qualität ihrer Durchführung hohe Anforderungen gestellt. Nach den Strahlenschutzgrundsätzen der Röntgenverordnung (RÖV) und der Strahlenschutzverordnung (StrSchV) muss jede Anwendung im Einzelfall gerechtfertigt sein, d. h. der Nutzen muss das mit der Anwendung verbundene Strahlenrisiko für den Patienten überwiegen ("rechtfertigende Indikation"). Darüber hinaus ist die durch ärztliche Untersuchungen bedingte medizinische Strahlenexposition soweit einzuschränken, wie dies mit den Erfordernissen der medizinischen Wissenschaft zu vereinbaren ist. Es ist weiterhin in jedem Fall zu prüfen, ob durch diagnostische Maßnahmen ohne Anwendung ionisierender Strahlung oder radioaktiver Stoffe ("alternative" Diagnoseverfahren wie Ultraschalluntersuchungen oder die Magnet-Resonanztomographie) die medizinische Fragestellung nicht ebenso beantwortet werden kann.

Im Bewusstsein des Strahlenrisikos und aus Sorge um die Sicherheit der Patienten hat die Europäische Union in der Richtlinie 97/43/EURATOM die Mitgliedsstaaten verpflichtet, die Strahlenexposition der Bevölkerung und einzelner Bevölkerungsgruppen regelmäßig zu erfassen. In der StrSchV und in der RÖV wird diese Aufgabe dem Bundesamt für Strahlenschutz (BfS) übertragen. Dadurch wird eine wichtige Möglichkeit geschaffen, um sowohl den Status quo als auch zeitliche Veränderungen bei der medizinischen Anwendung ionisierender Strahlung zu erfassen.

Die aktuellen Daten zu Häufigkeit und Dosis von Röntgen- und nuklearmedizinischen Untersuchungen sind in Teil B - IV - 1.1 bzw. 1.2 dargestellt. In Teil B - IV - 1.3 erfolgt eine strahlenhygienische Bewertung der Daten. In Teil B - IV - 1.4 wird abschließend eine Abschätzung der Häufigkeit alternativer bildgebender Diagnoseverfahren gegeben.

1.1 Röntgendiagnostik
(X-ray diagnostics)

Untersuchungsarten und Strahlenexposition

Bereiche mittlerer Werte der effektiven Dosis für die Gruppe der einfachen Röntgenaufnahmen sowie für die komplexe Verfahren sind in Tabelle 1.1-1 (Teil B - IV - 1.1) zusammengestellt.
Erhebung der medizinischen Strahlenexposition

Das BfS erhebt bereits seit Anfang der 1990er Jahre Daten zur medizinischen Strahlenexposition in Deutschland und wertet diese aus.

Ärztliche Leistungen werden über spezielle Gebührenziffern abgerechnet, die die ärztlichen Maßnahmen und damit auch die hier interessierenden radiologischen Maßnahmen beschreiben. Da ca. 98 % der deutschen Bevölkerung gesetzlich oder privat krankenversichert sind, kann die Häufigkeit von radiologischen Untersuchungen gut mit Hilfe dieser Gebührenziffern abgeschätzt werden. Diese werden dem BfS von den Kostenträgern, hauptsächlich vertreten durch die Kassenärztliche und Kassenzahnärztliche Bundesvereinigung (KBV, KZBV) und durch den Verband der privaten Krankenversicherung (PKV), zur Verfügung gestellt. Mittlerweile hat sich ein regelmäßiger und strukturierter Datentransfer eingespielt. Häufigkeiten und kollektive Dosen von Röntgenuntersuchungen, die durch Unfallversicherungsträger abgerechnet oder im Auftrag der Bundeswehr durchgeführt wurden, wurden ebenfalls abgeschätzt und werden bei den in Teil B - IV - 1.1 präsentierten Gesamtzahlen zur Häufigkeit und effektiven Dosis berücksichtigt.

Für die Datenerfassung ergeben sich die folgenden Problembereiche, die der weiteren Klärung bedürfen:
- Bei stationären Leistungen für gesetzlich Krankenversicherte werden keine Einzelleistungen mit den Kostenträgern abgerechnet, so dass die stationären Röntgen-Leistungen aus den Daten für die ambulanten Leistungen abgeschätzt werden müssen.
- In die aktuelle Analyse fließen die Resultate eines vom BMU geförderten Forschungsvorhabens ein (bundesweite Erhebung der Häufigkeit von Röntgenuntersuchungen im stationären Bereich für das Jahr 2002). Hochgerechnet entfallen etwa 20 % der insgesamt im Jahre 2002 in Deutschland erbrachten Röntgenleistungen auf die im stationären Bereich durchgeführten Röntgenuntersuchungen.
- Die PKV-Daten umfassen nur eine Stichprobe in der Größenordnung von etwa einem Promille aller in einem Jahr abgerechneten Röntgenleistungen (sowohl für den ambulanten als auch für den stationären Bereich). Hochgerechnet entfallen etwa 15 % der insgesamt in Deutschland erbrachten Röntgenleistungen auf die PKV.

Für die Abschätzung der kollektiven effektiven Dosis werden für die verschiedenen Untersuchungsarten - wie Untersuchungen des Thorax, der Extremitäten, der Wirbelsäule etc. - jeweils das Produkt von Häufigkeit und effektiver Dosis pro Untersuchung ermittelt und anschließend aufsummiert. Insgesamt wurde für die Analyse der Daten ein standardisiertes Verfahren entwickelt, mit dem eine einheitliche Auswertung von Zeitreihen und damit Trendanalysen möglich sind. Im Bewusstsein, dass systematische Fehler unvermeidbar sind, wird durch die Standardisierung angestrebt, diese Fehler zumindest möglichst konstant zu halten, um dadurch insbesondere Trends möglichst frühzeitig und sicher erfassen zu können.

1.2 Nuklearmedizin, Diagnostik
(Nuclear medicine, diagnostics)

Erhebung der medizinischen Strahlenexposition

Die kollektive effektive Dosis pro nuklearmedizinischer Radiotracer-Applikation und die effektive Dosis pro Kopf werden
nach den ICRP-Publikationen 80 und 106 bestimmt. Mittlere effektive Dosiswerte für diese Untersuchungen wurden mit
Hilfe der Daten der 48 Einrichtungen des oben genannten Forschungsvorhabens bezüglich der verwendeten Radio-
pharmaka und applizierten Aktivitäten abgeschätzt.

Aktuelle Daten zur Häufigkeit und Dosis nuklearmedizinischer Untersuchungen sind in Teil B - IV - 1.2 enthalten.

1.3 Strahlenhygienische Bewertung der Strahlenexposition durch diagnostische Maßnahmen
(Evaluation of exposures resulting from radio-diagnostic procedures)

Die strahlenhygienische Bewertung aktueller Daten ist in Teil B - IV - 1.3 dargestellt.

1.4 Alternative Untersuchungsverfahren
(Alternative examination procedures)

Bei den so genannten alternativen Untersuchungsverfahren – Untersuchungen ohne Anwendung radioaktiver Stoffe
oder ionisierender Strahlung – steht neben der Endoskopie die Sonographie (Ultraschall) und die Magnetresonanztom-
graphie (MRT) im Vordergrund.

Voraussetzung für die MRT sind hohe statische Magnetfelder. Durch die Einstrahlung von elektromagnetischen Hoch-
frequenz-Feldern in Kombination mit niederfrequenten Magnetfeldern in der Größenordnung von einigen Millitesla wer-
den Schnittbilder erzeugt, die im Vergleich zur CT einen hohen Weichteilkontrast besitzen. Das Verfahren eignet sich
somit hervorragend zur bildlichen Unterscheidung von gesunden bzw. krankhaft veränderten Gewebestrukturen. Durch
die Entwicklung von ultraschnellen Bildgebungstechniken gelang es in den letzten Jahren weiterhin, die anfangs sehr
lange Untersuchungsduer auf wenige Minuten bzw. Sekunden zu reduzieren. Dadurch besteht die Möglichkeit, auch
funktionelle Gewebeinformationen zu erhalten, wie z. B. über Angiogenese (Ausbildung neuer Gefäßstrukturen) und
Mikrozirkulation. Gegenüber der Positronenemissionstomographie (PET), einem nuklearmedizinischen Schnittbildver-
fahren, das vergleichbare funktionelle Informationen liefert, ist die hohe räumliche Auflösung der MRT und die Tatsa-
che, dass bei der MRT keine radioaktiven Stoffe oder ionisierenden Strahlen verwendet werden, ein großer Vorteil.
Letzteres gilt auch im Vergleich zu einer funktionellen Untersuchung mit der CT. Aus Sicht des Strahlenschutzes sollte
nach Möglichkeit die MRT-Untersuchung einer CT-Untersuchung vorgezogen werden, wenn sich dadurch ähnlich zu-
verlässige Diagnosen stellen lassen.

Für die Abschätzung der Häufigkeiten der alternativen Verfahren wurden - analog zu den röntgen- oder nuklearmedizi-
nischen diagnostischen Verfahren - die Daten der KBV sowie der PKV verwendet. Da durch dieses Verfahren nur Un-
tersuchungen in die Abschätzung eingehen können, die tatsächlich abgerechnet wurden, und darüber hinaus sonogra-
phische Leistungen häufiger über Pauschalbeträge abgerechnet werden, ist bei Sonographien allerdings nicht auszuschlie-
ßen, dass die tatsächliche Anzahl unterschätzt wird.

Eine Abschätzung der Häufigkeit alternativer bildgebender Diagnoseverfahren ist in Teil B - IV - 1.4 gegeben.

1.5 Qualitätssicherung
(Quality assurance)

Mit Inkrafttreten der neuen StrlSchV im Jahr 2001 und der übereinstimmenden Regelungen der Röv im Jahr 2002 wurde die
rechtliche Basis für verschiedene Maßnahmen geschaffen, die das Ziel haben, die medizinische Strahlenexposition zu
reduzieren und den Strahlenschutz der Patienten zu verbessern.

So wird beispielsweise ausdrücklich gefordert, dass vor jeder Anwendung ionisierender Strahlung oder radioaktiver
Stoffe am Menschen durch einen fachkundigen Arzt die Feststellung zu treffen ist, dass der gesundheitliche Nutzen der
Anwendung gegenüber dem Strahlenrisiko überwiegt. Der Fachausschuss hierfür ist die „rechtfertigende Indikation“. Die
correkte Feststellung der rechtfertigenden Indikation wird in regelmäßigen Abständen von den Ärztlichen Stellen über-
prüft. Mittel- und langfristig erwarten BMU und BfS, dass durch diese Maßnahme die Anzahl ungerechtfertigter Rönt-
genuntersuchungen reduziert werden kann.

Darüber hinaus sind – als Mittel zur Optimierung des Strahlenschutzes in der radiologischen und nuklearmedizinischen
Diagnostik – diagnostische Referenzwerte (DRW) zu beachten. Die DRW werden vom BfS für häufige oder dosis-
intensive Verfahren festgesetzt, um dem Arzt eine Orientierungshilfe zu geben; welche Dosiswerte – gemittelt über eine
größere Anzahl von Untersuchungen – eingehalten bzw. nicht überschritten werden sollen. Die Einhaltung der DRW
wird in regelmäßigen Abständen von den Ärztlichen Stellen überprüft. Werden die DRW wiederholt und ungerechtfertigt
nicht eingehalten bzw. überschritten, so ist es die Aufgabe der Ärztlichen Stellen, zusammen mit dem verantwortlichen
Arzt mögliche Fehlerquellen zu identifizieren. Ziel ist es, durch eine persönliche Beratung zu einer Verbesserung der
Untersuchungsqualität zu gelangen. Mittel- und langfristig erwarten BMU und BfS, dass durch die Einführung der DRW die medizinische Strahlenexposition reduziert werden kann.

2. Therapeutische Strahlenanwendungen
 (Therapeutic applications of radiation)

2.1 Strahlentherapie
 (Radiotherapy)

Im Vergleich zur radiologischen und nuklearmedizinischen Diagnostik ist die Anwendung der Strahlentherapie, von wenigen Ausnahmen abgesehen, auf einen relativ kleinen, aber schwer erkrankten Teil der Bevölkerung (meist Patienten mit einer Krebserkrankung) beschränkt. Zur Behandlung des bösartigen Tumors wird eine hohe Strahlendosis in einem definierten Körperebereich („Zielvolumen“) appliziert. Gleichzeitig soll das benachbarte gesunde Gewebe so weit wie möglich geschont werden. Da in der Strahlentherapie diese hohen Dosen notwendig sind, um im erkrankten Bereich die gewünschte deterministische Wirkung zu erzielen, ist das in der Diagnostik angewendete Konzept der effektiven Dosis nicht geeignet, um eine therapeutische Strahlenexposition zu charakterisieren.

Wichtige technische Entwicklungen der letzten Zeit, wie z. B. die individuell optimierte Bestrahlungsplanung auf Basis dreidimensionaler Bilddatensätze, erlauben es, die applizierte Strahlentherapiedosis immer besser auf das Zielvolumen zu konzentrieren. Dadurch ist inzwischen auch die hoch dosierte Bestrahlung irregulär geformter Tumoren in enger Nachbarschaft zu wichtigen gesunden Organen mit guter Verträglichkeit möglich.

Zu den wichtigsten Techniken u. a. die IGRT (image guided = bildaufgeführte Radiotherapie), bei der beispielsweise vor jeder einzelnen strahlentherapeutischen Behandlung CT-ähnliche Kontrollen der korrekten Patientenpositionierung erfolgen können, sowie die IMRT (intensitätsmodulierte Radiotherapie), bei der die Strahlendosis innerhalb eines jeden Bestrahlungsfeldes verändert (moduliert) werden kann. Eine mit diesen Techniken erreichbare bessere Konzentration der Strahlentherapie-Dosis auf das Zielvolumen („Konformität“) kann für den behandelten Patienten bedeutet, dass seine Heilungschancen erhöhen, während unerwünschte Nebenwirkungen seltener auftreten.

Die am häufigsten in der Strahlentherapie eingesetzten Bestrahlungssorten ist die in sog. Linearbeschleunigern erzeugte, von außen durch die Haut des Patienten applizierte Photonenstrahlung. In zunehmendem Maße kommt an neu errichteten Zentren auch Teilchenstrahlung (Protonen, Schwerionen) zum Einsatz, deren grundsätzlich vorteilhaften physikalischen Eigenschaften eine bessere Schonung gesunden Körpergewebes erwarten lassen. Hinsichtlich des resultieren-

TEIL A - IV - STRAHLENEXPOSITION DURCH MEDIZINISCHE MASSNAHMEN - 67 -

Unverzichtbar für die Strahlentherapie ist eine ständige Qualitätssicherung, die auch eine sorgfältige Überprüfung des Behandlungserfolges (Nachsorge) über einen ausreichend langen Zeitraum beinhaltet.

In den von der Deutschen Krebsgesellschaft herausgegebenen „Kurzgefassten interdisziplinären Leitlinien“ wird detaillierter auf die Prinzipien der Strahlentherapie sowie auf die einzelnen Bestrahlungsindikationen eingegangen.

Aktuelle Daten sind in Teil B - IV - 2.1 dargestellt.

2.2 Nuklearmedizinische Therapie

(Therapy with radiopharmaceuticals)

Die Radionuklidtherapie nutzt die Möglichkeit, durch die Wahl geeigneter radioaktiver Arzneimittel direkt in bzw. an der Tumorzelle zu bestrahlen. Als bekanntestes Beispiel sei hier das Radionuklid I-131 angeführt, das sich größtenteils im Schilddrüsengewebe anreichert und dort mit seiner Strahlung z. B. Schilddrüsenzellen, die übermäßig Schilddrüsenhormone produzieren, oder Tumorzellen vernichtet. Weitere wichtige Anwendungen der nuklearmedizinischen Therapie sind:

- die Radiosynoviorthese, d. h. ein Therapieverfahren zur weitgehenden Wiederherstellung der ursprünglichen Gelenkinnenhaut durch lokale Strahlenanwendung (z. B. bei Gelenkerkrankungen mit wiederkehrenden Gelenkergüssen) sowie
- die palliative Behandlung schmerzhafter Knochenmetastasen (Ziel: Schmerzlinderung bei nicht heilbarer Erkrankung).

Zunehmende Bedeutung gewinnt die Radioimmuntherapie, bei der spezifisch gegen Tumorzellen gerichtete Antikörper radioaktiv markiert werden, um die Tumorzellen gezielt durch Strahlung zu zerstören (z. B. bei Lymphomen). Weitere neuere Anwendungsbereiche nuklearmedizinischer Therapie sind z. B. die MIBG- und Radiopeptid-Therapie bei neuroendokrinen Tumoren sowie die minimal-invasive interne Radiotherapie (SIRT) bei inoperablen bösartigen primären Lebertumoren und Lebermetastasen.

Die Deutsche Gesellschaft für Nuklearmedizin (DGN) gibt Leitlinien heraus, die neben Empfehlungen zur klinischen Qualitätskontrolle in der Diagnostik auch Empfehlungen für die nuklearmedizinische Therapie beinhalten.

3. Medizinische Forschung

(Medical research)

Die Anwendung ionisierender Strahlung (einschließlich Röntgenstrahlung) oder radioaktiver Stoffe am Menschen in der medizinischen Forschung wird in der RöV und StrlSchV geregelt. Diese Verordnungen schützen Probanden, bei denen im Rahmen der medizinischen Forschung ionisierende Strahlung oder radioaktive Stoffe angewendet werden, in besonderer Weise durch eine Genehmigungspflicht.

Diese besteht
- bei der biomedizinischen Forschung mit rein wissenschaftlicher Fragestellung, die nicht der Heilung (Diagnose, Therapie) des Probanden dient sowie
- bei der klinischen, wissenschaftlichen Forschung an Probanden, die eine Abweichung von anerkannten und standardisierten Methoden oder Hilfsmitteln darstellt.

Die Genehmigungspflicht ergibt sich daraus, dass – im Unterschied zu der Krankenversorgung – der wissenschaftliche Erkenntnisgewinn zur Wirksamkeit bestimmter Mittel oder Methoden im Vordergrund steht.

Genehmigungen zu Anwendungen in der medizinischen Forschung sind beim Bundesamt für Strahlenschutz zu beantragen.

Aktuelle Daten sind in Teil B - IV - 3 dargestellt.
4. Herzschrittmacher

(Pacemakers)

Eine Notwendigkeit, derzeit noch im Patienten implantierte Herzschrittmacher mit Radionuklidbatterien (nur noch Plutonium-238) aus Gründen der Strahlenexposition vorzeitig zu explantieren, ist nicht gegeben.

Die gemeldeten Implantationen und Explantationen von Herzschrittmachern mit Radionuklidquellen sind in Teil B - IV - 4 zusammengefasst.
V UMGANG MIT RADIOAKTIVEN STOFFEN UND IONISIERENDER STRahlung

(The Handling of Radioactive Materials and Sources of Ionising Radiation)

Bearbeitet vom Bundesamt für Strahlenschutz
1. Grenzüberschreitende Verbringung radioaktiver Stoffe
(Border-crossing transport of radioactive material)

Rechtsgrundlagen

Das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit lässt sich im Rahmen seiner Fachaufsicht (§ 22 Abs. 3 AtG) u. a. jährlich über den Umfang und die Entwicklung der Ein- und Ausfuhren von Kernbrennstoffen, von sonstigen radioaktiven Stoffen und umschlossener Strahlenquellen berichten.

Verfahren

Gemäß § 2 Abs. 1 S.1 AtG unterscheidet man im Hinblick auf radioaktive Stoffe zwischen Kernbrennstoffen und sonstigen radioaktiven Stoffen. Kleine Massen von Kernbrennstoffen gelten nach § 2 Abs. 3 S. 1 AtG als sonstige radioaktive Stoffe.

Kernbrennstoffe (ohne Kernbrennstoffe nach § 2 Abs. 3 AtG)

In der Bundesrepublik Deutschland ist die Ausfuhr von Kernbrennstoffen gemäß § 3 Abs. 1 AtG immer genehmigungs-pflichtig. Die Einfuhr ist grundsätzlich genehmigungspflichtig, es sei denn, die Kernbrennstoffe werden nur in Kleinskunen (welche je nach Anteil des spaltbaren Materials gestaffelt sind) in das Bundesgebiet gebracht und es ist dafür Vorsorge getroffen, dass die zu verbringenden Kernbrennstoffe nach der Einfuhr erstmals an Personen/Institutionen abgegeben werden, denen eine Genehmigung nach §§ 6, 7 oder 9 AtG erteilt ist. In diesen Fällen besteht lediglich eine Anzeigepflicht (§ 20 Abs. 3 StrlSchV).

Sonstige radioaktive Stoffe, Kernbrennstoffe nach § 2 Abs. 3 AtG

Aus § 19 Abs. 2 Nr. 2 StrlSchV ergibt sich die Genehmigungspflicht für die grenzüberschreitende Verbringung sonstiger radioaktiver Stoffe und Kernbrennstoffe im Sinne des § 2 Abs. 3 AtG, deren Aktivität je Versandstück den 1015-fache der in dieser Norm festgeschiedenen Freigrenzen beträgt oder überschreitet. Der Regelungsbereich von § 19 Abs. 2 Nr. 2 StrlSchV beschränkt sich auf die Einfuhr sonstiger radioaktiver Stoffe und Kernbrennstoffe nach § 2 Abs. 3 AtG aus dem Geltungsbereich dieser Verordnung in einen Nicht-EU-Staat.

Aus § 20 Abs. 1 Nr. 2 StrlSchV lassen sich die Konstellationen entnehmen, in denen lediglich eine Anzeige der grenz- überschreitenden Verbringung erforderlich ist. So bedarf insbesondere die Ausfuhr sonstiger radioaktiver Stoffe oder Kernbrennstoffe gemäß § 2 Abs. 3 AtG, die nicht von dem Genehmigungsvorbehalt von § 19 Abs. 2 Nr. 2 StrlSchV erfasst sind, in einen Staat, der nicht Mitgliedstaat der Europäischen Union ist, einer Anzeige gegenüber der BAFA. Ferner ist die Einfuhr sonstiger radioaktiver Stoffe oder Kernbrennstoffe nach § 2 Abs. 3 AtG aus einem Nicht-EU-Staat grundsätzlich anzeigepflichtig, §§ 20 Abs. 1 Nr. 1 StrlSchV.

§ 21 Abs. 1 StrlSchV fasst die Fälle zusammen, in denen weder eine Genehmigungspflicht noch eine Anzeigepflicht für die grenzüberschreitende Verbringung von radioaktiven Stoffen besteht. So gelten die dargestellten Genehmigungs- und Anzeigevorbehalte nicht für Stoffe, die in der Anlage I (genehmigungsfreie Tätigkeiten) Teil B Nr. 1 bis 6 genannt sind, § 21 Abs. 1 Nr. 1 StrlSchV. Ferner ist eine zollamtlich überwachte Durchfuhr von sonstigen radioaktiven Stoffen und Kernbrennstoffen nach § 2 Abs. 3 AtG anzeige- und genehmigungsfrei, § 21 Abs. 1 Nr. 2 StrlSchV. Zudem enthält die Genehmigungs- und Anzeigepflicht insbesondere dann, wenn sonstige radioaktive Stoffe oder Kernbrennstoffe im Sinne des § 2 Abs. 3 AtG lediglich zur eigenen Nutzung im Rahmen eines genehmigten Umgangs vorübergehend grenzüberschreitend verbracht werden, § 21 Abs. 1 Nr. 3 StrlSchV. Schließlich ist die grenzüberschreitende Verbringung von Konsumgütern, denen radioaktive Stoffe zugesetzt oder die aktiviert worden sind, unter den in § 108 S. 2 StrlSchV genannten Voraussetzungen genehmigungs- und anzeigefrei, § 21 Abs. 1 Nr. 4 StrlSchV.
Hochradioaktive Strahlenquellen

Seit der Änderung der Strahlenschutzverordnung durch das Gesetz zur Kontrolle hochradioaktiver Strahlenquellen vom 18./19. August 2005 (BGBl. I S. 2365) werden bei den umschlossenen radioaktiven Stoffen zusätzlich solche unterscheiden, die hochradioaktiv sind. Die Grenze für die Unterscheidung ist vom entsprechenden Radionuklid abhängig und wird in der neu eingeführten Spalte 3a in Tabelle 1 in Anlage III zur Strahlenschutzverordnung angegeben. Beispielsweise gilt eine Cobalt-60-Strahlenquelle ab einer Aktivität von 4 GBq als hochradioaktiv. Brennelemente und verfestigte hochradioaktive Spaltproduktlösungen aus der Aufarbeitung von Kernbrennstoffen sind keine hochradioaktiven Strahlenquellen, § 3 Abs. 2 Nr. 29 b) bb) StrlSchV. § 19 Abs. 1 und 2 StrlSchV regelt eine Genehmigungspflicht für die Einfuhr und die Ausfuhr hochradioaktiver Strahlenquellen aus bzw. in Staaten, die nicht Mitgliedsstaat der EU sind, sofern die Strahlenquelle die in § 19 Abs. 1 und 2 StrlSchV festgelegte Aktivität überschreitet, der Schutzbehälter der Strahlenquelle die nach § 18 Abs. 1a StrlSchV erforderliche Kennzeichnung aufweist oder die nach § 69 Abs. 2 S. 4 StrlSchV vorgeschriebene Dokumentation nicht beigefügt ist.

Die, auch nur vorübergehend, Verbringung hochradioaktiver Strahlenquellen mit einer Aktivität unterhalb der in § 19 Abs. 1 und 2 StrlSchV festgelegten bedarf stets einer Anzeige, § 20 Abs. 1 S. 1 StrlSchV.

Anzeigeverfahren

Genehmigungsverfahren

Aufgabenverteilung und Zusammenarbeit der Behörden beim Vollzug

Ferner übermittelt das BAFA Angaben über eine erteilte Genehmigung nach § 3 Abs. 1 AtG oder § 19 Abs. 1 S. 1 StrlSchV für die Einfuhr einer hochradioaktiven Strahlenquelle aus einem Staat, der nicht Mitgliedsstaat der EU ist, unverzüglich dem vom BfS zu führenden Register über hochradioaktive Strahlenquellen.

Verfahren nach dem Außenwirtschaftsrecht:
- Außenwirtschaftsgesetz (AWG) bzw. Außenwirtschaftsverordnung (AWV)
- EU-Dual-Use-Verordnung

Zuständiges Ressort ist das Bundesministerium für Wirtschaft und Technologie; betroffen sind Waren der Kategorien 0 und 1 des Abschnitts C der Ausfuhrliste. Die Anträge werden an das BAFA gerichtet und dort unter Beachtung aller relevanten Vorschriften und der internationalen Verträge bzw. Abkommen in einem abgestuften Verfahren unmittelbar oder nach Abstimmung mit den Ressorts entschieden.

Verordnung (EURATOM) Nr. 1493/93 des Rates vom 8. Juni 1993 über die Verbringung radioaktiver Stoffe zwischen den Mitgliedsstaaten (ABl. L 148/1)

Diese Verordnung ist direkt geltendes Gemeinschaftsrecht, das keiner Umsetzung in nationales Recht bedurfte. Der Rat beabsichtigte damit, den Wegfall der Grenzkontrollen innerhalb der EU zu kompensieren und die Aufsichtsmöglichkeiten der Mitgliedstaaten zu verbessern. Diese Verordnung gilt für die Verbringung umschlossener und anderer Strahlenquellen von einem Mitgliedsstaat in einen anderen, wenn Menge und Konzentration die Werte nach Art. 3.2 Buchstaben a) und b) der Richtlinie 96/29/EURATOM überschreiten. Die Verordnung gilt nicht für - Ausgangsstoffe und Kernbrennstoffe, weil hier die EURATOM-Kernmaterialüberwachung für ausreichend erachtet wird und (nicht mehr) für - radioaktive Abfälle, weil diese seit dem 1.1.1994 durch die Richtlinie 92/3/EURATOM, zwischenzeitlich durch die Richtlinie 2006/117/EURATOM aufgehoben und ersetzt, erfasst werden.

Das Register für hochradioaktive Strahlenquellen (HRQ-Register) wird im Bundesamt für Strahlenschutz (BfS) betrieben. In diesem Register werden alle Strahlenquellen, deren Aktivität größer oder gleich den Aktivitätswerten der Anlage III Tabelle 1 Spalte 3a der StrSchV ist, zentral erfasst. Inhalt und Struktur der zu erfasenden Daten sind innerhalb der EU einheitlich festgelegt.

Das Europäische Parlament hat 1988 aus konkretem Anlass eine umfassende Gemeinschaftsregelung gefordert, um grenzüberschreitende Verbringungen radioaktiver Abfälle von ihrer Entstehung bis zur Lagerung einem System stärkerer Kontrolle und Genehmigungen zu unterwerfen. In der Bundesrepublik Deutschland ist gemäß § 9 a AtG die inländische Endlagerung vorgeschrieben.

Atomrechtliche Abfallverbringungsverordnung (AtAV) vom 31.07.1998 (BGBl. I, Seite 198)

Für die formelle Umsetzung in eine nationale Rechtsverordnung war eine Änderung des Atomgesetzes erforderlich. Im Rahmen der am 1. Mai 1998 in Kraft getretenen Atomgesetznovelle wurde eine entsprechende Ermächtigungsvorschrift für die formelle Umsetzung dieser Richtlinie durch die Atomrechtliche Abfallverbringungsverordnung (AtAV) in das Atomgesetz aufgenommen. Mit Inkrafttreten der AtAV entfällt für die nach dieser Verordnung abzweigenden Verbringungen die Anwendung der Strahlenschutzverordnung (§ 19) für radioaktive Abfälle. Dieser Umstand ist nunmehr

- 74 -

Die Neufassung der AtAV unterscheidet sich von der AtAV vom 31.07.1998 im Wesentlichen durch die Erweiterung des Anwendungsbereichs auf bestrahlte Brennelemente, die Vereinfachung/Präzisierung des Verfahrens und die Einführung fester Fristen zur Bearbeitung von Anträgen, die Einführung eines automatischen Zustimmungsverfahrens (erforderliche Zustimmungen von Mitgliedstaaten gelten als erteilt, wenn in Gang gesetzte Fristen abgelaufen sind), die Aktualisierung des einheitlichen Begleitscheins (Antrags-, Zustimmungs- und Genehmigungsformular) sowie die Neufassung der Kriterien bei Verbringungen in Drittländer.

Der Antrag zur Verbringung radioaktiver Abfälle wird nach § 6 AtAV beim BAFA gestellt. Dieses konsultiert die entsprechenden Stellen der beteiligten Staaten.

Die Ein- und Ausfuhrstatistiken radioaktiver Stoffe sind in Teil B - V - 1 tabellarisch dargestellt.

2. Beförderung radioaktiver Stoffe
 (Transport of radioactive material)

Aktuelle Angaben über Beförderungsgenehmigungen und Transporte radioaktiver Stoffe sind in Teil B - V - 2 enthalten.

3. Umgang mit radioaktiven Stoffen, Betrieb von Anlagen zur Erzeugung ionisierender Strahlung, Röntgeneinrichtungen und Störstrahler
 (Handling of radioactive material, operation of devices for the production of ionising radiation and X-ray devices)

Als Umgang mit radioaktiven Stoffen wird nach § 3 Abs. 2 Nr. 34 Strahlenschutzverordnung deren Gewinnung, Erzeugung, Lagerung, Bearbeitung, Verarbeitung, sonstige Verwendung und Beseitigung soweit es sich nicht um Arbeiten (im Sinne der StrlSchV § 3 Abs. 1 Nr. 2) handelt, bezeichnet.

Die Strahlenschutzverordnung trifft gemäß § 2 Abs. 1 Regelungen für die Errichtung und den Betrieb von Anlagen zur Erzeugung ionisierender Strahlen mit einer Teilchen- oder Photonengrenzenergie von mindestens 5 Killelektronvolt.

Die Röntgenverordnung (RöV) gilt gemäß § 1 RöV für Röntgeneinrichtungen und Störstrahler, in denen Röntgenstrahlung einer Grenzenergie von mindestens 5 Killelektronvolt erzeugt werden kann und bei denen die Beschleunigung der Elektronen auf eine Energie von 1 Megaelektronvolt begrenzt ist.

3.1 Anwender radioaktiver Stoffe
 (Users of radioactive sources)

Die Zahl der Anwender radioaktiver Stoffe in der Bundesrepublik Deutschland ist auf vier Bereiche aufgeschlüsselt:
- Medizin einschließlich medizinischer Forschung und Lehre,
- Forschung und Lehre außerhalb der Medizin,
- Industrie und gewerbliche Wirtschaft und
- Sonstige (z. B. Behörden).

Die Entwicklung der Anzahl der Anwender radioaktiver Stoffe ist in Teil B - V - 3.1 wiedergegeben.
3.2 Bestand radioaktiver Abfälle

(Stock of radioactive waste)

In der Bundesrepublik Deutschland fallen radioaktive Abfälle an:
- beim Betrieb von Kernkraftwerken,
- aus der Stilllegungsphase von Kernkraftwerken, von Forschungs-, Demonstrations- und Unterrichtsreaktoren sowie von weiteren kerntechnischen Einrichtungen,
- bei der Grundlagenforschung und der angewandten Forschung,
- bei der Urananreicherung sowie bei der Herstellung von Brennelementen (kerntechnische Industrie),
- bei der Radioisotopenanwendung in sonstigen Forschungseinrichtungen, Universitäten, Gewerbe- und Industriebetrieben, Krankenhäusern oder Arztpraxen,
- bei sonstigen Abfallverursachern wie im militärischen Bereich.

Zukünftig sind darüber hinaus auch abgebrannte Brennelemente - insbesondere aus Leichtwasserreaktoren - und solche Abfälle zu berücksichtigen, die bei der Konditionierung dieser Brennelemente für die direkte Endlagerung anfallen werden. Ebenso ist der aus der Wiederaufarbeitung abgearbeiteter Brennelemente zurückzunehmende radioaktive Abfall zu berücksichtigen.

Der Bestand an radioaktiven Abfällen für die einzelnen Abfallverursachergruppen wird sowohl für radioaktive Abfälle mit vernachlässigbarer Wärmeentwicklung als auch für wärmeentwickelnde radioaktive Abfälle jährlich in einer Erhebung durch das Bundesamt für Strahlenschutz (BfS) ermittelt. Teil B - V - 3.2 enthält die zusammengefassten aktuellen Daten für Rohabfälle (unbehandelte Abfälle), Zwischenprodukte (behandelte Abfälle) und konditionierte Abfälle.

3.3 Hochradioaktive Quellen (HRQ)

(High-activity sealed sources (HASS))

Das Register für hochradioaktive Strahlenquellen (HRQ-Register) wird vom BfS betrieben. In diesem Register werden alle Strahlenquellen, die in Deutschland im Verkehr sind und deren Aktivität die jeweils durch die Strahlenschutzverordnung vorgegebene, nuklidspezifische Aktivität überschreitet (Aktivität größer als 1/100 des A\textsubscript{1}-Wertes gemäß StrlSchV, Anlage III, Tabelle 1, Spalte 3a: z. B. Ir-192 > 10 GBq, Co-60 > 4 GBq) zentral erfasst. Inhalt und Struktur der zu erfassenden Daten sind durch die o. g. Richtlinie der EURATOM innerhalb der EU einheitlich festgelegt. Der aktuelle Erfassungsstand ist aus Teil B - V - 3.3 zu entnehmen.

3.4 Radioaktive Stoffe in Konsumgütern, Industrieerzeugnissen und technischen Strahlenquellen

(Radioactive substances in consumer goods, industrial products and radioactive sources)

Nach der Strahlenschutzverordnung können Vorrichtungen, in die radioaktive Stoffe eingeführt sind, auch genehmigungsfrei verwendet werden, wenn diese eine Bauartzulassung besitzen. Diese Möglichkeit ist allerdings an eine Reihe von Auflagen gebunden, z. B. hinsichtlich des Verwendungszwecks, der Art und Aktivität der Radionuklide, der Umhül-
lung radioaktiver Stoffe oder der Dosisleistung an der Oberfläche des Produkts. Bauartzugelassene Vorrichtungen sind keine Konsumgüter. Genehmigungsfrei verwendet werden demnach:
- Geräte oder andere Vorrichtungen, die umschlossene radioaktive Stoffe enthalten, und deren Bauart das BfS nach Prüfung unter Beteiligung der Bundesanstalt für Materialforschung und -prüfung (BAM) zugelassen hat (z. B. Ionisationsrauchmelder) und
- bestimmte Anlagen zur Erzeugung ionisierender Strahlung.

Unter diese Regelungen fallen eine große Zahl von Erzeugnissen, die vorwiegend in Wissenschaft und Technik verwendet werden. Die in diesen Produkten eingesetzten radioaktiven Stoffe sind nach dem gegenwärtigen Stand der Technik Hilfsmittel, die erst eine bestimmte Leistung eines Gerätes ermöglichen. Es handelt sich z. B. um technische Speziallampen, die dazu beitragen, Energie zu sparen oder Ionisationsrauchmelder, die das Funktionieren lebensrettender Warnvorrichtungen garantieren.

Werkstoffprüfungen, Füllstandmessungen, Dicken- und Dichtemessungen

Nach der StrlSchV muss im Allgemeinen die Verwendung von Strahlenquellen für Werkstoffprüfungen, Füllstandmessungen, Dicken- und Dichtemessungen von der zuständigen Behörde genehmigt werden. Die in der Materialprüfung Beschäftigten gehören zum Kreis der beruflich strahlenexponierten Personen. Für Werkstoffprüfungen ist I-192 der weitaus am häufigsten verwendete Radionuklid. Es ist besonders geeignet für Prüfungen an 1 bis 7 cm dicken Eisenenteilen und besitzt eine sehr hohe spezifische Aktivität, so dass die Strahlenquelle in ihren Abmessungen sehr klein gehalten werden kann. Das am zweithäufigsten verwendete Co-60 wird vorzugsweise bei Eisenteilen mit Dicken zwischen 5 und 15 cm eingesetzt. Die heute üblicherweise eingesetzten Aktivitäten liegen im Bereich von 0,1 bis 5 Terbecquerel.

Strahlenexposition durch den Umgang mit radioaktiven Stoffen und Störstrahlern

Ein möglicher Risiko für die Bevölkerung durch den Umgang mit Industrieerzeugnissen hängt nicht nur von der Art und Menge der verwendeten Radionuklide sowie deren Verarbeitung ab, sondern auch von der Verbreitung der Erzeugnisse. Der Umgang mit diesen Erzeugnissen, d. h. die Herstellung, die Lagerhaltung, der Gebrauch sowie der Handel und die Beseitigung wird daher in der Bundesrepublik Deutschland durch ein differenziertes Anzeige- und Genehmigungssystem geregelt. Unter bestimmten Voraussetzungen wird ein genehmigungsfreier Umgang ermöglicht.

3.5 Betrieb von Anlagen zur Erzeugung ionisierender Strahlung, Röntgeneinrichtungen und Störstrahler

(Operation of devices for the production of ionising radiation and X-ray devices)

Im nichtmedizinischen Bereich werden eine Vielzahl unterschiedlicher Anlagen und Vorrichtungen eingesetzt, bei denen ionisierende Strahlung bzw. Röntgenstrahlung genutzt wird. Hierzu gehören u. a. Röntgenstrahler zur Grobstrukturanalyse, (z. B. Gepäckdurchleuchtungsanlagen auf Flughäfen), Vorrichtungen zur Materialanalyse (Röntgenfluoreszenzanalysatoren) oder aber auch tiermedizinische Röntgeneinrichtungen.

Weitere Quellen ionisierender Strahlung sind die so genannten Störstrahler. Störstrahler sind Geräte bei deren Betrieb Röntgenstrahlen entstehen.

Zu den Störstrahlern, die auch ohne Bauartzulassung genehmigungs- und anzeigefrei betrieben werden können, gehören die Kathodenstrahlröhren zur Wiedergabe von Bildern, z. B. in Fernseh- und Datensichtgeräten, wobei letztere in den vergangenen Jahren durch Flüssigkristallbildschirme (TFT) weitgehend vom Markt verdrängt wurden. Obwohl die Betrachtungsabstände bei Datensichtgeräten nur etwa 0,5 m (ca. 3 m bei Fernsehgeräten) betrugen und die zu unterstellende Betrachtungszeit mit acht Stunden im Vergleich zu Fernsehgeräten sehr viel länger ist, verursachen diese Geräte eine Strahlenexposition, die für die betroffenen Personen nur wenige Prozent der natürlichen Strahlenexposition beträgt.

4. Meldepflichtige besondere Vorkommnisse
(Exceptional events subject to reporting)

VI NICHTIONISIERENDE STRAHLUNG

(NON-IONISING RADIATION)

Bearbeitet vom Bundesamt für Strahlenschutz
Einleitung

Durch die fortschreitende technische Entwicklung ist die Bevölkerung nichtionisierender Strahlung ausgesetzt. Dies sind vor allem niederfrequente elektrische und magnetische Felder der Energieversorgung und hochfrequenten elektromagnetische Felder drahtloser Kommunikationsnetze. Der Ausbau der Mobilfunknetze in Deutschland, insbesondere die Einführung neuer Technologien regt weiterhin die öffentliche Diskussion über mögliche gesundheitliche Risiken neuer Kommunikationstechnologien an.

Den Bereich der nichtionisierenden Strahlung (NIR) bilden niederfrequente elektrische und magnetische (im Frequenzbereich von 0 bis 100 Kilohertz (kHz)) bzw. hochfrequente elektromagnetische Felder (100 kHz bis 300 GHz) sowie die optische Strahlung, zu der die ultraviolette (UV) Strahlung mit Wellenlängen zwischen 100 und 400 Nanometern (nm), das sichtbare Licht (VIS) mit Wellenlängen zwischen 400 nm und 780 nm und die infrarote (IR) Strahlung mit Wellenlängen zwischen 780 nm und 1 mm gehören (Abb. 1.1).

Im Gegensatz zur ionisierenden Strahlung fehlt der nichtionisierenden Strahlung die Energie, um in biologischen Systemen durch Ionisierungsvorgänge schädliche Radikale zu bilden. Die Wirkung niederfrequenter elektrischer und magnetischer sowie hochfrequenter elektromagnetischer Felder äußert sich in Kräften, die auf elektrische Ladungen ausgeübt werden. Im Falle der hochfrequenten Felder kann dies bei Werten über den gesetzlich festgelegten Grenzwerten zu Temperaturerhöhungen im Organismus führen. Die optische Strahlung liegt dagegen in einem deutlich höherenergetischen Bereich an der Grenze zur ionisierenden Strahlung. In diesem Bereich treten zunehmend auch molekularbiologische Wirkungen auf.

1. Physikalische Eigenschaften und Wirkungen nichtionisierender Strahlung
 (Physical characteristics and effects of non-ionising radiation)

1.1 Statische Felder
 (Static fields)

Der Begriff „Statische Felder“ umfasst elektrische Felder, die z. B. in Gleichspannungsanlagen auftreten, und Magnetfelder, wie z. B. das natürliche Erdmagnetfeld.

Wirkungen statischer elektrischer Felder gefunden werden. Dies erklärt, weshalb keine Grenzwertregelungen für elektrische Gleichfelder vorliegen.

Die möglichen Wirkungsmechanismen statischer Magnetfelder sind einerseits Kraftwirkungen auf Teilchen und Gegenstände, z. B. metallische Implantate, die ein eigenes Magnetfeld besitzen oder magnetisierbar sind, und andererseits die Erzeugung elektrischer Spannungen in bewegten Körperteilen (z. B. Blutströmung). An der Aorta führt dieser Mechanismus zu einer Potenzialdifferenz von bis zu 16 Millivolt (mV) bei einem statischen Magnetfeld von 1 Tesla (T). Es ist auch abgeschätzt worden, dass die magnetohydrodynamische Interaktion in einem 5 T-Feld die Flussrate in der Aorta um bis zu 7 % verringern kann. Akute Schadwirkungen einer Exposition durch statische Magnetfelder bis 2 T auf die menschliche Gesundheit lassen sich experimentell nicht nachweisen. Konservative Analysen bekannter Wechselwirkungsmechanismen lassen den Schluss zu, dass eine langfristige Exposition durch Magnetflussdichten von bis zu 200 mT keine schädlichen Folgen für die Gesundheit hat.

Quellen statischer Felder sind z. B. Gleichspannungsanlagen, elektrifizierte Verkehrssysteme, die mit Gleichstrom betrieben werden (z. B. Straßenbahnen), Magnetschwebebahn, Lautsprecheranlagen, Heizdecken, Dauermagneten wie z. B. an Namensschildern, und auch die sog. „Magnetheilmittel“ wie Magnetpflaster, Magnetkissen, -decken, -bän- der oder -gürtel.

Die Wahrnehmung statischer Magnetfelder durch manche Tiere spielt für ihre Orientierung eine große Rolle und ist wissenschaftlich erwiesen. Sie tritt bei Feldstärken in der Größenordnung des geomagnetischen Feldes (im Mittel 40 Mikrotesla (μT)) auf. Für den Menschen konnte eine derartige Wahrnehmung bisher nicht nachgewiesen werden.

Literatur

1.2 Niedrigfrequente Felder (Low-frequency fields)

Der Bereich der niederfrequenten Felder umfasst elektrische und magnetische Wechselfelder mit Frequenzen von 1 Hertz (Hz) bis 100 kHz. Niedrigfrequente Felder der Stromversorgung werden derzeit im Zusammenhang mit dem im Rahmen der Energiewende Aus- und Umbau des Stromnetzes verstärkt diskutiert. Die elektrische Feldstärke an der Körperoberfläche bewirkt eine mit der Frequenz wechselnde Aufladung der Körperbehaarung, die einen relativ hohen elektrischen Widerstand hat. Dadurch wird eine Vibration des Haarschafts angeregt, die über die Berührung von Strömen an der Körperoberfläche, was bei hohen Feldstärken zu einer direkten Stimulation von peripheren Rezeptoren in der Haut führen kann. Durch elektrische Ausgleichsvorgänge zwischen Kleidung und Haut kann ein wahrnehmbarer Kribbeln auftreten. Wirken magnetische Felder auf den Menschen ein, kommt es im Organismus zur Induktion von Wirbelströmen, die bei Überschreitung bestimmter Schwellenwerte Nerven- und Muskelfasern erregen können.

Im Alltag ergibt sich die Exposition der Bevölkerung im niederfrequenten Bereich hauptsächlich aus den elektrischen und magnetischen Feldern, die durch die Stromversorgung (50 Hz), mit Netzstrom elektrisch betriebene Geräte und elektrifizierte Verkehrssysteme wie Eisenbahnen (16 2/3 Hz) entstehen.

In der 26. BImSchV (26. Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes; Verordnung über elektromagnetische Felder; gültig seit 1. Januar 1997) sind die Grenzwerte für feststehende Niederfrequenzanlagen geregelt (Tabelle 1.2-1). Sie sind abgeleitet von der Begrenzung der im menschlichen Körper induzierten elektrischen Stromdichte auf 2 mA/m², was der endogenen (natürlichen, körpereigenen) Stromdichte entspricht. Danach ist bei 50 Hz-Feldern der Wert der magnetischen Flussdichte auf 100 μT begrenzt. Bisher gibt es keinen wissenschaftlichen Nachweis für gesundheitsschädigende Effekte auf Grund einer Exposition durch magnetische Wechselfelder unterhalb von 100 μT.

Das Bundesamt für Strahlenschutz setzt sich auf Grund der vorhandenen wissenschaftlichen Unsicherheiten für Vor- sorgemaßnahmen ein. Dazu gehören Information der Bevölkerung und die Initiierung und Förderung weiterführender Forschung. Die beste Vorsorge ist es, die Belastung durch niederfrequente elektrische und magnetische Felder so gering wie möglich zu halten. Deshalb sollten z. B. neue Stromtrassen aus Sicht des Strahlenschutzes so geplant werden, dass sie möglichst nicht zu einer zusätzlichen Belastung führen. Ist das nicht möglich, sollte die Belastung so gering wie möglich gehalten werden.

1.3 Hochfrequente Felder

(High-frequency fields)

Hochfrequente elektromagnetische Felder (>100 kHz – 300 GHz) kommen in unserem Alltag hauptsächlich bei Anwendungen vor, die zur drahtlosen Informationsübertragung für Radio, Funk oder Fernsehen verwendet werden. Diese Felder dringen, abhängig von der Frequenz, unterschiedlich tief in das Gewebe ein und verursachen ab einem bestimmten Schwellenwert oberhalb der geltenden Grenzwerte eine Erwärmung (thermischer Effekt). In der Medizin wird dieser Effekt z. B. bei der Kurswellenerwärmung zu Therapiezwecken genutzt (Hyperthermie).

Bei der bereits erwähnten medizinischen Diagnosemethode MRT finden hochfrequente Felder zur Anregung des Kernspin-Systems ihre Anwendung.

Die Bewertung der wissenschaftlichen Forschungsergebnisse der letzten Jahrzehnte zeigt, dass ausschließlich die Gewebeerwärmung (thermischer Effekt) eine nachgewiesene Wirkung hochfrequenter elektromagnetischer Felder ist. Erst bei einer Erhöhung der Körpertemperatur um deutlich mehr als 1 °C konnten in wissenschaftlichen Untersuchungen gesundheitlich bedeutende Beeinträchtigungen beobachtet werden. Somit ist der Parameter für Maßnahmen zum Schutz vor hochfrequenten elektromagnetischen Feldern die Gewebeerwärmung.

Tabelle 1.2-1

<table>
<thead>
<tr>
<th>Frequenzbereich</th>
<th>elektrische Feldstärke (kV/m)</th>
<th>magnetische Flussdichte (µT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 2/3 Hz</td>
<td>10</td>
<td>300</td>
</tr>
<tr>
<td>50 Hz</td>
<td>5</td>
<td>100</td>
</tr>
</tbody>
</table>

(Grenzwerte für feststehende Niederfrequenzanlagen (26. BImSchV) (Limit values for fixed low-frequency installations - 26th BImSchV)

Aus den zulässigen SAR-Werten können die maximal zugelassenen Feldstärkewerte z. B. in der Umgebung von Mobilfunksendeanlagen abgeleitet werden. Diese sind rechtlich in der 26. BImSchV (Abb. 1.3-1) für gewerblich genutzte Sendeanlagen mit einer äquivalent isotropen Sendeleistung von 10 Watt (W) und mehr im Frequenzbereich von 10 Megahertz (MHz) bis 300 Gigahertz (GHz; entspricht 300.000 MHz) verankert.

![Abbildung 1.3-1 Grenzwerte der 26. BImSchV für feststehende Hochfrequenzanlagen (Limit values of the 26th BImSchV for fixed high-frequency installations)](image_url)

Das Bundesamt für Strahlenschutz setzt sich aus diesem Grund für die Umsetzung von Vorsorgemaßnahmen ein, die sich auf die Sicherstellung einer möglichst geringen Exposition durch hochfrequente elektromagnetische Felder, auf Information der Bevölkerung und auf die Koordinierung weiterführender Forschung beziehen.
1.4 Optische Strahlung

Die optische Strahlung gliedert sich in drei Bereiche: die ultraviolette Strahlung (UV), das für den Menschen sichtbare Licht (VIS) und die Infrarotstrahlung (IR). Die ultraviolette (UV-) Strahlung, die den Wellenlängenbereich von 100 nm bis 400 nm umfasst, ist der energiereichste Teil der optischen Strahlung. Sie grenzt unmittelbar an den Bereich der ionisierenden Strahlung an. Die UV-Strahlung wird in grober Anlehnung an unterschiedliche biologische Wirkungen in die drei Bereiche UV-A (Wellenlängen 400 - 315 nm), UV-B (Wellenlängen 315 - 280 nm) und UV-C (Wellenlänge 280 - 100 nm) unterteilt. Die UV-Strahlung ist für den Menschen nicht sichtbar und kann auch nicht mit anderen Sinnesorganen wahrgenommen werden. An dem Bereich des sichtbaren Lichts mit Wellenlängen von 400 nm bis 780 nm schließt die IR-Strahlung mit Wellenlängen zwischen 780 nm und 1 mm an.

UV- und IR-Strahlung haben für Mensch und Natur sowohl positive als auch negative Aspekte. Auf Grund der nachgewiesenen gesundheitlichen Risiken ist ein vernünftiger und umsichtiger Umgang mit dieser Strahlung notwendig.

1.4.1 UV-Strahlung

Die wichtigste natürliche UV-Strahlquelle ist die Sonne. Ihr UV-Anteil am Erdboden variiert in hohem Maße und ist vornehmlich vom Sonnenstand (geographische Breite, Tages- und Jahreszeit), vom Gesamtozonengehalt der absorbierenden Luftschicht und der Bewölkung abhängig.

Die UV-Strahlung wird im Wesentlichen durch das Ozon in der Stratosphäre und Troposphäre absorbiert. Diese Filterfunktion ist für die UV-Strahlung stark wellenlängenabhängig und setzt bei ca. 330 nm ein. Mit kleiner werdender Wellenlänge fällt die UV-Bestrahlungsstärke sehr stark ab (sogenannte UV-B-Kante). Unterhalb von ca. 290 nm ist die spektrale UV-Bestrahlungsstärke (UV-C-Strahlung) an der Erdoberfläche selbst im Sommer in unseren Breitengraden nicht mehr nachweisbar.

Durch eine Verringerung der Ozonzentration in der Atmosphäre erhöht sich zum einen der Betrag der spektralen Bestrahlungsstärke. Zum anderen verschiebt sich die UV-B-Kante zu kürzeren Wellenlängen hin, d. h. zusätzliche sehr energiereiche UV-Strahlung erreicht den Erdboden. Da die biologische Wirkung dieses Strahlungsanteils sehr groß ist, können auch kleine Änderungen des Ozongehaltes in der Stratosphäre ein durchaus ernst zu nehmendes Gefährdungspotenzial haben.

Neben dem positiven Aspekt der durch UV-B-Strahlung angeregten Vitamin-D3-Synthese kann UV in Abhängigkeit von der Wellenlänge und der Intensität der Strahlung zahlreiche gesundheitliche Wirkungen vor allem im Auge und in der Haut auslösen. Bei übermäßiger UV-Bestrahlung können als akute Schäden Entzündungen im Auge, Sonnenbrände sowie allergische Reaktionen von unterschiedlichem Schweregrad auftreten. Die langfristigen Schäden durch die IR-Strahlung mit Wellenlängen zwischen 780 nm und 1 mm an.

Die solare UV-Strahlung wird mit qualitativ hochwertigen Geräten im Wellenlängenbereich von 290 bis 400 nm gemessen, d. h. sowohl im UV-B- als auch im UV-A-Bereich. Auf Grund der geringen Zeitintervalle zwischen aufeinander folgenden Messungen von 6 Minuten können auch kurzezeitige Veränderungen der UV-Strahlung, z. B. an wechselhaft be-
wölkten Tagen ausreichend genau erfasst werden. Die Gesamtglobalstrahlung (UV-IR) wird mit einem Pyranometer zusätzlich erfasst.

Für die tägliche Berichterstattung ruft die Messzentrale jeweils um die Mittagszeit aktuelle UV-Daten von allen Stationen ab und stellt sie zusammen mit Daten des Deutschen Wetterdienstes der Öffentlichkeit zur Verfügung (www.bfs.de/uv/uv_messnetz/uvi/messnetz.html). Von April bis September werden darüber hinaus für das nördliche, mittlere und südliche Deutschland 3-Tages-UV-Vorhersagen erstellt und öffentlich zugänglich gemacht (www.bfs.de/uv/uv_messnetz/uvi/prognose.html). Komplette Datensätze werden am Ende eines jeden Tages abgerufen, auf Plausibilität geprüft, strahlenhygienisch bewertet, für die weitere Öffentlichkeitsarbeit aufbereitet und anschließend im Zentralrechner für Langzeitanalysen gespeichert.

Sonnenbrand und Sonnenempfindlichkeit

Die entzündliche Hautrötung eines Sonnenbrandes wird durch fotochemische Prozesse hervorgerufen, die mit der Entstehung von Zellgiften verbunden sind. Auf Grund einer gefäßerweiternden Reaktion erhöht sich die Hautdurchblutung und die Haut schwillt an. Es kommt zu Juckreiz und zur Schmerzempfindung.

Ob ein Sonnenbrand auftritt, hängt zum einen von der UV-Dosis und zum anderen von der Empfindlichkeit der Haut gegenüber UV-Strahlung ab. Die Empfindlichkeit wiederum hängt im hohen Maße von der Bräunungsfähigkeit und der daraus resultierenden Pigmentierung der Haut ab. Weltweit werden sechs Hauttypen unterschieden:

Hauttyp I hat auffallend helle Haut mit Sommersprossen, blau Augen und rötliche Haare. Im Hochsommer bekommt er während der Mittagszeit bereits nach 5 bis 10 Minuten einen Sonnenbrand; braun wird er niemals.

Hauttyp II hat blonde Haare, graue, blaue oder grüne Augen. Zwar rötet sich seine Haut nach 10 bis 20 Minuten, wenn sie Sonne nicht gewöhnt ist, mit der Zeit wird er aber mäßig braun.

Hauttyp III hat dunkelblonde Haare, graue oder braune Augen. Er kann sich ungebräunt 20 bis 30 Minuten in der Sonne aufhalten, bevor ein Sonnenbrand einsetzt. Nach wiederholten Bestrahlungen wird er fortschreitend braun.

Hauttyp IV bleibt mit seiner hellbraunen Haut weitgehend vom Sonnenbrand verschont. Er hat meist dunkle Haare und braune Augen. Wenn seine Haut nicht sonnengewöhntrisiert, rötet sie sich frühestens nach 40 Minuten.

Hauttyp V hat dunkle Haut auch in ungebräutem Zustand, oft ein grauer Unterton; dunkle Augen; schwarzes Haar; keine Sommersprossen; wird schnell dunkelbraun, kaum Sonnenbrand; kann sich ungebräunt länger als 1 Stunde in der Sonne aufhalten; vorwiegend Ureinwohner Arabiens, Nordafrikas, Indiens; dunkle Asiati.

Hauttyp VI hat dunkelbraune bis schwarze Haut auch in ungebräutem Zustand; schwarze Augen; schwarzes Haar; keine Sommersprossen; praktisch nie Sonnenbrand (nach einer sehr langen sonnenarmen Zeit kann auch dieser Hauttyp einen Sonnenbrand bekommen); kann sich ungebräunt länger als 1,5 Stunden in der Sonne aufhalten; vorwiegend Ureinwohner Zentralafrikas und Australiens.

Die erforderliche Bestrahlung zum Erreichen einer Hautrötung (Erythem) wird als minimale erythembwirksame Dosis (MED) bezeichnet. Sie beträgt etwa 250 J/m² für den Hauttyp II. Nach Ausbildung des UV-Eigenschutzes (Pigmentierung und Hornschichtverdickung) erhöht sich die aktuelle MED.

Hautkrebs und andere Erkrankungen durch UV

1.4.2 Infrarotstrahlung
(Infrared Radiation)

Infrarotstrahlung ist ein Teil der Wärmestrahlung. Die IR-Strahlung wird nach der International Commission of Illumination (CIE) und nach DIN 5031 in drei Bänder eingeteilt: IR-A mit Wellenlängen zwischen 780 und 1400 nm, IR-B mit Wellenlängen zwischen 1400 und 3000 nm und IR-C mit Wellenlängen zwischen 3000 und 1 000 000 nm. Im anglo-
americani­sch­en Raum sowie bei der Spezifika­tion von Erderkundungs­kameras wird häufig auch die Einteil­ung in nahes Infrarot mit 780 nm bis 1400 nm, kurzwelli­ges Infrarot mit 1,4 Mikrometer (µm) bis 3 µm, mittleres Infrarot mit Wellen­längen von 3,0 µm bis 8 µm, lang­wellige­s Infrarot mit Wellen­längen von 8 bis 15 µm und fernes Infrarot mit 15 µm bis 1 mm Wellen­längen genutzt.

IR-Quellen

Die wichtigste natürliche Quelle für IR-Strahlung ist die Sonne. IR-Strahlung hat einen Anteil von 50 % an der Sonnen­strahlung, die den Erdboden erreicht. Außerdem gibt die durch die Sonneneinstrahlung erwärmte Erde IR-Strahlung ab. Die Absorption der Strahlung durch die in der Atmosphäre enthaltenen natürlichen und künstlichen Gase wie Wasser, Kohlendioxid, Ozon, Methan und Fluorchlorkohlenwasserstoffe (FCKW) führt zur zusätzlichen Erwärmung der Erde. Dieser Prozess ist für den Wärmehaushalt der Erde von entscheidender Bedeutung.

Anwendung der Infrarotstrahlung

Wirkung von Infrarotstrahlung

Infrarotstrahlung mit relativ niedriger Intensität wird als angenehm empfunden. Eine unbestritten positive Wirkung ist die Wärmewirk­ung, auf der der Einsatz der IR-Strahlung z. B. in der Medizin zur Förderung der Durchblutung und Lösung von Muskelverklemmungen beruht.

Nahes Infrarot mit hoher Intensität (Laserstrahlung) ist besonders gefährlich für Augen und Haut, da der kurzwellige IR-Anteil (IR-A) im Auge unbemerkt bis zur Netzhaut gelangt, dort fokussiert wird und irreversible Schäden verursacht. Bei chronischer Bestrahlung mit starken IR-Quellen kann die Linse getrübt werden (z. B. „Glasbläserstar“). In der Haut kann IR-Strahlung in Regionen absorbiert werden, in denen sich keine Temperatursensoren befinden. Dadurch können in der Haut unbemerkt Schäden verursacht werden. Eine Bestrahlung der Haut kann hier bereits nach sehr kurzer Zeit zu Verbrennungen führen.

Neben diesen akut auftretenden gesundheitlichen Schäden sind bei IR-Bestrahlung in engem zeitlichen Zusam­menhang mit UV-Strahlung weitere Hautschädigungen möglich. Diskutiert wird eine Beteiligung der IR-Strahlung an der be­schleunigten Hautalterung, als deren Hauptverursacher die UV-Strahlung gilt. Außerdem gibt es Hinweise, dass IR-Strahlung die durch UV-Strahlung verursachte Entstehung von Hautkrebs negativ beeinflusst. So könnten z. B.
durch UV-Strahlung geschädigte Zellen weniger effektiv durch die körpereigenen Mechanismen beseitigt werden oder bereits in Vorstufen von Krebszellen umgewandelte Zellen könnten weniger gut vom körpereigenen Immunsystem bekämpft werden. Diese Fragen müssen noch durch wissenschaftliche Forschung geklärt werden.

1.5 Grenzwerte

(Limit values)

Sowohl im niederfrequenten wie im hochfrequenten Bereich liegt die Exposition der Bevölkerung im Mittel weit unter den gesetzlich vorgeschriebenen Grenzwerten.

Für den Schutz der Bevölkerung bei Exposition durch UV-Strahlung gibt es keine Grenzwerte. Es sind jedoch Werte der erythemwirksamen Schwellenbestrahlung, bei deren Überschreitung mit einem Sonnenbrand zu rechnen ist bekannt. Diese liegt bei Hauttyp II bei einem Wert von 250 J/m² (schädigende UV-Strahlendosis pro m² Haut).

Aktuelle Themen im Bereich Nichtionisierende Strahlung finden Sie in Teil B - VI.
Teil B
Aktuelle Daten und deren Bewertung

(Current Data and Their Evaluation)

I Natürliche Umweltradioaktivität

(Natural Environmental Radioactivity)

Bearbeitet vom Bundesamt für Strahlenschutz
1. Natürliche Umweltradioaktivität
(Natural environmental radioactivity)

2. Zivilisatorisch veränderte natürliche Umweltradioaktivität
(Technologically enhanced natural environmental radioactivity)

2.1 Hinterlassenschaften und Rückstände aus Bergbau und Industrie
(Relicts and residues of mining and industry)

Hinterlassenschaften der Uranproduktion in Sachsen und Thüringen

Detailinformationen über die Sanierungstätigkeit und die Ergebnisse der Umweltüberwachung geben die jährlichen Umweltberichte der Wismut GmbH (www.wismut.de).

2.1.1 Ableitung radioaktiver Stoffe mit Fortluft1 und Abwasser infolge der Tätigkeit der Wismut GmbH (Emissionen)
(Discharge of radioactive substances with exhaust air and waste water as a result of the activities of the Wismut GmbH)

Tabelle 2.1.1-1 Ableitung radioaktiver Stoffe mit der Fortluft in die Atmosphäre im Zeitraum 1998 bis 2011 (Messwerte der Wismut GmbH)
(Discharge of radioactive substances into the atmosphere with exhaust air during the period from 1998 to 2011 – Values measured by the Wismut GmbH)

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Fortluftmengen in 10⁹ m³/a</th>
<th>Gesamte Ableitung radioaktiver Stoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rn-222 in TBq/a *</td>
</tr>
<tr>
<td>1998</td>
<td>22,1</td>
<td>664,7 (1201,1)</td>
</tr>
<tr>
<td>1999</td>
<td>20,8</td>
<td>491,3 (926,2)</td>
</tr>
</tbody>
</table>

1 Hier sind im Wesentlichen Abwetter von Untertage gemeint.
Tabelle 2.1.1-2 Ableitung radioaktiver Stoffe mit der Fortluft in die Atmosphäre in 2010 und 2011 (Messwerte der Wismut GmbH)

<table>
<thead>
<tr>
<th>Betriebsteile der Sanierungs-</th>
<th>Anzahl der Abwetter-</th>
<th>Abwetter- bzw. Abluftmengen in 10^9 m³/a</th>
<th>Ableitung radioaktiver Stoffe</th>
<th>Rn-222 in TBq/a *</th>
<th>Langlebige α-Strahler in MBq/a *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanierungs-</td>
<td>Abwetterschächte und Wetterbohrlöcher</td>
<td>Abluftmengen in 10^9 m³/a</td>
<td>2010</td>
<td>2011</td>
<td>2010</td>
</tr>
<tr>
<td>Schlema/Alberoda</td>
<td>1</td>
<td>1</td>
<td>1,29</td>
<td>1,34</td>
<td>98 (100)</td>
</tr>
<tr>
<td>Dresden-Gittersee</td>
<td>1</td>
<td>1</td>
<td>0,14</td>
<td>0,09</td>
<td>0,25 (1,6)</td>
</tr>
<tr>
<td>Königstein</td>
<td>1</td>
<td>1</td>
<td>0,67</td>
<td>1,2</td>
<td>0,3 (166)</td>
</tr>
</tbody>
</table>

* Genehmigungswerte in Klammern

Aus den Ableitungen in die betroffenen Gewässer resultiert an keiner Stelle eine nennenswerte Strahlenexposition. Sie kann bei Unterstellung realistischer Nutzungsszenarien im Einzelfall für die kritische Personengruppe bis zu 0,2 mSv/a betragen, so dass der geltende Grenzwert von 1 mSv/a für die Bevölkerung weit unterschritten wird.

Insgesamt wird deutlich, dass das jetzt erreichte Niveau der Ableitungen auch weiterhin durch die meteorologischen Verhältnisse geprägten Schwankungen unterliegen wird und somit keine steuerbare Größe darstellt. Die Funktion der WBA ist trotz ihres Einsatzes an der Kapazitätsgrenze als zuverlässig einzuschätzen, da die genehmigten maximalen und mittleren Schadstoffkonzentrationen unterschritten wurden.

Die Genehmigungswerte für flüssige Ableitungen wurden jeweils aus der genehmigten Wassermenge (Pöhla: 20 m³/h, Königstein: 650 m³/h, WBA Ronneburg: 750 m³/h, Seelingstädt: 300 m³/h, WBA Schlema 1 200 m³/h) multipliziert mit der Maximalkonzentration (Pöhla: 0,2 mg Uran/l, 0,3 Bq Radium-226/l, WBA Ronneburg: 0,1 mg Uran/l bzw. 0,2 Bq Radium-226/l, WBA Schlema 0,5 mg Uran/l bzw. 0,4 Bq Radium-226/l) bzw. mit dem genehmigten Jahresmittelwert der Konzentration (Königstein 0,3 mg Uran/l, 0,4 Bq Radium-226/l, Seelingstädt: 0,3 mg Uran/l bzw. 0,2 Bq Radium-226/l) errechnet.
Tabelle 2.1.1-3 Flüssige Ableitung radioaktiver Stoffe in die Oberflächengewässer im Zeitraum 1998 bis 2011 (Messwerte der Wismut GmbH)
(Liquid discharge of radioactive substances into surface waters during the period from 1998 to 2011 – Values measured by the Wismut GmbH)

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Abwassermenge in 10⁶ m³/a</th>
<th>Gesamte Ableitung radioaktiver Stoffe</th>
<th>Uran in t/a *</th>
<th>Ra-226 in GBq/a *</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>14,7</td>
<td>3,8</td>
<td>(12,8)</td>
<td>4,8</td>
</tr>
<tr>
<td>1999</td>
<td>14,7</td>
<td>3,8</td>
<td>(9,4)</td>
<td>2,7</td>
</tr>
<tr>
<td>2000</td>
<td>16,1</td>
<td>4,1</td>
<td>(11,3)</td>
<td>3,6</td>
</tr>
<tr>
<td>2001</td>
<td>14,3</td>
<td>2,8</td>
<td>(13,1)</td>
<td>0,7</td>
</tr>
<tr>
<td>2002</td>
<td>18,4</td>
<td>4,5</td>
<td>(8,4)</td>
<td>0,8</td>
</tr>
<tr>
<td>2003</td>
<td>14,6</td>
<td>3,1</td>
<td>(8,2)</td>
<td>0,3</td>
</tr>
<tr>
<td>2004</td>
<td>13,9</td>
<td>2,8</td>
<td>(8,2)</td>
<td>0,2</td>
</tr>
<tr>
<td>2005</td>
<td>14,8</td>
<td>2,2</td>
<td>(8,0)</td>
<td>0,3</td>
</tr>
<tr>
<td>2006</td>
<td>16,3</td>
<td>2,4</td>
<td>(9,0)</td>
<td>0,3</td>
</tr>
<tr>
<td>2007</td>
<td>19,2</td>
<td>3,1</td>
<td>(9,0)</td>
<td>0,4</td>
</tr>
<tr>
<td>2008</td>
<td>20,2</td>
<td>3,0</td>
<td>(9,1)</td>
<td>0,3</td>
</tr>
<tr>
<td>2009</td>
<td>20,9</td>
<td>3,2</td>
<td>(9,5)</td>
<td>0,4</td>
</tr>
<tr>
<td>2010</td>
<td>25,0</td>
<td>4,4</td>
<td>(9,7)</td>
<td>0,6</td>
</tr>
<tr>
<td>2011</td>
<td>19,5</td>
<td>3,1</td>
<td>(10,5)</td>
<td>0,5</td>
</tr>
</tbody>
</table>

* Genehmigungswerte in Klammern

Tabelle 2.1.1-4 Flüssige Ableitung radioaktiver Stoffe in die Oberflächengewässer 2010 und 2011 (Messwerte der Wismut GmbH)
(Liquid discharge of radioactive substances into surface waters for the years 2010 and 2011 – Values measured by the Wismut GmbH)

<table>
<thead>
<tr>
<th>Betriebsteile der Sanierungsbetriebe</th>
<th>Abwassermenge in 10⁶ m³/a *</th>
<th>Ableitung radioaktiver Stoffe</th>
<th>Uran in t/a *</th>
<th>Ra-226 in GBq/a *</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZWICKAUER MULDE (SACHSEN)</td>
<td>8,734</td>
<td>11,997</td>
<td>1,6806</td>
<td>2,8476</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7,244)</td>
<td>(6,544)</td>
</tr>
<tr>
<td>Schlema/Alberoda</td>
<td>7,479</td>
<td>10,611</td>
<td>1,505</td>
<td>2,683</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7,209)</td>
<td>(6,509)</td>
</tr>
<tr>
<td>Crossen</td>
<td>1,140</td>
<td>1,274</td>
<td>0,174</td>
<td>0,163</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,035)</td>
<td>(0,035)</td>
</tr>
<tr>
<td>Pöhla</td>
<td>0,115</td>
<td>0,112</td>
<td>0,0016</td>
<td>0,0016</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,035)</td>
<td>(0,035)</td>
</tr>
<tr>
<td>ELBE (SACHSEN)</td>
<td>1,906</td>
<td>4,942</td>
<td>0,241</td>
<td>0,620</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5,869)</td>
<td>(5,869)</td>
</tr>
<tr>
<td>Königstein</td>
<td>1,906</td>
<td>4,942</td>
<td>0,241</td>
<td>0,620</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5,869)</td>
<td>(5,869)</td>
</tr>
<tr>
<td>PLEISSE (THÜRINGEN)</td>
<td>0,110</td>
<td>0,219</td>
<td>0,010</td>
<td>0,015</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,025)</td>
<td>(0,025)</td>
</tr>
<tr>
<td>Ronneburg</td>
<td>0,110</td>
<td>0,219</td>
<td>0,010</td>
<td>0,015</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,025)</td>
<td>(0,025)</td>
</tr>
<tr>
<td>WEISSE ELSTER (THÜRINGEN)</td>
<td>8,711</td>
<td>7,869</td>
<td>1,206</td>
<td>0,896</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10,279)</td>
<td>(9,198)</td>
</tr>
<tr>
<td>Ronneburg (WBA)</td>
<td>6,411</td>
<td>5,555</td>
<td>0,660</td>
<td>0,347</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7,650)</td>
<td>(6,750)</td>
</tr>
<tr>
<td>Seelingstädt</td>
<td>2,300</td>
<td>2,314</td>
<td>0,546</td>
<td>0,549</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2,629)</td>
<td>(2,628)</td>
</tr>
</tbody>
</table>

* Genehmigungswerte in Klammern
Im Folgenden werden die Rn-222-Konzentrationen in der bodennahen Luft und die Uran- und Ra-226-Konzentrationen in Oberflächengewässern betrachtet, die durch die Sanierungstätigkeiten der Wismut GmbH beeinflusst werden können.

Rn-222-Konzentrationen in der bodennahen Luft

In Tabelle 2.1.2-2 sind die Ergebnisse der von der Wismut GmbH durchgeführten Überwachung an bergbaulich nicht beeinflussten Messstellen zusammengefasst. Die an diesen Messstellen ermittelten Rn-222-Konzentrationen repräsentieren den lokalen natürlichen Konzentrationspegel der jeweiligen Bergbaugebiete und können deshalb als Vergleichswerte herangezogen werden.

Auch durch das Bundesamt für Strahlenschutz wurden seit 1991 in den Bergbaugebieten umfangreiche Untersuchungen zur Ermittlung und Bewertung der Rn-222-Konzentrationen in der bodennahen Freiluft durchgeführt.

Tabelle 2.1.1-5 Errechnung der Genehmigungswerte für flüssige Ableitungen

<table>
<thead>
<tr>
<th>Betriebe der Sanierungsbetriebe</th>
<th>Genehmigte Wassermenge in m³/h</th>
<th>max. Konzentration</th>
<th>Genehmigter Jahresmittelwert der Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pöhla</td>
<td>20</td>
<td>0,2 mg Uran/l, 0,3 Bq Radium-226/l</td>
<td></td>
</tr>
<tr>
<td>Königstein</td>
<td>650</td>
<td>0,3 mg Uran/l, 0,4 Bq Radium-226/l</td>
<td></td>
</tr>
<tr>
<td>WBA Ronneburg</td>
<td>750</td>
<td>0,1 mg Uran/l, 0,2 Bq Radium-226/l</td>
<td></td>
</tr>
<tr>
<td>Seelingstädt</td>
<td>300</td>
<td>0,3 mg Uran/l, 0,2 Bq Radium-226/l</td>
<td></td>
</tr>
<tr>
<td>WBA Schlema</td>
<td>1200</td>
<td>0,5 mg Uran/l, 0,4 Bq Radium-226/l</td>
<td></td>
</tr>
</tbody>
</table>
Überwachung der Urankonzentrationen und Ra-226-Aktivitätskonzentrationen in Oberflächengewässern

In wichtigen Vorflutern wurden die in Tabelle 2.1.2-3 angegebenen Werte bestimmt. In den übrigen durch die Ableitung radioaktiver Stoffe betroffenen Vorflutern liegen die Uran- und Radiumkonzentrationen in den gleichen Konzentrationsbereichen.

Tabelle 2.1.2-1 Rn-222-Konzentration in der bodennahen Atmosphäre an bergbaulich beeinflussten Messstellen (Winter 2010/2011 und Sommer 2011; Messwerte der Wismut GmbH)

<table>
<thead>
<tr>
<th>Gebiet</th>
<th>Anzahl der Messstellen</th>
<th>Anzahl der Messstellen mit Rn-222-Konzentrationen</th>
<th>Maximum Bq/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>≤ 30 Bq/m³</td>
<td>31 - 80 Bq/m³</td>
</tr>
<tr>
<td>Winter 2010/2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schlema/Alberoda</td>
<td>68</td>
<td>9</td>
<td>51</td>
</tr>
<tr>
<td>Pöhla</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Seelingstädt</td>
<td>24</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>Crossen</td>
<td>33</td>
<td>25</td>
<td>7</td>
</tr>
<tr>
<td>Königstein</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Gittersee</td>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Ronneburg</td>
<td>31</td>
<td>29</td>
<td>2</td>
</tr>
</tbody>
</table>

Sommer 2011					
Schlema/Alberoda	72	16	40	16	260
Pöhla	5	4	1	0	65
Seelingstädt	23	15	7	1	100
Crossen	31	15	13	3	160
Königstein	8	6	2	0	44
Gittersee	9	7	2	0	49
Ronneburg	31	24	7	0	43

Tabelle 2.1.2-2 Rn-222-Konzentration in der bodennahen Atmosphäre an bergbaulich nicht beeinflussten Messstellen (Mittelwerte 1991 – 2011 und Schwankungsbreite der Mittelwerte der einzelnen Jahre; Messwerte der Wismut GmbH)

<table>
<thead>
<tr>
<th>Gebiet</th>
<th>Winter (Rn-222-Konzentrationen in Bq/m³)</th>
<th>Sommer (Rn-222-Konzentrationen in Bq/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlema/Alberoda</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Pöhla</td>
<td>14</td>
<td>35</td>
</tr>
<tr>
<td>Seelingstädt</td>
<td>11</td>
<td>39</td>
</tr>
<tr>
<td>Crossen</td>
<td>13</td>
<td>35</td>
</tr>
<tr>
<td>Königstein</td>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td>Gittersee</td>
<td>15</td>
<td>33</td>
</tr>
<tr>
<td>Ronneburg</td>
<td>11</td>
<td>40</td>
</tr>
</tbody>
</table>

* Im Gebiet Pöhla wurden mit Abschluss der wesentlichen Sanierungsarbeiten die Messungen an bergbaulich unbeeinflussten Messstellen im Winterhalbjahr 2005/06 eingestellt.
Tabelle 2.1.2-3 Medianwerte der jährlichen Uran- und Radiumkonzentrationen in den Vorflutern sächsischer und thüringischer Bergbaugebiete in 2010 und 2011 (Messwerte der Wismut GmbH)
(Median values for annual uranium and radium concentrations in the receiving streams of mining areas in Saxony and Thuringia in the years 2010 and 2011 - Values measured by the Wismut GmbH)

<table>
<thead>
<tr>
<th>Betrieb</th>
<th>Probenahmestelle</th>
<th>Messpunkt</th>
<th>Uran in mg/l</th>
<th>Ra-226 in mBq/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2011</td>
<td>2010</td>
</tr>
<tr>
<td>Sächsische Bergbaugebiete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Königstein</td>
<td>Quellgebiet Eselsbach</td>
<td>k-0018</td>
<td>0,012</td>
<td>0,015</td>
</tr>
<tr>
<td></td>
<td>Eselsbach nach Einmündung Teufelsgrundbach</td>
<td>k-0024</td>
<td>0,019</td>
<td>0,034</td>
</tr>
<tr>
<td></td>
<td>Elbe Rathen</td>
<td>k-0028</td>
<td>0,002</td>
<td>0,001</td>
</tr>
<tr>
<td>Gittersee</td>
<td>Kaitzbach vor Halde</td>
<td>g-0076</td>
<td>0,016</td>
<td>0,017</td>
</tr>
<tr>
<td></td>
<td>Kaitzbach nach Einleitung</td>
<td>g-0077</td>
<td>0,061</td>
<td>0,060</td>
</tr>
<tr>
<td>Aue</td>
<td>Zwickauer Mulde in Aue</td>
<td>m-131</td>
<td>0,002</td>
<td>0,002</td>
</tr>
<tr>
<td></td>
<td>Zwickauer Mulde bei Hartenstein</td>
<td>m-111</td>
<td>0,008</td>
<td>0,008</td>
</tr>
<tr>
<td>Pöhlä</td>
<td>Luchsbad vor Schachtanlage</td>
<td>m-115</td>
<td>< 0,001</td>
<td>< 0,001</td>
</tr>
<tr>
<td></td>
<td>Luchsbad nach WBA-Auslauf</td>
<td>m-165</td>
<td>0,019</td>
<td>0,018</td>
</tr>
<tr>
<td>Crossen</td>
<td>Zwickauer Mulde Wehr Mühlenbrücke Schlossnitz</td>
<td>M-201</td>
<td>0,006</td>
<td>0,007</td>
</tr>
<tr>
<td></td>
<td>Zwickauer Mulde Brücke Schlunzig</td>
<td>M-205</td>
<td>0,008</td>
<td>0,008</td>
</tr>
<tr>
<td></td>
<td>Oberrothenbacher Bach</td>
<td>M-204</td>
<td>0,195</td>
<td>0,125</td>
</tr>
<tr>
<td></td>
<td>Zinnborn</td>
<td>M-232</td>
<td>0,080</td>
<td>0,150</td>
</tr>
<tr>
<td>Thüringer Bergbaugebiete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seelingstädt</td>
<td>Weiße Elster aus dem Oberlauf</td>
<td>E-312</td>
<td>0,002</td>
<td>0,002</td>
</tr>
<tr>
<td></td>
<td>Weiße Elster nach Einmündung Pöltschbach</td>
<td>E-314</td>
<td>0,004</td>
<td>0,004</td>
</tr>
<tr>
<td></td>
<td>Lerchenbach</td>
<td>E-369</td>
<td>0,170</td>
<td>0,130</td>
</tr>
<tr>
<td></td>
<td>Fuchsbach vor Mündung</td>
<td>E-383</td>
<td>0,054</td>
<td>0,029</td>
</tr>
<tr>
<td></td>
<td>Weiße Elster nach Einmündung Fuchsbach</td>
<td>E-321</td>
<td>0,007</td>
<td>0,006</td>
</tr>
<tr>
<td>Ronneburg</td>
<td>Gessenbach</td>
<td>e-416</td>
<td>0,072</td>
<td>0,031</td>
</tr>
<tr>
<td></td>
<td>Vereinigte Sprotte</td>
<td>s-609</td>
<td>0,007</td>
<td>0,005</td>
</tr>
<tr>
<td></td>
<td>Wipse</td>
<td>e-437</td>
<td>0,061</td>
<td>0,047</td>
</tr>
<tr>
<td></td>
<td>Weiße Elster</td>
<td>e-419</td>
<td>0,005</td>
<td>0,005</td>
</tr>
</tbody>
</table>

2.2 Radon in Gebäuden
(Radon in buildings)

Untersuchungen und Ergebnisse
Im Rahmen verschiedener Forschungsvorhaben wurden in den vergangenen Jahren Messungen der Radonaktivitätskonzentration in der Bodenluft und in Gebäuden durchgeführt. Der Jahresmittelwert der Radonkonzentration in Aufenthaltsräumen liegt in Deutschland bei 50 Bq/m³. Dies entspricht bei einer durchschnittlichen Aufenthaltzeit in den Räumen von ca. 19 Stunden pro Tag einer mittleren jährlichen effektiven Dosis von ca. 0,9 mSv. In Einzelfällen wurden Höchstwerte von bis zu 10 000 Bq/m³ festgestellt. Bereits bei Radonkonzentrationen über 100 Bq/m³ zeigt sich eine signifikante Erhöhung des Lungenkrebsrisikos um etwa 10 % pro 100 Bq/m³. Welche Radonkonzentrationen in einzelnen Gebäuden anzutreffen sind, hängt vom geologischen Untergrund am Gebäudestandort und der Radondichte der Gebäudehülle ab, da in den überwiegenden Fällen das in der Bodenluft vorkommende und durch erdberührende Wände und die Bodenplatte in das Haus eindringende geogene Radon die Ursache für eine erhöhte Radoninnenaufenthaltswirkung ist.

Auf der Grundlage der vorliegenden Ergebnisse an insgesamt 2346 Messpunkten wurde eine bundesweite Übersichtskarte der regionalen Verteilung der Radonaktivitätskonzentration in der Bodenluft erstellt (siehe Abbildung 2.2-1).

Im Ergebnis ist festzustellen, dass die gemessenen Radonaktivitätskonzentrationen in der Bodenluft einen Bereich von ca. 5 kBq/m³ bis 1000 kBq/m³ überstreichen. Lokal hängt die Höhe vom jeweiligen geologischen Untergrund ab. In ca. 30 % der Fläche Deutschlands und davon überwiegend in Gebieten der Norddeutschen Tiefebene liegt die Bodenluftkonzentration im Bereich unterhalb von 20 kBq/m³. Werte über 100 kBq/m³ sind nur in einigen eng begrenzten Gebieten zu erwarten. Diese sind in der Regel durch das Vorkommen von Granit oder granitähnlichen Gesteinen nahe der Erdoberfläche gekennzeichnet.

<table>
<thead>
<tr>
<th>Radonkonzentration Bq/m³</th>
<th>Relative Häufigkeit in %</th>
<th>tausend Häuser</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 100</td>
<td>10 – 12</td>
<td>1300 – 1600</td>
</tr>
<tr>
<td>> 200</td>
<td>1,6 – 3,1</td>
<td>220 – 420</td>
</tr>
<tr>
<td>> 400</td>
<td>0,3 – 0,9</td>
<td>40 – 140</td>
</tr>
<tr>
<td>> 1000</td>
<td>0,03 – 0,2</td>
<td>4 – 25</td>
</tr>
</tbody>
</table>

Tabelle 2.2-1 Geschätzte Anzahl der Ein- und Zweifamilienhäuser mit Radonkonzentrationen über verschiedenen Schwellenwerten in Aufenthaltsräumen
(Estimated number of one- and two-family houses with radon concentration above various threshold values in living rooms)

In Bergbauregionen können über Klüfte und Risse im Deckgebirge oder über direkte Verbindungen von Stollen oder Schächten Grubenwetter in die Gebäude gelangen. In diesen Fällen werden die eindringende Radonmenge und die daraus resultierende Radonkonzentration meist von der Bewetterung der untertägigen Hohlräume beeinflusst. In Häusern von Bergbauregionen mit Uranvererzungen wurden in Einzelfällen kurzzeitig deutlich über 100 000 Bq/m³ gemessen. Werden Jahresmittelwerte der Radonkonzentration von über 100 Bq/m³ Luft in Aufenthaltsräumen ermittelt, ist generell die Durchführung geeigneter Maßnahmen zu empfehlen. Dabei sollen die Höhe der Radonkonzentration, d. h. des damit verbundenen Gesundheitsrisikos, und der Aufwand der Sanierungsmaßnahmen in einem angemessenen Verhältnis stehen.

Der Einfluss der Radonabgabe aus mineralischen Baumaterialien wird im Vergleich zum geogenen Radon allgemein als gering angesehen. Im Zuge einer Diskussion um eine mögliche Einbeziehung der Radonabgabe eines Baustoffes als Zulassungskriterium in der Bauproduktlinie und um die vorhandene Datenbasis zu aktualisieren, wurde die Radonabgabe von in Deutschland aktuell üblichen Produkten in einem Projekt untersucht (siehe Kap. 2.3).
Generell von untergeordneter Bedeutung für die Radonkonzentrationen in Innenräumen ist in Deutschland das in Wasser gelöste Radon, welches bei dessen Anwendung in die Raumluft freigesetzt wird.

Im Jahre 2010 veröffentlichte die WHO eine Zusammenstellung wichtiger Innenraumsschadstoffe als Teil der neuen Leitlinien zur Raumluftqualität. In dieser Zusammenfassung wird Radon als Innenraumsschadstoff aufgeführt. Das aus den epidemiologischen Studien abgeleitete zusätzliche Lebenszeitrisiko beträgt im Alter von 75 Jahren $0.6 \cdot 10^{-5}$ pro Bq/m³, d. h. sechs Fälle pro einer Million Betroffener für lebenslange Nichtraucher bzw. $15 \cdot 10^{-5}$ pro Bq/m³ (für Raucher). Das Risiko für Ex-Raucher liegt dazwischen und verringert sich mit zunehmender Abstinenzdauer. Die Radonkonzentration, die mit einem zusätzlichen Lebenszeitrisiko von 1 pro 100 oder 1 pro 1000 einhergeht, beträgt dementsprechend 67 Bq/m³ bzw. 6,7 Bq/m³ für Raucher und 1670 Bq/m³ bzw. 167 Bq/m³ für lebenslange Nichtraucher.

Im Jahr 2010 wurde im Auftrag des BfS für Deutschland erstmalig eine Kosten-Nutzen-Analyse mit unterschiedlichen potenziellen Regelungsszenarien durchgeführt. Es wurden verschiedene Szenarien untersucht, die in bauliche Sanierungsmaßnahmen bei bestehenden Gebäuden und dem radonsicheren Errichten von Neubauten unterteilt wurden. Zudem gingen unterschiedliche Eingriffsniveaus von 100, 200 und 400 Bq/m³, die Unterscheidung nach freiwilligen und verpflichtenden Maßnahmen und unterschiedliche regionale Ebenen in die Berechnung ein. Der Interventionseffekt wurde in Form vermindelter Lungenkrebserekrankungen und gewonnener qualitätsadjustierter Lebensjahre (QALY) dargestellt. Aus der Perspektive der durch etablierte Methoden ermittelten Kosteneffektivität ist festzustellen, dass für Deutschland allgemein die Sanierung bestehender Gebäude mit einem verpflichtenden Eingreifwert von 100 Bq/m³ mit anschließender Erfolgskontrolle die geringsten Kosten verursacht. Für Radon-Hochrisiko-Gebiete ist das radonsichere Bauen hingegen vorzuziehen.
Teil B

2.3 Radioaktive Stoffe in Baumaterialien und Industrieprodukten
(Radioactive substances in building material and industrial products)

Untersuchungen und Ergebnisse

Die von den Baustoffen ausgehende Gammastrahlung führt zu einer mittleren Umgebungsäquivalentdosisleistung in Wohngebäuden von rund 0,6 mSv/a, was einer jährlichen effektiven Dosis von 0,3 mSv entspricht.

Im Zuge der Diskussion um eine mögliche Einbeziehung der Radionuklidkonzentration und der Radonabgabe eines Bau-stoffes als Zulassungskriterium, wie es im Entwurf der Grundnormenrichtlinie vorgeschlagen wird und um die vorhandene Datenbasis zu aktualisieren, wurde in einem Projekt in Zusammenarbeit mit dem Bundesverband Baustoffe - Steine und Erden e.V. (bbs) die Nuklidkonzentration und Radonexhalation von über 100 in Deutschland aktuell üblichen, repräsenta-

Abbildung 2.2-1 Übersichtskarte der Radonkonzentration in der Bodenluft in 1 m Tiefe (nach Daten von 2001)
(Overview of Radon concentration in soil air at 1 m depth - data from 2001)
tiven Innenraumprodukten untersucht. Die Spannweite der Ergebnisse der massenspezifischen Aktivitätsmessungen in den Baustoffen ist in Tabelle 2.3-2 zusammengefasst.

Tabelle 2.3-2 Ergebnisse der Radionuklidbestimmungen in Baustoffgruppen

(Results of radionuclide assessments by building material categories)

<table>
<thead>
<tr>
<th>Produkte</th>
<th>Spezifische Aktivität (Bq/kg)</th>
<th>Probenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>K-40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>min.</td>
</tr>
<tr>
<td>Gipsprodukte</td>
<td>5</td>
<td>< 20</td>
</tr>
<tr>
<td>Kalksandsteine</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>Mineralwolle</td>
<td>7</td>
<td>49</td>
</tr>
<tr>
<td>Ziegel</td>
<td>27</td>
<td>470</td>
</tr>
<tr>
<td>Zement/Mörtel</td>
<td>11</td>
<td>135</td>
</tr>
<tr>
<td>Fliesen/Keramik</td>
<td>5</td>
<td>295</td>
</tr>
<tr>
<td>Porenbeton</td>
<td>10</td>
<td>97</td>
</tr>
<tr>
<td>Mörtel</td>
<td>7</td>
<td>120</td>
</tr>
<tr>
<td>Putze</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>Estrich</td>
<td>5</td>
<td>210</td>
</tr>
<tr>
<td>Leichtbeton</td>
<td>7</td>
<td>710</td>
</tr>
<tr>
<td>Beton</td>
<td>3</td>
<td>230</td>
</tr>
</tbody>
</table>

Bei der Mehrzahl der Baustoffgruppen wurde eine Gesamtdosis deutlich unterhalb von 1 mSv/a abgeschätzt. Dieser Wert kann bei den Produktgruppen Ziegel, Leichtbeton und Beton, die allerdings die Massenprodukte darstellen, von wenigen Produkten überschritten werden. Selbstverständlich sind bei wechselnden Rohstoffen oder Zusätzen von Rückständen mit erhöhten Radionukidgehalten Veränderungen der durchschnittlichen Exposition von 0,3 mSv/a nach oben und unten möglich. Die durchgeführten Untersuchungen haben weiterhin gezeigt, dass der baustoffbedingte Anteil an der Radonkonzentration in Innenräumen grundsätzlich unter 20 Bq/m³ liegt. 20 Bq/m³ würden zu einer Dosis von 0,4 mSv pro Jahr führen. Es kann allerdings nicht ausgeschlossen werden, dass - wie national und international in der Vergangenheit beobachtet - in Einzelfällen Materialien eingesetzt werden können, die zu einer erhöhten Radoninnenraumkonzentration führen.

Eine breitere Übersicht über die spezifische Aktivität natürlicher Radionuklide in Baustoffen, basierend auf den Daten der Messreihe in den 90er Jahren, gibt Tabelle 2.3-1 in Teil A dieses Berichts.
II Künstliche Umweltradioaktivität

(ARTIFICIAL RADIOACTIVITY IN THE ENVIRONMENT)

Bearbeitet vom Bundesamt für Strahlenschutz, vom Deutschen Wetterdienst, der Physikalisch-Technischen Bundesanstalt, von der Bundesanstalt für Gewässerkunde, dem Bundesamt für Seeschifffahrt und Hydrographie, vom Johann Heinrich von Thünen-Institut und vom Max-Rubner-Institut
1. Quellen künstlicher Radioaktivität
 (Sources of artificial radioactivity)

1.1 Kernwaffenversuche
 (Nuclear weapons tests)

Die Strahlendosis durch die in großem Maß bis in die 60er Jahre des letzten Jahrhunderts und letztmals im Jahr 1980 in der Atmosphäre durchgeführten Kernwaffenversuche ist weiterhin rückläufig. Sie betrug 2011 weniger als 0,01 mSv.

Die einzige Radionuklidstation in Mitteleuropa befindet sich an der deutschen Messstation Schauinsland des BfS (Radionuklidstation, RN 33) etwa 1000 m oberhalb von Freiburg im Schwarzwald gelegen. Dort sind automatische Messsysteme für den Nachweis an Luftstaub gebundener Radionuklide sowie auch für den Nachweis der radioaktiven Xenonisotope Xe-133, Xe-133m, Xe-133 und Xe-131m in Betrieb.

Ein durch zivile Quellen geographisch und zeitlich sehr variablen Untergrund an Xe-133 sowie auch das sporadische Vorkommen anderer Xenonisotope erschwert die Detektion und insbesondere die Identifikation von möglichen Emissionen aus unterirdischen Kernwaffentests. Dies bedeutet, dass ein großes Interesse seitens der CTBTO und ihrer Mitgliedstaaten besteht, zur Verbesserung der Fähigkeiten des Verifikationssystems die Emissionen aus radiopharmazeutischen Produktionsanlagen zu reduzieren, auch wenn dies aus Gründen des Strahlenschutzes nicht erforderlich wäre. Derzeit besteht zwischen den Radionuklidexperten der CTBTO und der Mitgliederstaaten ein sehr produktiver Informationsaustausch, sowohl über die Belange beider Seiten als auch über Möglichkeiten weiterer Emissionsreduzierung.

Wert, der nicht eine Folge von Fukushima war, lag knapp unter 50 mBq/m³ und damit fünfmal niedriger als der höchste bisher gemessene Wert von 260 mBq/m³ in 2005. Der Jahresmittelwert der Xe-133-Aktivitätskonzentration sank von 5,3 mBq/m³ im Jahr 2005 auf 1,5 mBq/m³ im Jahr 2011 (ohne die Messwerte, die auf Fukushima zurückzuführen sind). Berücksichtigt man die Emissionen aus Fukushima, ergibt sich eine mittlere Aktivitätskonzentration von 53,2 mBq/m³. Die Auswirkungen der Emissionsreduzierungen in Nordamerika und Europa lassen sich auch an anderen Messstationen der Nordhemisphäre in ähnlicher Form nachweisen.

Abbildung 1.1-1 Zeitreihe der Xe-133-Aktivitätskonzentration in den Jahren 2004 bis 2011 an der IMS-Station RN33 auf dem Schauinsland
(Time series of Xe-133-activity concentration at IMS-station RN33 at Schauinsland mountain for the years 2004 to 2011)

1.2 Tschernobyl - Strahlenexposition durch den Reaktorunfall
(Chernobyl - radiation exposure from the accident)

Die Messwerte der Aktivitätskonzentration von Cs-137 liegen wie im Vorjahr in den meisten Fällen unter 1 Bq pro Kilogramm Frischmasse bzw. pro Liter. Im Durchschnitt wird mit der Gesamtnahrung eine Aktivität von ca. 0,23 Bq Cs-137 pro Tag zugeführt, woraus eine Ingestionsdosis von 0,001 mSv pro Jahr resultiert (zum Vergleich 1986: 0,04 mSv). Diese ist gegenüber der mittleren Strahlenexposition von ca. 0,3 mSv pro Jahr durch Ingestion natürlich radioaktiver Stoffe (K-40, radioaktive Isotope von Uran und Thorium und deren Folgeprodukte) sehr klein.
In Lebensmitteln aus Waldgebieten und vereinzelt auch bei Fischen wurden weiterhin höhere Werte gemessen. Die spezifischen Cs-137-Aktivitäten reichen bei einigen Arten von Wildpilzen, z. B. Maronenröhrlingen (71 Messungen) bis 1200 Bq/kg und bei Birkenpilzen (21 Messungen) bis 1360 Bq/kg. Bei Fischen treten in Binnenseen bis zu 99 Bq/kg bei Flussbarsch auf (13 Messungen).

Bei Wildschweinen werden nach wie vor Überschreitungen des Höchstwertes von 600 Bq pro kg für Cs-137 gemessen; diese dürfen dann nicht vermarktet werden.

In Bayern lag der Mittelwert von 98 Messungen an Wildschweinen bei 670 Bq/kg, die Werte reichen bis 10 200 Bq/kg. Für Rehe lag der Mittelwert von 94 Messungen bei 38 Bq/kg mit einem Höchstwert von 1350 Bq/kg. In allen anderen Bundesländern gab es 2011 keine Überschreitung des Höchstwertes für Rehfleisch.

106 Messungen an Wildschweinfleisch in Nordrhein-Westfalen ergaben einen Mittelwert von 166 Bq/kg bei einem Höchstwert von 1470 Bq/kg. In Baden-Württemberg lag der Mittelwert bei 518 Bq/kg (3 Messungen), der Maximalwert bei 1330 Bq/kg. In Sachsen-Anhalt wurde mit 808 Bq/kg der Höchstwert in einem Fall überschritten. 14 Messungen ergaben hier einen Mittelwert von 124 Bq/kg. In Niedersachsen wurde ein Mittelwert von 47 Bq/kg und ein Maximalwert von 398 Bq/kg bei Wildschweinfleisch gemessen (30 Messungen). In allen anderen Bundesländern wurde bei keiner Messung der Höchstwert von 600 Bq/kg überschritten.

Der einmalige Verzehr von 500 g Wildschweinfleisch des am höchsten kontaminierten Tieres (10 200 Bq/kg Cs-137) hätte bei Erwachsenen zu einer effektiven Dosis von 0,07 mSv geführt. Das BfS rät grundsätzlich, jede Strahlenexposition so gering wie möglich zu halten. Die Strahlenexposition durch den Verzehr von Nahrungsmitteln lässt sich durch das individuelle Ernährungsverhalten reduzieren. Wer für sich persönlich die Strahlenbelastung so gering wie möglich halten möchte, sollte deshalb auf den Verzehr von vergleichsweise hoch kontaminierten Pilzen und Wildbret verzichten (www.bfs.de/de/ion/nahrungsmittel/pilze_wildbret.html und www.bfs.de/de/ion/nahrungsmittel/speisepilze.html).
1.3 Anlagen nach Atomgesetz

(Facilities according to the Atomic Energy Act)

Allgemeine Angaben

In der Bundesrepublik Deutschland existierten im Jahr 2011 folgende kerntechnische Anlagen:

- 4 Forschungsreaktoren (Tabelle 1.3-2) mit einer thermischen Leistung von insgesamt 35 MW.

- 17 Zwischenlager für abgebrannte Brennelemente (Tabelle 1.3-3).

- Das Endlager für radioaktive Abfälle Morsleben (ERAM). Seit dem 25.09.1998 nimmt das ERAM keine radioaktiven Abfälle zur Endlagerung mehr an (Tabelle 1.3-4).

1 Das TBL Gorleben ist zusätzlich für die Aufbewahrung hochradioaktiver Abfälle (HAW-Glaskokillen) aus der Wiederaufarbeitung abgebrannter Brennelemente aus deutschen Kernkraftwerken genehmigt.
Tabelle 1.3-1 Kernkraftwerke in der Bundesrepublik Deutschland
(Nuclear power plants in the Federal Republic of Germany)

<table>
<thead>
<tr>
<th>Standort</th>
<th>Bezeichnung</th>
<th>Typ</th>
<th>elektr. Bruttoleistung (MW)</th>
<th>Bruttostromerzeugung 2011* (MWa)</th>
<th>Beginn / Ende des nuklearen Betriebes</th>
<th>Vorfluter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kahl</td>
<td>VAK</td>
<td>SWR</td>
<td>16</td>
<td>0</td>
<td>1960/1985</td>
<td>Main</td>
</tr>
<tr>
<td>Karlsruhe</td>
<td>MZFR</td>
<td>D₂O-DWR</td>
<td>58</td>
<td>0</td>
<td>1965/1984</td>
<td>Rhein</td>
</tr>
<tr>
<td>Rheinsberg</td>
<td>KKR</td>
<td>WWER</td>
<td>70</td>
<td>0</td>
<td>1966/1990</td>
<td>Stechlinsee</td>
</tr>
<tr>
<td>Gundremmingen A</td>
<td>KRB-A</td>
<td>SWR</td>
<td>252</td>
<td>0</td>
<td>1966/1977</td>
<td>Donau</td>
</tr>
<tr>
<td>Jülich</td>
<td>AVR</td>
<td>HTR</td>
<td>15</td>
<td>0</td>
<td>1966/1988</td>
<td>Ruhr/Maas</td>
</tr>
<tr>
<td>Lingen</td>
<td>KWL</td>
<td>SWR</td>
<td>268</td>
<td>0</td>
<td>1968/1977</td>
<td>Ems</td>
</tr>
<tr>
<td>Obrigheim</td>
<td>KWO</td>
<td>DWR</td>
<td>357</td>
<td>0</td>
<td>1968/2005</td>
<td>Neckar</td>
</tr>
<tr>
<td>Karlsruhe</td>
<td>KNR</td>
<td>NaR</td>
<td>20</td>
<td>0</td>
<td>1971/1991</td>
<td>Rhein</td>
</tr>
<tr>
<td>Würgassen</td>
<td>KWW</td>
<td>SWR</td>
<td>670</td>
<td>0</td>
<td>1971/1994</td>
<td>Weser</td>
</tr>
<tr>
<td>Stade</td>
<td>KKS</td>
<td>DWR</td>
<td>672</td>
<td>0</td>
<td>1972/2003</td>
<td>Elbe</td>
</tr>
<tr>
<td>Greifswald 1 - 5</td>
<td>KGR 1-5</td>
<td>WWER</td>
<td>je 440</td>
<td>0</td>
<td>1973/1990</td>
<td>Ostsee</td>
</tr>
<tr>
<td>Biblis A</td>
<td>KWA A</td>
<td>DWR</td>
<td>1225</td>
<td>255</td>
<td>1974/2011</td>
<td>Rhein</td>
</tr>
<tr>
<td>Biblis B</td>
<td>KWB B</td>
<td>DWR</td>
<td>1300</td>
<td>198</td>
<td>1976/2011</td>
<td>Rhein</td>
</tr>
<tr>
<td>Neckarwestheim 1</td>
<td>GKN 1</td>
<td>DWR</td>
<td>840</td>
<td>167</td>
<td>1976/2011</td>
<td>Neckar</td>
</tr>
<tr>
<td>Brunsbüttel</td>
<td>KKB</td>
<td>SWR</td>
<td>806</td>
<td>0</td>
<td>1976/2011</td>
<td>Elbe</td>
</tr>
<tr>
<td>Isar 1</td>
<td>KKI 1</td>
<td>SWR</td>
<td>912</td>
<td>185</td>
<td>1977/2011</td>
<td>Elbe</td>
</tr>
<tr>
<td>Unterweser</td>
<td>KKI</td>
<td>DWR</td>
<td>1410</td>
<td>284</td>
<td>1978/2011</td>
<td>Weser</td>
</tr>
<tr>
<td>Philippsburg 1</td>
<td>KKP 1</td>
<td>SWR</td>
<td>926</td>
<td>169</td>
<td>1979/2011</td>
<td>Rhein</td>
</tr>
<tr>
<td>Grafenrheinfeld</td>
<td>KKG</td>
<td>DWR</td>
<td>1345</td>
<td>1032</td>
<td>1981</td>
<td>Main</td>
</tr>
<tr>
<td>Krümmel</td>
<td>KKK</td>
<td>SWR</td>
<td>1402</td>
<td>0</td>
<td>1983/2011</td>
<td>Elbe</td>
</tr>
<tr>
<td>Hamm-Uentrop</td>
<td>THTHR-300</td>
<td>HTR</td>
<td>307</td>
<td>0</td>
<td>1983/1988</td>
<td>Lippe</td>
</tr>
<tr>
<td>Gundremmingen B</td>
<td>KRB-II-B</td>
<td>SWR</td>
<td>1344</td>
<td>1239</td>
<td>1984</td>
<td>Donau</td>
</tr>
<tr>
<td>Grohnde</td>
<td>KWG</td>
<td>DWR</td>
<td>1430</td>
<td>1161</td>
<td>1984</td>
<td>Weser</td>
</tr>
<tr>
<td>Gundremmingen C</td>
<td>KRB-II-C</td>
<td>SWR</td>
<td>1344</td>
<td>1134</td>
<td>1984</td>
<td>Donau</td>
</tr>
<tr>
<td>Philippsburg 2</td>
<td>KKP 2</td>
<td>DWR</td>
<td>1468</td>
<td>1292</td>
<td>1984</td>
<td>Rhein</td>
</tr>
<tr>
<td>Mülheim-Kärlich</td>
<td>KMK</td>
<td>DWR</td>
<td>1302</td>
<td>0</td>
<td>1986/1988</td>
<td>Rhein</td>
</tr>
<tr>
<td>Brokdorf</td>
<td>KBR</td>
<td>DWR</td>
<td>1480</td>
<td>1166</td>
<td>1986</td>
<td>Elbe</td>
</tr>
<tr>
<td>Isar 2</td>
<td>KKI 2</td>
<td>DWR</td>
<td>1485</td>
<td>1405</td>
<td>1988</td>
<td>Elbe</td>
</tr>
<tr>
<td>Emsland</td>
<td>KKE</td>
<td>DWR</td>
<td>1400</td>
<td>1320</td>
<td>1988</td>
<td>Ems</td>
</tr>
<tr>
<td>Neckarwestheim 2</td>
<td>GKN 2</td>
<td>DWR</td>
<td>1400</td>
<td>1319</td>
<td>1988</td>
<td>Neckar</td>
</tr>
</tbody>
</table>

*a SWR = Leichtwasser-Siedewasserreaktor; DWR = Leichtwasser-Druckwasserreaktor; D₂O-DWR = Schwerwasser-Druckwasserreaktor; HTR = gasgekühlter Hochtemperaturreaktor; NaR = natriumgekühlter Reaktor; WWER = Leichtwasser-Druckwasserreaktor sowjetischer Bauart

* Daten aus Atomwirtschaft, atw 2012, Kernkraftwerke in Deutschland Betriebsergebnisse 2011

Tabelle 1.3-2 Forschungsreaktoren (ausgenommen Nullleistungsreaktoren) in der Bundesrepublik Deutschland
(Research reactors - not including reactors with zero output - in the Federal Republic of Germany)

<table>
<thead>
<tr>
<th>Standort</th>
<th>Betreiber</th>
<th>Bezeichnung des Reaktors</th>
<th>therm. Leistung * (MW)</th>
<th>Beginn / Ende des nuklearen Betriebes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garching</td>
<td>Technische Universität München, Forschungs-Neutronenquelle Heinz-Maier-Leibnitz</td>
<td>FRM I</td>
<td>4</td>
<td>1957/2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FRM II</td>
<td>20</td>
<td>2004</td>
</tr>
<tr>
<td>Geesthacht</td>
<td>GKSS-Forschungszentrum</td>
<td>FRG 1</td>
<td>5</td>
<td>1958/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FRG 2</td>
<td>15</td>
<td>1963/1993</td>
</tr>
<tr>
<td>Karlsruhe</td>
<td>Forschungszentrum Karlsruhe (KIT)</td>
<td>FR 2</td>
<td>44</td>
<td>1961/1981</td>
</tr>
<tr>
<td>Jülich</td>
<td>Forschungszentrum Jülich</td>
<td>FRJ 1</td>
<td>10</td>
<td>1962/1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FRJ 2</td>
<td>23</td>
<td>1962/2006</td>
</tr>
</tbody>
</table>
Teil B - II - Künstliche Umweltradioaktivität - 107 -

im Dauerbetrieb

Tabelle 1.3-3 Zwischenlager für abgebrannte Brennelemente in der Bundesrepublik Deutschland

(Interim storage facilities of spent nuclear fuels in the Federal Republic of Germany)

Berichtigung: Im Transportbehälterlager Ahaus waren im Berichtsjahr wie auch im Vorjahr 329 Behälter auf 56 Stellplätzen deponiert

<table>
<thead>
<tr>
<th>Standort</th>
<th>Betreiber</th>
<th>Bezeichnung des Reaktors</th>
<th>therm. Leistung * (MW)</th>
<th>Beginn / Ende des nuklearen Betriebes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainz</td>
<td>Johannes Gutenberg-Universität</td>
<td>FRMZ</td>
<td>0,1</td>
<td>1965</td>
</tr>
<tr>
<td>Braunschweig</td>
<td>Physikalisch-Technische Bundesanstalt</td>
<td>FMRB</td>
<td>1</td>
<td>1967/1995</td>
</tr>
<tr>
<td>Hannover</td>
<td>Medizinische Hochschule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berlin</td>
<td>Helmholtz-Zentrum Berlin für Materialien und Energie (früher Hahn-Meitner-Institut Berlin, HMI)</td>
<td>FRH</td>
<td>0,25</td>
<td>1973/1996</td>
</tr>
<tr>
<td>Heidelberg</td>
<td>Deutsches Krebsforschungszentrum</td>
<td>BER II</td>
<td>10</td>
<td>1973</td>
</tr>
</tbody>
</table>

* im Dauerbetrieb

Tabelle 1.3-4 Zwischenlager für abgebrannte Brennelemente in der Bundesrepublik Deutschland

(Interim storage facilities of spent nuclear fuels in the Federal Republic of Germany)

<table>
<thead>
<tr>
<th>Standort</th>
<th>Betreiber</th>
<th>Bezeichnung</th>
<th>Beginn des Betriebes</th>
<th>Sstellplätze gesamt (Ende 2011 belegt)</th>
<th>Sstellplätze gesamt (Ende 2010 belegt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SZL Biblis</td>
<td></td>
<td></td>
<td>22.09.2003</td>
<td>18.05.2006</td>
<td>135 (51)</td>
</tr>
<tr>
<td>SZL Brokdorf</td>
<td></td>
<td></td>
<td>28.11.2003</td>
<td>05.03.2007</td>
<td>100 (14)</td>
</tr>
<tr>
<td>SZL Brunsbüttel</td>
<td></td>
<td></td>
<td>28.11.2003</td>
<td>05.02.2006</td>
<td>80 (6)</td>
</tr>
<tr>
<td>SZL Grafenrheinfeld</td>
<td></td>
<td></td>
<td>12.02.2003</td>
<td>27.02.2006</td>
<td>88 (13)</td>
</tr>
<tr>
<td>SZL Grohnde</td>
<td></td>
<td></td>
<td>20.12.2002</td>
<td>27.04.2006</td>
<td>100 (13)</td>
</tr>
<tr>
<td>SZL Isar</td>
<td></td>
<td></td>
<td>22.09.2003</td>
<td>12.03.2007</td>
<td>152 (22)</td>
</tr>
<tr>
<td>SZL Lingen</td>
<td></td>
<td></td>
<td>06.11.2002</td>
<td>10.12.2002</td>
<td>125 (32)</td>
</tr>
<tr>
<td>SZL Neckarwestheim</td>
<td></td>
<td></td>
<td>22.09.2003</td>
<td>06.12.2006</td>
<td>151 (41)</td>
</tr>
<tr>
<td>SZL Philippburg</td>
<td></td>
<td></td>
<td>19.12.2003</td>
<td>19.03.2007</td>
<td>152 (36)</td>
</tr>
<tr>
<td>SZL Unterweser</td>
<td></td>
<td></td>
<td>22.09.2003</td>
<td>18.06.2007</td>
<td>80 (8)</td>
</tr>
<tr>
<td>AVR-Behälterlager Jülich</td>
<td></td>
<td></td>
<td>17.06.1993</td>
<td>23.08.1993</td>
<td>158 (152)</td>
</tr>
<tr>
<td>Nasslager Obrigheim</td>
<td></td>
<td></td>
<td>26.10.1998</td>
<td>Mitte 1999</td>
<td>980 (342)</td>
</tr>
<tr>
<td>TBL Ahaus</td>
<td></td>
<td></td>
<td>10.04.1987</td>
<td>06.1992</td>
<td>420 (56)</td>
</tr>
<tr>
<td>TBL Gorleben</td>
<td></td>
<td></td>
<td>05.09.1983</td>
<td>25.04.1995</td>
<td>420 (113)</td>
</tr>
<tr>
<td>ZLN Rubenow</td>
<td></td>
<td></td>
<td>05.11.1999</td>
<td>11.12.1999</td>
<td>80 (74)</td>
</tr>
<tr>
<td>SZL Obrigheim (beantragt)</td>
<td></td>
<td></td>
<td>22.04.2005</td>
<td>Antragstellung</td>
<td>15</td>
</tr>
</tbody>
</table>

* Berichtigung: Im Transportbehälterlager Ahaus waren im Berichtsjahr wie auch im Vorjahr 329 Behälter auf 56 Stellplätzen deponiert

SZL Standortzwischenlager
TBL Transportbehälterlager

ZLN Transportbehälterlager im Zwischenlager Nord Rubenow
AVR Arbeitsgemeinschaft Versuchsreaktor Jülich

Tabelle 1.3-4 Endlager für radioaktive Abfälle in der Bundesrepublik Deutschland

(Ultimate disposal facilities for radioactive waste in the Federal Republic of Germany)

<table>
<thead>
<tr>
<th>Standort</th>
<th>Betreiber</th>
<th>Bezeichnung</th>
<th>Beginn des Betriebes</th>
<th>Inventar 1,2 (Stand 31.12.2011)</th>
<th>Inventar 1,2 (Stand 31.12.2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morsleben</td>
<td>Bundesamt für Strahlenschutz</td>
<td>ERAM</td>
<td>1971</td>
<td>36 998 m³ / 1,02 E14 Bq</td>
<td>36 984 m³ / 1,07 E14 Bq</td>
</tr>
<tr>
<td>Remlingen</td>
<td>Bundesamt für Strahlenschutz (bis 2009 Helmholtz Zentrum München)</td>
<td>Schachtanlage Asse II</td>
<td>1967</td>
<td>2,7 E15 Bq</td>
<td>2,8 E15 Bq</td>
</tr>
</tbody>
</table>

1 Die Volumendifferenz zum Vorjahr ergibt sich aus der Einlagerung radioaktiver Betriebsabfälle, die im ERAM angefallen sind. Ohne Berücksichtigung des Abklingverhaltens seit Beginn der Einlagerung ergibt sich für die Gesamtaktivität ein Wert von 3,8 E14 Bq.

2 Die Änderung der Aktivität ergibt sich aus dem radioaktiven Zerfall der eingelagerten Radionuklide.
Teil B

teil b

- 108 -

TEIL B - II - KÜNSTLICHE UMWELTRADIOAKTIVITÄT

Tabelle 1.3-5 Grenznahe kerntechnische Anlagen im benachbarten Ausland
(Nuclear facilities in neighbouring countries located close to the German border)

<table>
<thead>
<tr>
<th>Land</th>
<th>Anlage / Standort</th>
<th>Entfernung zur deutschen Grenze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schweiz</td>
<td>Kernkraftwerk Beznau (2 Blöcke)</td>
<td>ca. 6 km</td>
</tr>
<tr>
<td></td>
<td>Paul Scherrer Institut Villigen/Würenlingen</td>
<td>ca. 7 km</td>
</tr>
<tr>
<td></td>
<td>Kernkraftwerk Mühleberg</td>
<td>ca. 70 km</td>
</tr>
<tr>
<td></td>
<td>Kernkraftwerk Gösgen</td>
<td>ca. 20 km</td>
</tr>
<tr>
<td></td>
<td>Kernkraftwerk Leibstadt</td>
<td>ca. 0,5 km</td>
</tr>
<tr>
<td>Frankreich</td>
<td>Kernkraftwerk Fessenheim (2 Blöcke)</td>
<td>ca. 1,5 km</td>
</tr>
<tr>
<td></td>
<td>Kernkraftwerk Cattenom (4 Blöcke)</td>
<td>ca. 12 km</td>
</tr>
<tr>
<td>Niederlande</td>
<td>Kernkraftwerk Dodewaard (Betrieb beendet)</td>
<td>ca. 20 km</td>
</tr>
<tr>
<td></td>
<td>Urananreicherungsanlage Almelo</td>
<td>ca. 15 km</td>
</tr>
</tbody>
</table>

1.3.1 Strahlenexposition durch Anlagen nach Atomgesetz
(Radiation exposure from facilities according to the Atomic Energy Act)

Die für das Jahr 2011 ermittelten Daten über die Aktivitätsableitungen radioaktiver Stoffe mit Fortluft und Abwasser aus kerntechnischen Anlagen sind in den Kapiteln 2.1.5 bzw. 2.2.4 zusammengefasst. Sie dienen als Grundlage für die Berechnung der Strahlenexposition der Bevölkerung in der Umgebung der einzelnen Anlagen. Diese Berechnung wurde entsprechend der „Allgemeinen Verwaltungsvorschrift zu § 47 Strahlenschutzverordnung (StrlSchV): Ermittlung der Strahlenexposition durch die Ableitung radioaktiver Stoffe aus kerntechnischen Anlagen oder Einrichtungen“ durchgeführt.

Berechnete obere Werte der Strahlenexposition

Für die Zwecke der Berichterstattung werden hier nur die Dosen für die kritischen Gruppen und Organe angegeben. In Fällen, in denen die Strahlenbelastung von Säuglingen unter der von Kleinkindern liegt, wird diese nicht angegeben. Außerdem werden Organadosen nur für das am meisten betroffene Organ angegeben.

Kernkraftwerke

Tabelle 1.3.1-1 enthält die Ergebnisse aus der Berechnung der Strahlenexposition der Bevölkerung im Jahr 2011 in der Umgebung von Kernkraftwerken durch die Aktivitätsableitungen radioaktiver Stoffe mit der Fortluft. Angegeben ist die effektive Dosis für Erwachsene (Altersgruppe >17 Jahre) und Kleinkinder (Altersgruppe von >1 bis 2 Jahre) sowie die Schilddrüsendosis für Kleinkinder. Tabelle 1.3.1-1 zeigt als größten berechneten Wert der effektiven Dosis für Erwachsene 3 µSv (1 % des Dosisgrenzwertes nach StrlSchV) beim Standort Gundremmingen, sowie für Kleinkinder 6 µSv (2 % des Dosisgrenzwertes nach StrlSchV). Der größte berechnete Wert der Schilddrüsendosis für Kleinkinder ergibt sich mit 6 µSv (unter 1 % des Dosisgrenzwertes nach StrlSchV) ebenfalls bei Gundremmingen. Diese maximalen Werte sind gegenüber dem Vorjahr teilweise geringfügig zurückgegangen.

In Tabelle 1.3.1-2 sind die aus den Ableitungen radioaktiver Stoffe mit dem Abwasser aus Kernkraftwerken resultierenden oberen Werte der effektiven Dosis für Erwachsene und Kleinkinder zusammengestellt. Hierbei wurden ungünstige Verzehr- und Lebensgewohnheiten angenommen, insbesondere für Erwachsene ein hoher Konsum an Flussfisch, der in der Kühlwasserfahne gefangen wird, und für beide Personengruppen eine Aufenthaltszeit von 1000 Stunden am Rhein oder auf Wiesen in Flussnähe. Der größte berechnete Wert der effektiven Dosis für Kleinkinder beträgt 1,7 µSv für Kleinkinder (entsprechen ca. 0,6 % des Dosisgrenzwertes) am Standort des Kernkraftwerkes Emsland.

Entsprechend der Allgemeinen Verwaltungsvorschrift zu § 47 StrlSchV wurde die Strahlenexposition am Unterlauf der Flüsse näher betrachtet, wobei jeweils sämtliche Emitterten berücksichtigt wurden. Für das Mündungsgebiet des Neckars wurden effektive Jahresdosen von etwa 0,8 µSv für Erwachsene und 1,3 µSv für Kleinkinder ermittelt; für die Weser wurden für beide Personengruppen 0,2 µSv bzw. 0,3 µSv berechnet; am Main liegen die effektiven Jahresdosen bei 0,2 µSv bzw. 0,3 µSv, am Rhein bei 0,1 µSv und an der Donau bei 0,3 bzw. 0,6 µSv. Diese Dosiswerte ergeben sich auch für das kritische Organ (rotes Knochenmark). Zu diesen Werten trägt vor allem die äußere Bestrahlung auf Überschwemmungsgebieten bei, die im Wesentlichen durch Ablagerungen aus früheren Jahren bedingt ist.
Forschungszentren

In Tabelle 1.3.1-4 wird die Strahlenexposition durch die Ableitung radioaktiver Stoffe über das Abwasser aus den Forschungszentren in Karlsruhe, Jülich und Geesthacht angegeben.

Kernbrennstoff verarbeitende Betriebe

Für die Kernbrennstoff verarbeitenden Betriebe in Lingen und Gronau sind in Tabelle 1.3.1-5 die für eine Referenzperson an den ungünstigsten Einwirkungsstellen berechneten oberen Werte der effektiven Dosis für Erwachsene und Kleinkinder, sowie die oberen Werte der Knochenoberflächeendosis für Kleinkinder durch die Aktivitätsableitungen radioaktiver Stoffe mit der Fortluft und die Direktstrahlung angegeben. Die Messwerte zur Direktstrahlung beinhalten den natürlichen Untergrund.

Die durch die Ableitungen von Alphastrahlern mit dem Abwasser bedingten oberen Werte der effektiven Dosis von Erwachsenen und Kleinkindern in der Umgebung Kernbrennstoff verarbeitender Betriebe sind in Tabelle 1.3.1-6 aufgeführt. Wie in den Vorjahren liegen die Werte bei jeweils weniger als 0,1 µSv/Jahr.

Endlager Morsleben

Die Strahlenexposition in Folge der Ableitung radioaktiver Stoffe mit der Fortluft und mit dem Abwasser aus dem Endlager für radioaktive Abfälle Morsleben (ERAM) ist in Tabelle 1.3.1-7 aufgeführt. Der durch die Ableitung radioaktiver Stoffe mit der Fortluft ermittelte obere Wert der effektiven Dosis für Erwachsene betrug 2011 0,11 µSv, für Kleinkinder (Altersgruppe 1 bis 2 Jahre) 0,27 µSv und für mit Muttermilch ernährte Säuglinge 0,7 µSv; dies sind ca. 0,03 %, 0,09 % bzw. 0,23 % des Grenzwertes nach der Strahlenschutzverordnung. Die Dosis des kritischen Organ (rotes Knochenmark für Säuglinge unter einem Jahr und Kleinkinder im Alter von 1 bis 2 Jahren; Knochenoberfläche für Erwachsene) errechnete sich zu 0,21 µSv für Erwachsene, 0,74 µSv für Kleinkinder (Altersgruppe 1 - 2 Jahre) und 2,2 µSv für mit Muttermilch ernährte Säuglinge (ca. 0,07 %, 0,25 % bzw. 0,73 % des Grenzwertes). Die höheren Dosiswerte für mit Muttermilch ernährte Säuglinge gegenüber Kleinkindern sind darauf zurückzuführen, dass durch die Mutter aufgenommene Radionuklide an das gestillte Kind weitergegeben werden. Die aus den Ableitungen radioaktiver Stoffe mit dem Abwasser resultierenden oberen Werte der effektiven Dosis liegen auch im Berichtsjahr 2011 unterhalb von 0,1 Mikrosievert für Erwachsene und Kleinkinder. Bei den Berechnungen wurde für nicht identifizierte Betastrahler der ungünstigste Fall, dass es sich um Sr-90 handelt, angenommen.

Schachtanlage Asse II

Der durch die Ableitung radioaktiver Stoffe mit der Fortluft ermittelte obere Wert der effektiven Dosis betrug 2011 für Erwachsene 18 µSv, für Kleinkinder (Altersgruppe 1 bis 2 Jahre) 26 µSv und für Säuglinge 32 µSv. Dies sind ca. 6 %, 9 % und 11 % des Grenzwertes gemäß Strahlenschutzverordnung. Die Dosis für das kritische Organ (rotes Knochenmark für Säuglinge unter einem Jahr; Knochenoberfläche für Erwachsende) errechnete sich zu 0,21 µSv für Erwachsene, 0,74 µSv für Kleinkinder (Altersgruppe 1 - 2 Jahre) und 2,2 µSv für mit Muttermilch ernährte Säuglinge (ca. 0,07 %, 0,25 % bzw. 0,73 % des Grenzwertes). Die höheren Dosiswerte für mit Muttermilch ernährte Säuglinge gegenüber Kleinkindern sind darauf zurückzuführen, dass durch die Mutter aufgenommene Radionuklide an das gestillte Kind weitergegeben werden. Die aus den Ableitungen radioaktiver Stoffe mit dem Abwasser resultierenden oberen Werte der effektiven Dosis liegen auch im Berichtsjahr 2011 unterhalb von 0,1 Mikrosievert für Erwachsene und Kleinkinder. Bei den Berechnungen wurde für nicht identifizierte Betastrahler der ungünstigste Fall, dass es sich um Sr-90 handelt, angenommen.
Zentrale Zwischenlager Ahaus, Nord, Gorleben

Für das zentrale Zwischenlager Nord und die zentralen Transportbehälterlager Ahaus und Gorleben ist die Strahlenexposition durch Direktstrahlung in Tabelle 1.3.1-8 aufgeführt. Die Messwerte zur Direktstrahlung beinhalten den natürlichen Untergrund. Dieser lag im Fall von Gorleben zur Zeit der Beweissicherungsmessungen 1983 - 1989 am Messpunkt 2 zwischen 0,48 und 0,68 mSv/a (Gammaortsdosis) bzw. zwischen 0,09 und 0,1 mSv/a (Neutronenortsdosis).

Bewertung

Der Beitrag der kerntechnischen Anlagen in der Bundesrepublik Deutschland sowie im angrenzenden Ausland zur mittleren effektiven Dosis einer Person der Bevölkerung der Bundesrepublik Deutschland lag auch im Jahr 2011 deutlich unter 10 µSv pro Jahr.

Tabelle 1.3.1-1 Strahlenexposition in der Umgebung von Kernkraftwerken durch die Aktivitätsableitung radioaktiver Stoffe mit der Fortluft

(Radiation exposures in the surroundings of nuclear power plants due to the discharge of radioactive substances with exhaust air)

<table>
<thead>
<tr>
<th>Kerntechnische Anlagen</th>
<th>Oberer Wert a für Erwachsene in µSv</th>
<th>Oberer Wert a für Kleinkinder in µSv</th>
<th>der Schilddrüsendosis für Kleinkinder in µSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAK Kahl</td>
<td>< 0,1</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KKR Rheinsberg b</td>
<td>< 0,1</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KWL Lingen</td>
<td>< 0,1</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KWO Obrigheim</td>
<td>0,1</td>
<td>0,3</td>
<td>0,2</td>
</tr>
<tr>
<td>KKS Stade</td>
<td>< 0,1</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KWW Würgassen</td>
<td>< 0,1</td>
<td>0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KGR Greifswald b</td>
<td>< 0,1</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KWB Biblis, A, B</td>
<td>0,4</td>
<td>0,3</td>
<td>0,6</td>
</tr>
<tr>
<td>GKN Neckarwestheim 1, 2</td>
<td>0,7</td>
<td>0,5</td>
<td>1,1</td>
</tr>
<tr>
<td>KKB Brunsbüttel</td>
<td>< 0,1</td>
<td>0,2</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KKI Isar 1, 2</td>
<td>1,1</td>
<td>3,3</td>
<td>2,2</td>
</tr>
<tr>
<td>KKK Unterweser</td>
<td>< 0,1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>KKP Philippsburg 1, 2</td>
<td>1,1</td>
<td>4,4</td>
<td>2,2</td>
</tr>
<tr>
<td>KKG Grafenreinfeld</td>
<td>0,3</td>
<td>0,4</td>
<td>0,5</td>
</tr>
<tr>
<td>KKK Krümmel</td>
<td>< 0,1</td>
<td>0,3</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KRB Gundremmingen A, B, C</td>
<td>3,0</td>
<td>2,2</td>
<td>6,6</td>
</tr>
<tr>
<td>KWG Grohnde</td>
<td>0,6</td>
<td>0,4</td>
<td>1,1</td>
</tr>
<tr>
<td>TTHTR-300 Hamm-Uentrop</td>
<td>< 0,1</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KMK Mülheim-Kärlich</td>
<td>< 0,1</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KBR Brokdorf</td>
<td>1,0</td>
<td>0,8</td>
<td>2,2</td>
</tr>
<tr>
<td>KKE Emsland</td>
<td>0,4</td>
<td>0,4</td>
<td>0,8</td>
</tr>
</tbody>
</table>

a Berechnet für eine Referenzperson an den ungünstigsten Einwirkungsstellen

b Die Strahlenexposition konnte für Expositionspfade, bei denen Radionuklide in den Vorjahren akkumuliert wurden, nur unvollständig berechnet werden, da bei diesen Kernkraftwerken Werte für die Aktivitätsableitung radioaktiver Stoffe mit der Fortluft aus den Jahren vor 1990 (Greifswald) bzw. vor 1984 (Rheinsberg) nicht vorliegen.
Tabelle 1.3.1-2 Strahlenexposition in der Umgebung von Kernkraftwerken durch die Ableitung radioaktiver Stoffe mit dem Abwasser

(Radiation exposures in the surroundings of nuclear power plants due to the discharge of radioactive substances with waste water)

<table>
<thead>
<tr>
<th>Kerntechnische Anlagen</th>
<th>Oberer Wert der effektiven Dosis für Erwachsene in µSv</th>
<th>Oberer Wert der effektiven Dosis für Kleinkinder in µSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRB Gundremmingen A, B und C</td>
<td>0,2</td>
<td>0,4</td>
</tr>
<tr>
<td>KWO Obrigheim</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KKS Stade</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KWW Würgassen</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KWB Biblis A und B</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>GKN Neckarwestheim 1 und 2</td>
<td>0,6</td>
<td>0,5</td>
</tr>
<tr>
<td>KKB Brunsbüttel</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KKI Isar 1 und 2</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>KKU Unterweser</td>
<td>< 0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>KKP Philippsburg 1 und 2</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KKG Grafenhainfeld</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>KKK Krümmel</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KGW Grohnde</td>
<td>0,2</td>
<td>0,3</td>
</tr>
<tr>
<td>KMK Mühlheim-Kärlich</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KBR Brokdorf</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>KKE Emsland</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>KKR Rheinsberg *</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>KGR Greifswald *</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
</tbody>
</table>

* Bei der Berechnung der Strahlenexposition konnten für Expositionspfade, bei denen die effektive Dosis durch langjährige Ablagerungen von Radionukliden bedingt ist, nur die seit 1990 mit dem Abwasser abgeleiteten radioaktiven Stoffe berücksichtigt werden.

Tabelle 1.3.1-3 Strahlenexposition in der Umgebung von Forschungszentren durch die Aktivitätsableitung radioaktiver Stoffe mit der Fortluft

(Radiation exposures in the surroundings of research centres due to the discharge of radioactive substances with exhaust air)

<table>
<thead>
<tr>
<th>Forschungseinrichtung</th>
<th>Oberer Wert der effektiven Dosis in µSv</th>
<th>Oberer Wert der Schilddrüsendosis in µSv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>für Erwachsene</td>
<td>für Kleinkinder</td>
</tr>
<tr>
<td>Karlsruher Institut für Technologie (KIT) früher Forschungszentrum Karlsruhe (einschl. Wiederaufarbeitungsanlage) *</td>
<td>10</td>
<td>1,9</td>
</tr>
<tr>
<td>Forschungszentrum Jülich (einschl. Versuchsreaktor AVR) *</td>
<td>14</td>
<td>1,5</td>
</tr>
<tr>
<td>Forschungszentrum Dresden-Rossendorf (FZD) Gesamtstandort *</td>
<td>0,7</td>
<td>0,4</td>
</tr>
<tr>
<td>GKSS-Forschungszentrum Geesthacht *</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>Helmholtz-Zentrum Berlin für Materialien und Energie (früher Hahn-Meitner-Institut Berlin, HMI), (einschl. Zentralstelle für radioaktive Abfälle)*</td>
<td>0,4</td>
<td>0,3</td>
</tr>
<tr>
<td>Garching, FRM I und FRM II</td>
<td>0,2</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Tabelle 1.3.1-4 Strahlenexposition in der Umgebung von Forschungszentren durch die Ableitung radioaktiver Stoffe mit dem Abwasser*

(Radiation exposures in the surroundings of research centres due to the discharge of radioactive substances with waste water)

<table>
<thead>
<tr>
<th>Forschungseinrichtung</th>
<th>Oberer Wert der effektiven Dosis für Erwachsene in µSv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>Karlsruher Institut für Technologie (KIT) (einschl. Wiederaufarbeitungsanlage)</td>
<td>< 0,1</td>
</tr>
<tr>
<td>Forschungszentrum Jülich (einschl. Versuchsreaktor AVR)</td>
<td>4,6</td>
</tr>
<tr>
<td>GKSS-Forschungszentrum Geesthacht</td>
<td>< 0,1</td>
</tr>
</tbody>
</table>

* Nach Angaben der Forschungszentren

Tabelle 1.3.1-5 Strahlenexposition in der Umgebung der Kernbrennstoff verarbeitenden Betriebe durch die Ableitung radioaktiver Stoffe mit der Fortluft sowie auch Direktstrahlung

(Radiation exposures in the surroundings of processing facilities for nuclear fuels due to the discharge of radioactive substances with exhaust air and direct radiation)

<table>
<thead>
<tr>
<th>Betrieb</th>
<th>Ableitung mit der Fortluft</th>
<th>Direktstrahlung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oberer Wert der effektiven Dosis in µSv</td>
<td>der Knochenoberfläche in µSv</td>
</tr>
<tr>
<td></td>
<td>für Kleinkinder</td>
<td></td>
</tr>
<tr>
<td>ANF GmbH (Lingen)</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
<tr>
<td>URENCO D (Gronau)</td>
<td>< 0,1</td>
<td>< 0,1</td>
</tr>
</tbody>
</table>

* MP Messpunkt
| Die Messwerte zur Direktstrahlung beinhalten den natürlichen Untergrund

Tabelle 1.3.1-6 Strahlenexposition in der Umgebung der Kernbrennstoff verarbeitenden Betriebe durch die Ableitung radioaktiver Stoffe mit dem Abwasser

(Radiation exposures in the surroundings of processing facilities for nuclear fuels due to the discharge of radioactive substances with waste water)

<table>
<thead>
<tr>
<th>Betrieb</th>
<th>Oberer Wert der effektiven Dosis für Erwachsene und Kleinkinder in µSv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>ANF GmbH (Lingen)</td>
<td>< 0,1</td>
</tr>
<tr>
<td>URENCO D (Gronau)</td>
<td>< 0,1</td>
</tr>
</tbody>
</table>

Tabelle 1.3.1-7 Strahlenexposition in der Umgebung der Endlager durch die Ableitung radioaktiver Stoffe mit der Fortluft und dem Abwasser

(Radiation exposure in the surroundings of the final repositories due to the discharge of radioactive substances with exhaust air and waste water)

<table>
<thead>
<tr>
<th>Fortluft</th>
<th>Abwasser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oberer Wert in µSv</td>
<td>Oberer Wert in µSv der effektiven Dosis</td>
</tr>
<tr>
<td>2011</td>
<td>2010</td>
</tr>
<tr>
<td>Erwachsene</td>
<td>0,11</td>
</tr>
<tr>
<td>Kleinkinder (Altersgruppe 1 bis 2 Jahre)</td>
<td>0,27</td>
</tr>
<tr>
<td>mit Muttermilch ernährte Säuglinge</td>
<td>0,7</td>
</tr>
</tbody>
</table>

Schachtanlage Asse II

Erwachsene	18	12	88	55	< 0,1	< 0,1
Kleinkinder (Altersgruppe 1 bis 2 Jahre)	26	16	37	22	< 0,1	< 0,1
Säuglinge (≤ 1 Jahr)	32	20	63	39	< 0,1	< 0,1

* Knochenoberfläche für Erwachsene, rotes Knochenmark für Säuglinge und Kleinkinder

Die Auswirkungen des Ereignisses waren in Deutschland mit Mitteln der Spurenanalytik kurzzeitig messbar, die Aktivitätswerte in Luft, Niederschlag und Nahrungsmitteln fielen aber schon im Jahr 2011 wieder unter die Nachweisgrenzen. Insgesamt liegt die Kontamination durch den Unfall in Fukushima drei bis vier Größenordnungen (d. h. um den Faktor tausend bis zehntausend) unter den als Folge des Unfalls in Tschernobyl gemessenen Werten[2].

Radionuklide in der Luft

Um Messergebnisse mit hoher zeitlicher Auflösung zu erhalten, wurde der Zeitakt für die Probenahme der aerosolgebundenen Radionuklide an den vier Spurenmessstellen, die auch Bestandteil des EU-Sparsen Netzwerk sind (s. Bericht der Leitstellen des Bundes und des Bundesamtes für Strahlenschutz Teil II, Kapitel 5 [3]), ab dem 23.03.11 von wöchentlicher auf tägliche Probenahme umgestellt. Die PTB (Braunschweig) und das BfS (Schausinsland/Freiburg) verfügen über einen zweiten Hochvolumensammler am jeweiligen Probenahmeort, der DWD (Potsdam und Offenbach) an seiner Station in Offenbach. Diese wurden weiterhin im wöchentlichen Rhythmus betrieben. Dies hatte den Vorteil, dass neben Messungen mit einer hohen zeitlichen Auflösung und einer höheren Nachweisgrenze (NWG bezogen auf Co-60: ca. 20 µBq/m³; bis 30 µBq/m³) auch zusätzlich solche mit der gewohnten Empfindlichkeit (NGW bezogen auf Co-60: ca. 0,3 µBq/m³) durchgeführt werden konnten.

In den Proben vom 23.03.11 wurde zunächst I-131 an den Spurenmessstellen in Braunschweig, Potsdam und Offenbach nachgewiesen, am darauf folgenden Tag dann auch an der Messstation Schaunisland. Der zeitliche Versatz des ersten Anstiegs der Aktivitätskonzentrationen belegt die Durchzugsrichtung der kontaminierten Luftmasse von Nordwesten nach Südosten. Durch Auswaschung der an den Luftstaub gebundenen Radionuklide durch Niederschläge auf dem Transportweg varierten die maximalen Aktivitätskonzentrationen von I-131 in den Proben Ende März zwischen 3,7 µBq/m³ (Potsdam) und 1,1 µBq/m³ (Schaunisland). Mit den automatischen nuklidspezifisch messenden Monitor- systemen wurden an 19 Messstellen des DWD an den Tagen vom 27.03.11 bis zum 30.03.11 Aktivitätskonzentrationen von bis zu 7,7 µBq/m³ für I-131 gemessen. Für Cs-134 und Cs-137 wurden in Potsdam und Offenbach maximale Aktivitätskonzentrationen von ca. 0,4 mBq/m³ gemessen. In Braunschweig und auf dem Schaunisland lagen die Maximalwerte bei ca. 0,1 mBq/m³. In weiteren zeitlichen Verlauf glichen sich durch die Vermischung der Luftmassen die Zeitverläufe an den verschiedenen Standorten weiter an. So wurde ein zweites Maximum der Aktivitätskonzentrationen am 05.04.11 an allen Stationen zeitgleich mit ähnlichen Aktivitätskonzentrationen nachgewiesen. Die Aktivitätskonzentrationen der Radionuklide in der Luft nahmen in der Folge u. a. durch Verdünnung und radioaktiven Zerfall kontinuierlich ab, wobei die Aktivitätskonzentration von I-131, bedingt durch dessen recht kurze Halbwertszeit von 8 Tagen, am schnellsten abnahm. Zur Verdeutlichung sind in Abbildung 1.4-1 der zeitliche Verlauf der Aktivitätskonzentrationen von I-131 und Cs-137 an den Spurenmessstellen in Braunschweig, Potsdam, Offenbach und auf dem Schaunisland dargestellt.

In Ergänzung zu den Messungen der aerosolgebundenen Radionuklide wurden, ebenfalls auf der Basis verkürzter Probenahmezeiträume, an der Messstationen Offenbach (DWD) und auf dem Schaunisland (BfS) die Aktivitätskonzentrationen des Edelgases Xenons bestimmt. Hier zeigte sich ebenfalls im Zeitraum vom 23.03.11 bis zum 01.04.11 eine signifikante Erhöhung, in den folgenden Wochen sanken die Aktivitätskonzentrationen wieder auf das Niveau vor dem Unfall in Fukushima.

Eine zusammenfassende Darstellung der Ergebnisse der Spurenmessstellen im Rahmen der Ereignisse von Fukushima befindet sich in Teil III im „Bericht der Leitstellen des Bundes und des Bundesamtes für Strahlenschutz“ [3].
Neben den Messungen der bodennahen Luft wurden auf der Basis der meteorologischen Prognosen am 23. und am 30.03.11 im deutschen Luftraum Messflüge durch den DWD durchgeführt. Der erste Messflug ergab keine Messwerte oberhalb der Nachweisgrenzen. Während des zweiten Messfluges am 30.03.11 wurden für I-131 Aktivitätskonzentrationen von 1,7 mBq/m³ in einer Flughöhe von 10 000 m und 2,6 mBq/m³ in einer Flughöhe von 6000 m festgestellt, also ähnliche Werte wie in der bodennahen Luft (s. o.).

Auch am Helmholtz Zentrum München (München-Neuherberg) wurde ebenfalls eine erhöhte Aktivitätskonzentration von I-131 in der bodennahen Luft gemessen. Der zeitliche Verlauf der Messergebnisse von aerosolgebundenen Radionukliden entspricht denen der anderen Spurenmessstellen. Die höchste Konzentration wurde für I-131 mit 0,6 mBq/m³ Ende März gemessen. Zusätzlich zu der aerosolgebunden Iodfraktion wurde der Anteil des gasförmigen Iods bestimmt, das in der Periode des Durchzugs der ersten kontaminierten Luftmasse etwa 60 % der Gesamtradioiodkonzentration ausmachte (Abbildung 1.4-3).

Radionuklide im Niederschlag

Ein Einfluss auf den Jahresmittelwert durch deponierte Radionuklide resultierend aus der Freisetzung in Fukushima/Japan zeigte sich in Niederschlagsproben nicht.

Radionuklide im Meerwasser

Radionuklide in Binnengewässern

Radionuklide in Blattgemüse, Milch und Weidenbewuchs

Als wahrscheinliche Folge des Reaktorunfalls von Fukushima wurden vereinzelt Cs-134- und I-131-Messwerte in den verschiedenen Umweltbereichen gefunden, wobei die Mehrzahl der Messwerte in Weide- u. Wiesenbewuchs zu finden sind. Leitstelleneigene Messungen bestätigten die in IMIS aufgezeigten Messwerte und ergeben für den Umweltbereich Blattgemüse (ungeschützter Anbau) in Bezug auf Cs-134 Messwerte bis 0,05 Bq/kg FM und für I-131 bis zu 0,55 Bq/kg FM. Hofmilch liegt im Rahmen dieser Untersuchungen für Cs-134 und I-131 bei jeweils bis zu 0,01 Bq/l. Weide- u. Wiesenbewuchs liefern die höchsten Messwerte, die für Cs-134 bei 0,24 Bq/kg FM und für I-131 bei 3,84 Bq/kg FM liegen.
Abbildung 1.4-1: Aktivitätskonzentrationen von I-131 und Cs-137 an den deutschen Spurenmessstellen, die Bestandteil des EU-Sparse Network sind.
(Activity concentrations of I-131 and Cs-137 in ground-level air at those German sampling sites, which are part of the EU-Sparse Network)
Nach der Reaktorkatastrophe von Fukushima im März 2011 wurde ein europaweites Schnellwarnsystem zur Überwachung der Radioaktivität aus dem pazifischen Raum importierter Lebensmittel eingerichtet. Danach werden in die EU eingeführte Waren aus Japan stichprobenartig auf die Aktivitäten von Cs-134 und Cs-137 kontrolliert und die ermittelten Werte mit denen verglichen, die in Japan vor dem Export erhoben wurden und für jede Sendung zu dokumentieren sind.

Abbildung 1.4-2 Aktivitätskonzentrationen künstlicher Radionuklide aus Fukushima in der bodennahen Luft im Zeitraum März 2011 bis Mai 2011 am Probenahmeort Braunschweig (Activity concentrations of artificial radionuclides from Fukushima in ground-level air at the sampling site Braunschweig in the period March 2011 to May 2011)

Abbildung 1.4-3 Anteil der I-131-Aktivität in München-Neuherberg in den Fraktionen partikelgebunden, gasförmig-elementar und gasförmig-organisch in der Periode 28. bis 31. März 2011 (Composition of the I-131 activity concentration in München-Neuherberg in the fractions aerosol bound, gaseous elementary and gaseous organic for the timer period 28./31.03.2011)

Radionuklide in importierten Fischereierzeugnissen

Nach der Reaktorkatastrophe von Fukushima im März 2011 wurde ein europaweites Schnellwarnsystem zur Überwachung der Radioaktivität aus dem pazifischen Raum importierter Lebensmittel eingerichtet. Danach werden in die EU eingeführte Waren aus Japan stichprobenartig auf die Aktivitäten von Cs-134 und Cs-137 kontrolliert und die ermittelten Werte mit denen verglichen, die in Japan vor dem Export erhoben wurden und für jede Sendung zu dokumentieren sind. Die Ergebnisse der Untersuchungen der deutschen Landesmessstellen auf Cs-137 sind in Tabelle 1.4-1 zusammen-
gestellt. Die Werte für Cs-134 an denselben Proben lagen alle unterhalb der Nachweisgrenze. Die in Seefisch aus Japan nachgewiesenen Aktivitäten von Cs-137 waren mit einem Median von 0,14 Bq/kg in derselben Größenordnung wie die von Seefisch in der Nordsee, allerdings sind die Maximalwerte der Proben aus der Nordsee deutlich höher (vgl. Tabelle 1.4-1 und Teil B-II-Tabelle 2.4.5-3). In Krusten- und Schalentieren sowie Fischereierzeugnissen konnten keine Cs-137-Aktivitäten oberhalb der Nachweisgrenze ermittelt werden.

Tabelle 1.4-1 Spezifische Cs-137-Aktivität in Importproben von Fisch, Krusten- u. Schalentieren sowie Fischereierzeugnissen aus Japan im Jahr 2011 (Specific Cs-137 activity in samples of imported fish, crustaceans and fishery products from Japan - year 2011)

<table>
<thead>
<tr>
<th>Probenart</th>
<th>spez. Cs-137-Aktivität in Bq/kg FM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Seefisch</td>
<td>42</td>
</tr>
<tr>
<td>Krusten- u. Schalentiere</td>
<td>5</td>
</tr>
<tr>
<td>Fischereierzeugnisse</td>
<td>3</td>
</tr>
</tbody>
</table>

Radionuklide im Klärschlamm

Obwohl nur sehr geringe Mengen Cs-134 und Cs-137 aus den Freisetzungen beim Kraftwerksunfall in Fukushima in den Niederschlägen in Deutschland festgestellt wurden, konnte in einigen Klärschlammproben erstmals auch wieder Cs-134 nachgewiesen werden. Der Maximalwert 1,4 Bq/kg wurde am 11.07.2012 in der Kläranlage Meerbusch festgestellt.

Inkorporationsmessungen an aus Japan eingereisten Personen

Abbildung 1.4-4: Anzahl der in Deutschland in 2011 untersuchten, aus Japan eingereisten Personen (Number of persons examined in Germany in 2011 after having entered from Japan)
Dem BfS lagen bis Ende 2011 die Ergebnisse von 358 Ganzkörper- und Schilddrüsenmessungen vor. Bei insgesamt 75 Personen (20,9%) konnten radioaktive Stoffe nachgewiesen werden, die dem Unfall in Japan zuzuordnen sind. Anfangs handelte es sich vor allem um die Radionuklide I-131 und Te-132, später um Cs-137 und Cs-134.

Die aus den Inkorporationen resultierende effektive Dosis war gering und lag meist unter 0,1 mSv. Die höchste effektive Dosis betrug in einem Ausnahmefall ca. 0,5 mSv, die höchste Schilddrüsendosis ca. 80 µSv. Die nachgewiesenen Inkorporationen stellen keine gesundheitliche Gefährdung der betroffenen Personen dar. Abbildung 1.4-4 gibt einen Überblick über die Anzahl der im Jahr 2011 in Deutschland durchgeführten Untersuchungen und die Häufigkeit des Nachweises von inkorporierten radioaktiven Stoffen.

Bewertung des in Deutschland beobachteten Einflusses der Freisetzungen in Fukushima

Konsequenzen aus dem Reaktorunglück in Fukushima

Literatur

2. Aktivitätsmessungen und Messnetze
(Activity measurements and monitoring networks)

2.1 Luft und Niederschlag, Gamma-Ortsdosisleistung / Spurenanalyse
(Air and precipitation, ambient gamma dose rate / trace analysis)

Ergebnisse der Routinemessungen

2.1.1 Radionuklide in der bodennahen Luft
(Radionuclides in ground-level air)

Monitoring
Die Ergebnisse der kontinuierlich arbeitenden Luftmonitore wiesen im Berichtsjahr keine Werte oberhalb der jeweiligen Nachweisgrenze von typischerweise ca. 10 mBq/m³ Luft bezogen auf Cs-137 auf. Als über 16 Messstationen des DWD errechneter arithmetischer Mittelwert der langlebigen Gesamt-β-Aktivitätskonzentration der Luft resultierte für das Jahr 2011 ein Wert von 0,6 mBq/m³ (2010: 0,5 mBq/m³). Der Wert liegt innerhalb des Schwankungsbereichs der Aktivitätskonzentrationen der natürlichen Radionuklide in der Luft.

Edelgase
Auch im Jahr 2011 wurden am BfS Messungen des radioaktiven Xenons und des Kr-85 durchgeführt. Die Messwerte der Aktivitätskonzentrationen von Xe-133 an den sieben deutschen Probenahmestationen lagen, wie schon in den vergangenen Jahren, in der Regel zwischen 1 und 100 mBq/m³ Luft. Höhere Aktivitätskonzentrationen mit bis zu 2,7 Bq/m³ in Tagesproben (Messstation Schauinsland) und 1,7 Bq/m³ in Wochenproben (DWD-Station Potsdam) wurden kurzzeitig Ende März/Anfang April in Zusammenhang mit den Emissionen aus Fukushima beobachtet. Ab dem 21. März wurden auch direkt an der DWD-Station Offenbach erhöhte Messwerte von bis zu 2,6 Bq/m³ in Proben mit einem Sammelzeitraum von 2 Tagen für Xe-133 festgestellt. Als Beispiel ist in Abbildung 2.1.1-1 die Zeitreihe der Aktivitätskonzentration des radioaktiven Xe-133 an der Messstation auf dem Schauinsland bei Freiburg dargestellt. Auch hier wird, wie an der deutschen Radionuklidmessstation des BfS für die CTBTO auf dem Schauinsland, in den letzten beiden Jahren eine Abnahme der mittleren Aktivitätskonzentration beobachtet (siehe Kapitel II 1.1 Kernwaffenversuche).

Abbildung 2.1.1-1 Xe-133-Aktivitätskonzentration in der bodennahen Luft am Probenahmeort Freiburg

(Xe-133-activity concentration in air close to ground level at the sampling location Freiburg)

Abbildung 2.1.1-2 Kr-85-Aktivitätskonzentrationen in der bodennahen Luft am Probenahmeort Freiburg

(Kr-85-activity concentrations of in air close to ground level at the sampling location Freiburg)
Gammaspektrometrie

Für spurenanalytische Messungen werden wöchentlich beaufschlagte Staubfilter zunächst γ-spektrometrisch ausgewertet. In Tabelle 2.1.1-1 werden exemplarisch die Messergebnisse des DWD für Aachen, Berlin/Potsdam, Offenbach und Schleswig dargestellt. Weiterhin sind die Ergebnisse des Helmholtz Zentrums München (München-Neuherberg), des BFS (Schauinsland) und der PTB (Braunschweig) enthalten. Es handelt sich um Monatsmittelwerte und die daraus abgeleiteten Jahresmittelwerte.

Die Messergebnisse von Be-7 und Cs-137 an den Messstellen Offenbach und Potsdam werden in Abbildung 2.1.1-3 grafisch dargestellt. Das Radionuklid Cs-137 ließ sich in Potsdam mit Werten zwischen 0,28 und 94 µBq/m³ Luft und in Offenbach mit Werten zwischen 0,2 und 35 µBq/m³, das kosmogene Be-7 in Potsdam mit Werten zwischen 2,2 und 4,1 mBq/m³ Luft und in Offenbach mit Werten zwischen 2,2 und 5,3 mBq/m³ Luft nachweisen, das heißt, die Werte liegen in den Monaten Januar und Februar und von Juni bis Dezember im üblichen Schwankungsbereich und sind vergleichbar mit Ergebnissen aus dem Jahr 2010. Die erhöhten Werte für Cs-137 in den Monaten März, April und Mai resultierten aus den Freisetzungen von Fukushima. An den Messstationen zeigten sich in den Monaten April, Mai, Juni und Juli teilweise höhere Werte für die Aktivitätskonzentration des Be-7. Dieser Effekt ist auf einen erhöhten Austausch von Luftmassen zwischen Stratosphäre und Troposphäre zurückzuführen und damit auf einen stärkeren Eintrag des Be-7 aus der oberen Atmosphäre in die bodennahe Luft.

Besondere Vorkommnisse

Nachweis künstlicher Radionuklide aus den Freisetzungen von Fukushima siehe Kapitel Teil B -II-1.4.

Großräumiger Nachweis von I-131 Ende Oktober / Anfang November 2011

Im der ersten Novemberwoche 2011 wurden an den Spurenmessstellen im Nord-Osten Deutschlands Spuren von I-131 im Bereich einiger zehn Millionsteil Becquerel pro Kubikmeter Luft nachgewiesen. So wurde z. B. in Braunschweig in den beiden Wochenproben der 44. Kalenderwoche (31.10.2011 bis 07.11.2011) folgende Aktivitätskonzentrationen ermittelt:

<table>
<thead>
<tr>
<th>Probe 1</th>
<th>Probe 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,6 µBq/m³ ± 1,3 µBq/m³ (NWG = 2,7 µBq/m³)</td>
<td>9,0 µBq/m³ ± 1,1 µBq/m³ (NWG = 1,8 µBq/m³).</td>
</tr>
</tbody>
</table>

In der gleichen Woche wurde an der Station Potsdam des DWD eine ähnlich hohe Aktivitätskonzentration an I-131 gefunden:

DWD-Potsdam: 10,9 µBq/m³ ± 2,6 µBq/m³ (NWG = 2,1 µBq/m³).

Tabelle 2.1.1-1 Einzelnuklid-Aktivitätskonzentrationen in der bodennahen Luft
(Activity concentrations of individual nuclides in ground-level air)

a) Messungen der Physikalisch-Technischen Bundesanstalt, Probenahmestelle: Braunschweig

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Aktivitätskonzentration in µBq/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Be-7</td>
</tr>
<tr>
<td>2002</td>
<td>2530</td>
</tr>
<tr>
<td>2003 *</td>
<td>2730</td>
</tr>
<tr>
<td>2004 *</td>
<td>2650</td>
</tr>
<tr>
<td>2005 *</td>
<td>3300</td>
</tr>
<tr>
<td>2006 *</td>
<td>3810</td>
</tr>
<tr>
<td>2007 *</td>
<td>3641</td>
</tr>
<tr>
<td>2008 *</td>
<td>3604</td>
</tr>
<tr>
<td>2009 *</td>
<td>3270</td>
</tr>
<tr>
<td>2010 *</td>
<td>3347</td>
</tr>
<tr>
<td>2011 *</td>
<td>3556</td>
</tr>
<tr>
<td>Januar</td>
<td>2268</td>
</tr>
<tr>
<td>Februar</td>
<td>4030</td>
</tr>
<tr>
<td>März</td>
<td>4055</td>
</tr>
<tr>
<td>April</td>
<td>5464</td>
</tr>
<tr>
<td>Mai</td>
<td>4311</td>
</tr>
<tr>
<td>Juni</td>
<td>4014</td>
</tr>
<tr>
<td>Juli</td>
<td>3487</td>
</tr>
<tr>
<td>August</td>
<td>3894</td>
</tr>
<tr>
<td>September</td>
<td>3335</td>
</tr>
<tr>
<td>Oktober</td>
<td>2635</td>
</tr>
<tr>
<td>November</td>
<td>2925</td>
</tr>
<tr>
<td>Dezember</td>
<td>2248</td>
</tr>
</tbody>
</table>

* Jahresmittelwerte: aus den Monatsmittelwerten berechnet ** Monatsmittelwerte, durch Emissionen aus Fukushima beeinflusst

b) Messungen des Helmholtz Zentrum München, Probenahmestelle: München-Neuherberg

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Aktivitätskonzentration in µBq/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Be-7</td>
</tr>
<tr>
<td>2002</td>
<td>3040</td>
</tr>
<tr>
<td>2003</td>
<td>3250</td>
</tr>
<tr>
<td>2004 *</td>
<td>2590</td>
</tr>
<tr>
<td>2005 *</td>
<td>2970</td>
</tr>
<tr>
<td>2006 *</td>
<td>3010</td>
</tr>
<tr>
<td>2007 *</td>
<td>3010</td>
</tr>
<tr>
<td>2008 *</td>
<td>3050</td>
</tr>
<tr>
<td>2009 *</td>
<td>3180</td>
</tr>
<tr>
<td>2010 *</td>
<td>3640</td>
</tr>
<tr>
<td>2011 *</td>
<td>3940</td>
</tr>
<tr>
<td>Januar</td>
<td>2480</td>
</tr>
<tr>
<td>Februar</td>
<td>3590</td>
</tr>
<tr>
<td>März</td>
<td>3960</td>
</tr>
<tr>
<td>April</td>
<td>5740</td>
</tr>
<tr>
<td>Mai</td>
<td>5480</td>
</tr>
<tr>
<td>Juni</td>
<td>4190</td>
</tr>
<tr>
<td>Juli</td>
<td>4270</td>
</tr>
<tr>
<td>August</td>
<td>4710</td>
</tr>
<tr>
<td>September</td>
<td>4340</td>
</tr>
<tr>
<td>Oktober</td>
<td>3350</td>
</tr>
<tr>
<td>November</td>
<td>3080</td>
</tr>
<tr>
<td>Dezember</td>
<td>2130</td>
</tr>
</tbody>
</table>

< Messwert kleiner Nachweigrenze * Jahresmittelwerte: aus den Monatsmittelwerten berechnet und gerundet
k. A. keine Angaben ** Monatsmittelwerte, durch Emissionen aus Fukushima beeinflusst
c) Messungen des Deutschen Wetterdienstes, Offenbach/Main
Probenahmestellen: Schleswig, Offenbach/Main, Potsdam und Aachen

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Aktivitätskonzentration in µBq/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Be-7</td>
</tr>
<tr>
<td>2002</td>
<td>2284</td>
</tr>
<tr>
<td>2003</td>
<td>2233</td>
</tr>
<tr>
<td>2004</td>
<td>2420</td>
</tr>
<tr>
<td>2005 *</td>
<td>2320</td>
</tr>
<tr>
<td>2006 *</td>
<td>2913</td>
</tr>
<tr>
<td>2007 *</td>
<td>3021</td>
</tr>
<tr>
<td>2008 *</td>
<td>2900</td>
</tr>
<tr>
<td>2009 *</td>
<td>2710</td>
</tr>
<tr>
<td>2010 *</td>
<td>2570</td>
</tr>
<tr>
<td>2011 *</td>
<td>2618</td>
</tr>
<tr>
<td>Januar</td>
<td>1924</td>
</tr>
<tr>
<td>Februar</td>
<td>3570</td>
</tr>
<tr>
<td>März</td>
<td>2858</td>
</tr>
<tr>
<td>April</td>
<td>3272</td>
</tr>
<tr>
<td>Mai</td>
<td>2999</td>
</tr>
<tr>
<td>Juni</td>
<td>1901</td>
</tr>
<tr>
<td>August</td>
<td>2795</td>
</tr>
<tr>
<td>Sept.</td>
<td>2692</td>
</tr>
<tr>
<td>Oktober</td>
<td>2249</td>
</tr>
<tr>
<td>November</td>
<td>2663</td>
</tr>
<tr>
<td>Dezember</td>
<td>2127</td>
</tr>
</tbody>
</table>

< Messwert kleiner Nachweisgrenze
* Jahresmittelwerte: aus den Monatsmittelwerten berechnet und gerundet
** Monatsmittelwerte, durch Emissionen aus Fukushima beeinflusst
*** Im Mai 2010 wurde die DWD-Station Berlin nach Potsdam verlegt

d) Messungen des Bundesamtes für Strahlenschutz
Probenahmestelle: Messstation Schauinsland

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Aktivitätskonzentration in µBq/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Be-7</td>
</tr>
<tr>
<td>2002</td>
<td>4540</td>
</tr>
<tr>
<td>2003 *</td>
<td>3870</td>
</tr>
<tr>
<td>2004 *</td>
<td>4050</td>
</tr>
<tr>
<td>2005 *</td>
<td>4960</td>
</tr>
<tr>
<td>2006 *</td>
<td>4960</td>
</tr>
<tr>
<td>2007 *</td>
<td>4770</td>
</tr>
<tr>
<td>2009 *</td>
<td>5080</td>
</tr>
<tr>
<td>2010 *</td>
<td>4350</td>
</tr>
<tr>
<td>2011 *</td>
<td>5310</td>
</tr>
</tbody>
</table>

< Messwert kleiner Nachweisgrenze
* Jahresmittelwerte: aus den Monatsmittelwerten berechnet und gerundet
e) Messungen des Bundesamtes für Strahlenschutz
Probenahmestellen: Freiburg, Schauinsland

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Aktivitätskonzentration in mBq/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kr-85</td>
</tr>
<tr>
<td>2002</td>
<td>1604</td>
</tr>
<tr>
<td>2003 *</td>
<td>1700</td>
</tr>
<tr>
<td>2004 *</td>
<td>1780</td>
</tr>
<tr>
<td>2005 *</td>
<td>1690</td>
</tr>
<tr>
<td>2006 *</td>
<td>1710</td>
</tr>
<tr>
<td>2007 *</td>
<td>1590</td>
</tr>
<tr>
<td>2008 *</td>
<td>1610</td>
</tr>
<tr>
<td>2009 *</td>
<td>1760</td>
</tr>
<tr>
<td>2010 *</td>
<td>1610</td>
</tr>
<tr>
<td>2011 *</td>
<td>1610</td>
</tr>
<tr>
<td>Januar</td>
<td>1550</td>
</tr>
<tr>
<td>Februar</td>
<td>1480</td>
</tr>
<tr>
<td>März</td>
<td>1610</td>
</tr>
<tr>
<td>April</td>
<td>1620</td>
</tr>
<tr>
<td>Mai</td>
<td>1800</td>
</tr>
<tr>
<td>Juni</td>
<td>1610</td>
</tr>
<tr>
<td>Juli</td>
<td>1540</td>
</tr>
<tr>
<td>August</td>
<td>1460</td>
</tr>
<tr>
<td>September</td>
<td>1570</td>
</tr>
<tr>
<td>Oktober</td>
<td>1790</td>
</tr>
<tr>
<td>November</td>
<td>1480</td>
</tr>
<tr>
<td>Dezember</td>
<td>1780</td>
</tr>
</tbody>
</table>

* Jahresmittelwerte: aus den Monatsmittelwerten berechnet und gerundet
** Monatsmittelwerte, durch Emissionen aus Fukushima beeinflusst
< Messwert kleiner Nachweisgrenze

Radiochemie

Im Labor des DWD in Offenbach wurden Luftfilter der Messstationen Potsdam, München, Offenbach und Schleswig zur Bestimmung von Sr-90, Uran-, Plutonium- und Americium-Isotopen in Monatsmischproben radiochemisch analysiert. Für das aerosolgebundene U-234 wurden Aktivitätskonzentrationen im Bereich von einer Nachweisgrenze von 0,039 bis zu einem Wert von 0,37 µBq/m³ ermittelt. Für U-238 wurden Aktivitätskonzentrationen zwischen 0,034 und einem Wert von 0,37 µBq/m³ festgestellt. Diese Messwerte spiegeln die natürlich vorkommenden Aktivitätskonzentrationen wider. Beide Isotope befinden sich in der Regel im radioaktiven Gleichgewicht.

In Potsdam wurden in den Monaten März bis Juli Aktivitätskonzentrationen an Pu-(239+240) zwischen 0,0013 µBq/m³ bis zu einem Wert von 0,0061 µBq/m³ gefunden. Dies erklärte sich durch Resuspension von Pu-(239+240) aus dem Boden. In Schleswig wurden Aktivitätskonzentrationen an Am-241 zwischen 0,001 µBq/m³ bis zu 0,042 µBq/m³ gemessen. Die Aktivitätskonzentration von Pu-(239+240) lag im April und Mai bei 0,006 µBq/m³. Die Aktivitätskonzentration des Sr-90 lag unterhalb der Nachweisgrenze. Diese betrug zwischen 0,04 und 0,6 µBq/m³ Luft. In Abbildung 2.1.1-6 sind die entsprechenden Monatswerte für U-234, U-238 und U-235 exemplarisch für die Messstation Potsdam dargestellt. Gemäß den Vorgaben des Routinemessprogramms werden für die Alphastrahler in der Luft Nachweisgrenzen von 0,1 µBq/m³ und für Sr-90 1 µBq/m³ gefordert. Diese wurden eingehalten.

Beim BFS in Freiburg wurden die Modernisierungsmaßnahmen im Radiochemielabor im Berichtsjahr abgeschlossen und der Betrieb wieder aufgenommen. Durch die zunächst erforderlichen Maßnahmen zur Qualitätssicherung liegen zum Zeitpunkt der Berichterstattung noch keine Daten für den Berichtszeitraum vor.
Abbildung 2.1.1-3 Aktivitätskonzentrationen von Cs-137 und Be-7 in der bodennahen Luft im Jahr 2011 - DWD-Stationen Berlin/Potsdam und Offenbach
(Activity concentration of Cs-137 and Be-7 in air close to ground level in 2011 at the DWD stations in Berlin/Potsdam and Offenbach)
Abbildung 2.1.4: Aktivitätskonzentration von Cs-137 und Be-7 in der bodennahen Luft am Probenahmeort Schauinsland
(Activity concentration of Cs-137 and Be-7 in ground level air at Schauinsland measuring station)

Abbildung 2.1.5: Aktivitätskonzentrationen und Aktivitätsverhältnis von K-40 und Cs-137 in der bodennahen Luft 2011 am Probenahmeort Braunschweig
(Activity concentrations and activity ratio of K-40 and Cs-137 in ground-level air at the sampling site Braunschweig in 2011)
2.1.2 Radioaktive Stoffe im Niederschlag (Gesamtdeposition)

(Gesamt-\(\beta\)-Aktivität)

Gammaspektrometrie

Monatssammelproben von 40 Messstationen wurden \(\gamma\)-spektrometrisch analysiert. Die Nachweisgrenzen für die Aktivitätskonzentration von Cs-137 lagen zwischen 0,4 und 129 mBq/l in Abhängigkeit der zur Verfügung stehenden Niederschlagsmenge. Exemplarisch sind die Messwerte der Radionuklide Be-7 und Cs-137 für die Messstellen Aachen, Potsdam, Offenbach und Schleswig in den Tabellen 2.1.2-1a) und 1b) als Monatswerte und als aufsummierte Jahreswerte zusammengefasst. Diese Daten dienen als Vergleichsgrößen, um Veränderungen gegenüber den Vorjahren festzustellen. Die Werte waren im Jahr 2011 ähnlich denen im Jahr 2010. Die Abbildung 2.1.2-3 zeigt für die Messstationen Offenbach und Potsdam die aus den Aktivitätskonzentrationen und der Niederschlagsmenge errechneten Werte für die monatliche Deposition von Be-7 und Cs-137. Für Cs-137 lagen die Nachweisgrenzen zwischen 0,05 Bq/m\(^2\) und 0,26 Bq/m\(^2\). Für kosmogenes Be-7 wurden Messwerte zwischen 0,7 und 163 Bq/m\(^2\) (Offenbach) und Messwerte zwischen 1,5 und 11 Bq/m\(^2\) (Potsdam) anhand von Monatsproben ermittelt.

Radiochemie

Im Labor des DWD in Offenbach wurden Niederschlagsproben der Messstationen Potsdam, München, Offenbach und Schleswig bezogen auf ein Sammelintervall von einem Monat analysiert. Es wurden Sr-90, H-3 sowie die Isotope von Uran, Plutonium und Americium bestimmt. Die erreichten Nachweisgrenzen betrugen je nach Niederschlagsmenge für Sr-90 ca. 0,21 bis 110,0 mBq/l, für Pu-(239+240) und Am-241 ca. 0,003 bis 1,45 mBq/l und für H-3 zwischen 0,5 und 1,6 Bq/l bei der elektrolytischen Anreicherung. Natürlich vorkommendes aerosolgebundenes U-234 und U-238 wurde ausgewaschen.
Abbildung 2.1.2-1 Langlebige Gesamt-β-Aktivität im Niederschlag – Jahresmittelwerte der Jahres-
summen an den DWD-Messstationen von 1957 bis 2011
(Long-lived total β activity in precipitation – Annual mean value for the total annual
levels determined at the DWD measuring stations, 1957 - 2011)

Abbildung 2.1.2-2 Dem Erdboden durch Niederschläge im Jahr 2011 zugeführte langlebige Gesamt-β-
Aktivität – stationsspezifische Jahressummen
(Deposition of additional long-lived total β activity due to precipitation - station specific
annual total values in the year 2011)
Tabelle 2.1.2-1 Deposition von Einzelnukliden mit dem Niederschlag
(Deposition of individual nuclides with precipitation)

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Offenbach am Main</th>
<th>Potsdam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>l/m²</td>
<td>l/m²</td>
</tr>
<tr>
<td></td>
<td>Be-7 Cs-137</td>
<td>Be-7 Cs-137</td>
</tr>
<tr>
<td>2002</td>
<td>735,9 718</td>
<td>736,8 608</td>
</tr>
<tr>
<td>2003</td>
<td>239,9 162</td>
<td>212,9 74</td>
</tr>
<tr>
<td>2004</td>
<td>617,6 567</td>
<td>533,2 363</td>
</tr>
<tr>
<td>2005</td>
<td>559,2 639</td>
<td>590,2 308</td>
</tr>
<tr>
<td>2006</td>
<td>620,3 860</td>
<td>451,5 361</td>
</tr>
<tr>
<td>2007</td>
<td>677,3 458</td>
<td>846,5 191,95</td>
</tr>
<tr>
<td>2008</td>
<td>557,5 369</td>
<td>560,0 83,4</td>
</tr>
<tr>
<td>2009</td>
<td>782,5 190</td>
<td>631,2 175</td>
</tr>
<tr>
<td>2010</td>
<td>807,2 365</td>
<td>623,5 68,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Januar</th>
<th>Februar</th>
<th>März</th>
<th>April</th>
<th>Mai</th>
<th>Juni</th>
<th>Juli</th>
<th>August</th>
<th>September</th>
<th>Oktober</th>
<th>November</th>
<th>Dezember</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41,1</td>
<td>22,9</td>
<td>12,5</td>
<td>22,2</td>
<td>28,7</td>
<td>70,0</td>
<td>89,7</td>
<td>92,6</td>
<td>32,7</td>
<td>31,1</td>
<td>0,5</td>
<td>140,0</td>
</tr>
<tr>
<td>l/m²</td>
<td><0,91</td>
<td><0,93</td>
<td><1,2</td>
<td><1,32</td>
<td><0,74</td>
<td>0,68</td>
<td><0,63</td>
<td><195</td>
<td><0,63</td>
<td><1,18</td>
<td><0,94</td>
<td><1,01</td>
</tr>
<tr>
<td>Deposition in Bq/m²</td>
<td><0,06</td>
<td><0,07</td>
<td><0,11</td>
<td><0,11</td>
<td><0,26</td>
<td><0,05</td>
<td><0,05</td>
<td><0,04</td>
<td><0,05</td>
<td><0,08</td>
<td><0,06</td>
<td><0,08</td>
</tr>
<tr>
<td>Be-7 Cs-137</td>
<td>35,0</td>
<td>18,4</td>
<td>17,3</td>
<td>37,9</td>
<td>17,5</td>
<td>47,5</td>
<td>193,0</td>
<td>67,5</td>
<td>59,3</td>
<td>39,2</td>
<td>1,8</td>
<td>72,4</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td><1,5</td>
<td><1,0</td>
<td><44,7</td>
<td><5</td>
<td><32,2</td>
<td><1,0</td>
<td><1,5</td>
<td><1,5</td>
<td><1,4</td>
<td><5</td>
<td><1,5</td>
</tr>
<tr>
<td></td>
<td><0,10</td>
<td><0,11</td>
<td><0,08</td>
<td><0,06</td>
<td><0,08</td>
<td><0,08</td>
<td><0,19</td>
<td><0,10</td>
<td><0,10</td>
<td><0,10</td>
<td><0,11</td>
<td><0,11</td>
</tr>
<tr>
<td>2002</td>
<td>945,0</td>
<td>286</td>
<td>1013</td>
<td>287</td>
<td>950</td>
<td>735</td>
<td>163,0</td>
<td>139,0</td>
<td>37,6</td>
<td>442</td>
<td>632</td>
<td>313</td>
</tr>
<tr>
<td>2003</td>
<td>467,6</td>
<td>286</td>
<td>1013</td>
<td>287</td>
<td>950</td>
<td>735</td>
<td>163,0</td>
<td>139,0</td>
<td>37,6</td>
<td>442</td>
<td>632</td>
<td>313</td>
</tr>
<tr>
<td>2004</td>
<td>888,8</td>
<td>1013</td>
<td>286</td>
<td>287</td>
<td>950</td>
<td>735</td>
<td>163,0</td>
<td>139,0</td>
<td>37,6</td>
<td>442</td>
<td>632</td>
<td>313</td>
</tr>
<tr>
<td>2005</td>
<td>716,4</td>
<td>787</td>
<td>286</td>
<td>287</td>
<td>950</td>
<td>735</td>
<td>163,0</td>
<td>139,0</td>
<td>37,6</td>
<td>442</td>
<td>632</td>
<td>313</td>
</tr>
<tr>
<td>2006</td>
<td>799,3</td>
<td>950</td>
<td>286</td>
<td>287</td>
<td>950</td>
<td>735</td>
<td>163,0</td>
<td>139,0</td>
<td>37,6</td>
<td>442</td>
<td>632</td>
<td>313</td>
</tr>
<tr>
<td>2007</td>
<td>950,1</td>
<td>735</td>
<td>950</td>
<td>735</td>
<td>950</td>
<td>735</td>
<td>163,0</td>
<td>139,0</td>
<td>37,6</td>
<td>442</td>
<td>632</td>
<td>313</td>
</tr>
<tr>
<td>2008</td>
<td>909,2</td>
<td>442</td>
<td>950</td>
<td>735</td>
<td>950</td>
<td>735</td>
<td>163,0</td>
<td>139,0</td>
<td>37,6</td>
<td>442</td>
<td>632</td>
<td>313</td>
</tr>
<tr>
<td>2009</td>
<td>578,9</td>
<td>632</td>
<td>950</td>
<td>735</td>
<td>950</td>
<td>735</td>
<td>163,0</td>
<td>139,0</td>
<td>37,6</td>
<td>442</td>
<td>632</td>
<td>313</td>
</tr>
<tr>
<td>2010</td>
<td>780,0</td>
<td>313</td>
<td>950</td>
<td>735</td>
<td>950</td>
<td>735</td>
<td>163,0</td>
<td>139,0</td>
<td>37,6</td>
<td>442</td>
<td>632</td>
<td>313</td>
</tr>
<tr>
<td>2011</td>
<td>715,9</td>
<td><375,6</td>
<td>950</td>
<td>735</td>
<td>950</td>
<td>735</td>
<td>163,0</td>
<td>139,0</td>
<td>37,6</td>
<td>442</td>
<td>632</td>
<td>313</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Januar</th>
<th>Februar</th>
<th>März</th>
<th>April</th>
<th>Mai</th>
<th>Juni</th>
<th>Juli</th>
<th>August</th>
<th>September</th>
<th>Oktober</th>
<th>November</th>
<th>Dezember</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95,8</td>
<td>49,1</td>
<td>15,5</td>
<td>31,7</td>
<td>26,4</td>
<td>86,4</td>
<td>47,5</td>
<td>139,0</td>
<td>39,2</td>
<td>46,8</td>
<td>3,1</td>
<td>135,4</td>
</tr>
<tr>
<td>l/m²</td>
<td><0,56</td>
<td>0,64</td>
<td><1,2</td>
<td><6,69</td>
<td><21,0</td>
<td><1,10</td>
<td>108</td>
<td><161</td>
<td><0,95</td>
<td><1,10</td>
<td><0,76</td>
<td><0,92</td>
</tr>
<tr>
<td>Deposition in Bq/m²</td>
<td><0,04</td>
<td><0,04</td>
<td><0,6</td>
<td><0,12</td>
<td><0,11</td>
<td><0,11</td>
<td><0,10</td>
<td><0,08</td>
<td><0,07</td>
<td><0,08</td>
<td><0,06</td>
<td><0,05</td>
</tr>
<tr>
<td>Be-7 Cs-137</td>
<td>51,1</td>
<td>56,7</td>
<td>23,5</td>
<td>9,8</td>
<td>72,2</td>
<td>91,4</td>
<td>137,0</td>
<td>247,9</td>
<td>128,0</td>
<td>100,1</td>
<td>19,0</td>
<td>135,1</td>
</tr>
<tr>
<td></td>
<td><1,09</td>
<td><1,32</td>
<td><1,16</td>
<td><11,4</td>
<td><1,13</td>
<td><1,16</td>
<td><53,8</td>
<td><1,18</td>
<td><0,87</td>
<td><34,8</td>
<td><14,8</td>
<td><69,3</td>
</tr>
<tr>
<td></td>
<td><0,05</td>
<td><0,08</td>
<td><0,08</td>
<td><0,09</td>
<td><0,09</td>
<td><0,08</td>
<td><0,08</td>
<td><0,09</td>
<td><0,07</td>
<td><0,07</td>
<td><0,08</td>
<td><0,00</td>
</tr>
</tbody>
</table>
Abbildung 2.1.2-3 Deposition von Radionukliden mit dem Niederschlag im Jahr 2011
DWD-Stationen Berlin/Potsdam und Offenbach

(Deposition of radionuclides with precipitation in the year 2011 - DWD stations in Berlin/Potsdam and Offenbach)
2.1.3 Gamma-Ortsdosisleistung
(Ambient gamma dose rate)

Die im Rahmen der kontinuierlichen Überwachung im ODL-Messnetz des BfS gemessenen Werte der \(\gamma\)-Ortsdosisleistung über Deutschland sind im Vergleich zum Vorjahr nahezu unverändert. Die geographischen Unterschiede sind Ausdruck des unterschiedlichen Gehaltes an natürlichen Radionukliden im Boden sowie der mit der Höhe zunehmenden kosmischen Strahlung. Typische Werte für die \(\gamma\)-Ortsdosisleistung in Norddeutschland liegen zwischen 60 nSv/h und 105 nSv/h, entsprechend einer Jahresdosis von 0,5 mSv bzw. 0,9 mSv, während in den Mittelgebirgen Spitzenwerte bis zu 230 nSv/h (Jahresdosis 2 mSv) beobachtet werden. Dabei beträgt der Anteil durch kosmische Strahlung in Meereshöhe ca. 40 nSv/h (Jahresdosis 0,3 mSv); dieser Wert verdoppelt sich etwa alle 1500 Höhenmeter. Abbildung 2.1.3-1 gibt einen Überblick über die geographische Verteilung der externen Strahlenexposition bei einem angenommenen Aufenthalt von fünf Stunden im Freien.

Kurzzeitige, meist lokal auftretende Erhöhungen der \(\gamma\)-Ortsdosisleistung, die insbesondere bei starken Niederschlägen in den Sommermonaten zu beobachten sind, sind auf das Auswaschen von natürlichen Radon-Folgeprodukten aus der Luft zurückzuführen. Üblicherweise sind dabei nur wenige Messstellen betroffen und es stellen sich innerhalb weniger Stunden wieder die für die betroffenen Standorte typischen Werte ein.

Die Sonden und Messstellen im ODL-Messnetz unterliegen einem strengen Qualitätssicherungsverfahren wie z. B. wiederkehrende radiologische Sondenprüfung, elektrische Betriebsmittelsicherung und Standortdokumentation. Seit 2006 läuft eine umfangreiche, mehrjährige Modernisierung der Messdatenaufnahme, -verarbeitung und Datenfernübertragung im ODL-Messnetz. Im Zuge der Modernisierung wird auch die Datenverwaltung mit mehreren zehn Becquerel pro Quadratmeter (Bq/m\(^3\)) nachgewiesen, die durchgehend Werte sind, die unterhalb der in IMIS geforderten Nachweisgrenze der In-situ-Gamma-Spektrometrie lagen. Die aus den gemessenen Spuren der Radionuklide resultierende Erhöhung der Ortsdosisleistung war zu niedrig um im ODL-Messnetz sichtbar zu werden.

Sondertests in der Luft wurden durchgeführt, die die Ursache der erhöhten \(\gamma\)-Ortsdosisleistung in Norddeutschland zu einer starken Belastung mit natürlichen Radionukliden zurückführen. Die Ergebnisse dieser Messungen deuten darauf hin, dass die erhöhten \(\gamma\)-Ortsdosisleistungen vor allem auf die hohen Geigerzahlen der Sondenstandorte in Norddeutschland zurückzuführen sind. Die Ergebnisse dieser Messungen deuten darauf hin, dass die erhöhten \(\gamma\)-Ortsdosisleistungen vor allem auf die hohen Geigerzahlen der Sondenstandorte in Norddeutschland zurückzuführen sind.

LITERATUR

Daten aus dem Messnetz des Bundes
Bundesamt für Strahlenschutz

Abbildung 2.1.3-1 Externe Strahlenexposition im Jahr 2011 in Deutschland bei täglich 5 Stunden Aufenthalt im Freien
(External radiation exposure 2011, spending 5 hours per day outdoors)
2.1.4 Radioaktivität in Luft und Niederschlag in der Umgebung der Anlagen nach Atomgesetz
(Radioactivity in air and deposition in the surroundings of facilities according to the Atomic Energy Act)

Luft

Gemäß der REI (Richtlinie zur Emissions- und Immissionsüberwachung kerntechnischer Anlagen) sind die Aktivitätskonzentrationen von gasförmigem I-131 und von schwebstoffpartikelgebundenen Radionukliden gamaspektrometrisch zu ermitteln. Die geforderten Nachweisgrenzen liegen für I-131 bei 5 mBq/m³ und bei den schwebstoffpartikelgebundenen Radionukliden, bezogen auf Co-60, bei 0,4 mBq/m³.

Die Veränderungen der Jahresmittelwerte der kontinuierlich gemessenen γ-Dosisleistung (Tabelle 2.1.4-3) sind im Vergleich zum Vorjahr im Allgemeinen gering und entsprechen den natürlichen Schwankungen. Durch den Austausch von Messsystemen können durch die verschiedene Bauart und den unterschiedlichen Empfindlichkeitsbereich der Messgeräte Veränderungen des gemessenen Grundpegels der Umgebungs-Aquivalentdosisleistung auftreten. Durch die kontinuierliche Registrierung der Messwerte sind jedoch Veränderungen des Pegels unabhängig vom jeweiligen gemessenen Absolutwert jederzeit erkennbar.

Niederschlag

Gemäß REI ist die Aktivitätskonzentration des Niederschlags gammaspektrometrisch zu ermitteln. Aus den Aktivitätskonzentrationen und den Niederschlagsmengen wird die Deposition berechnet. Aus den Monatsdepositionen in Becquerel pro Quadratmeter werden Jahresmittelwerte gebildet und berichtet. Als Nachweisgrenze für die Konzentrationsmessung bezogen auf Co-60 werden 0,05 Bq/l gefordert. Die Niederschlagsmenge liegt im Durchschnitt je nach Jahreszeit und Standort zwischen 10 und 100 Liter pro Quadratmeter und Monat, so dass für die Deposition Nachweisgrenzen zwischen 0,5 Bq/m² und 5 Bq/m² resultieren können. Es liegen keine Messwerte oberhalb der Nachweisgrenzen vor. Ein Einfluss auf den Jahresmittelwert durch deponierte Radionuklide resultierend aus der Freisetzung in Fukushima/Japan zeigte sich nicht. In Tabelle 2.1.4-4 sind die Nachweisgrenzen, bezogen auf Co-60, zusammengefasst.

Höhere Messwerte erklären sich häufig aus der Resuspension von bereits deponierten schwebstoffgebundenen Radionukliden, deren Verfrachtung mit dem Wind und abschließender Deposition.

Tabelle 2.1.4-1a Jahresmittelwerte der Aktivitätskonzentrationen des gasförmigen I-131
(Annual mean values for activity concentrations of gaseous I-131)
(in mBq/m³, Messwerte der Betreiber)

<table>
<thead>
<tr>
<th>Probenahmestelle</th>
<th>N</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>BER Berlin</td>
<td>2</td>
<td>[< 0,32]⁹</td>
<td>< 0,26</td>
<td>[< 0,40]⁹</td>
<td>< 0,4</td>
<td>< 0,5</td>
<td>< 0,38</td>
<td>< 0,38</td>
</tr>
<tr>
<td>KKB Brunsbüttel</td>
<td>2</td>
<td>[< 0,29]⁹</td>
<td>< 0,3</td>
<td>< 0,31</td>
<td>< 0,29</td>
<td>< 0,29</td>
<td>< 0,29</td>
<td>< 0,3</td>
</tr>
<tr>
<td>KBR Brokdorf</td>
<td>2</td>
<td>[< 0,36]⁹</td>
<td>< 0,39</td>
<td>< 0,5</td>
<td>< 0,57</td>
<td>< 0,39</td>
<td>< 0,35</td>
<td>< 0,7</td>
</tr>
<tr>
<td>KKK Krümmel</td>
<td>3</td>
<td>[< 0,39]⁹</td>
<td>< 0,36</td>
<td>< 0,35</td>
<td>< 0,33</td>
<td>< 0,31</td>
<td>< 0,27</td>
<td>< 0,26</td>
</tr>
<tr>
<td>GKSS Geesthacht</td>
<td>1</td>
<td>[< 0,24]⁹</td>
<td>< 0,24</td>
<td>< 0,23</td>
<td>< 0,2</td>
<td>< 0,19</td>
<td>< 0,19</td>
<td>< 0,19</td>
</tr>
<tr>
<td>KKS Stade</td>
<td>1</td>
<td>[< 0,28]⁹</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>KKK Unterweser</td>
<td>2</td>
<td>< 2,0</td>
<td>< 2,0</td>
<td>< 2,0</td>
<td>< 2,0</td>
<td>< 2,0</td>
<td>< 2,0</td>
<td>-</td>
</tr>
<tr>
<td>KWG Grohnde</td>
<td>3</td>
<td>< 0,61</td>
<td>< 0,65</td>
<td>< 0,8</td>
<td>< 0,82</td>
<td>< 1,7</td>
<td>< 1,4</td>
<td>-</td>
</tr>
<tr>
<td>KKE Emsland</td>
<td>2</td>
<td>< 0,32</td>
<td>< 0,33</td>
<td>< 0,30</td>
<td>< 0,32</td>
<td>< 0,35</td>
<td>< 0,32</td>
<td>-</td>
</tr>
<tr>
<td>KKW Würgassen</td>
<td>3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>FZ Jülich</td>
<td>3</td>
<td>0,36**</td>
<td>0,47**</td>
<td>0,11**</td>
<td>< 0,2</td>
<td>< 0,2</td>
<td>< 0,2</td>
<td>< 0,2</td>
</tr>
<tr>
<td>THTR Hamm-Uentrop</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
Tabelle 2.1.4-1b Messwerte der Aktivitätskonzentrationen des gasförmigen I-131 als Folge des Unfalls in Fukushima/Japan

(Measurement results for activity concentrations of gaseous I-131 related to the accident in Fukushima/Japan)

(in mBq/m³, Messwerte der Betreiber)

<table>
<thead>
<tr>
<th>Probenahmestelle</th>
<th>N</th>
<th>I-131 (mBq/m³)</th>
<th>März 2011</th>
<th>April 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2007</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>KWB Biblis</td>
<td>2</td>
<td>[< 0,7]³</td>
<td>< 0,66</td>
<td>< 0,80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 0,66</td>
<td>< 0,63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0,61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0,58</td>
</tr>
<tr>
<td>KKP Philippsburg</td>
<td>4</td>
<td>< 0,49</td>
<td>< 0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 0,49</td>
<td>< 0,49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0,5</td>
</tr>
<tr>
<td>KWO Obrigheim</td>
<td>3</td>
<td>< 0,34</td>
<td>< 0,18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 0,16</td>
<td>< 0,22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKN Neckarwestheim</td>
<td>2</td>
<td>< 0,73</td>
<td>< 0,68</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 0,68</td>
<td>< 0,66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0,64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0,72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0,64</td>
</tr>
<tr>
<td>FZ Karlsruhe</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>KKI Isar</td>
<td>3</td>
<td>-</td>
<td>[< 0,29]⁹</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 0,30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[< 0,29]⁹</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 0,25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 0,27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 0,26</td>
<td></td>
</tr>
<tr>
<td>KKG Grafenrheinfeld</td>
<td>3</td>
<td>-</td>
<td>[< 0,5]⁹</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 0,52</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[< 0,54]⁹</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,48⁹</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 0,45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 0,61</td>
<td></td>
</tr>
<tr>
<td>KRB Gundremmingen II</td>
<td>3</td>
<td>-</td>
<td>[< 0,27]⁹</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 0,33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[< 0,26]⁹</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,34⁹</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 0,37</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 0,36</td>
<td></td>
</tr>
<tr>
<td>KGR Greifswald</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>VKTA Rossendorf</td>
<td>1</td>
<td>[< 0,35]⁶</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>KKR Rheinsberg</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>KKM Mülheim-Kärlich</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

N Zahl der Messstationen

³ unvollständige Messreihe (i: Anzahl der Monate) * Messungen eingestellt
+ keine Messung im bestimmungsgemäßen Betrieb
** Mittelwert aus 2 Messwerten im 3. Quartal einer Messstelle.

die Werte lagen sonst unterhalb der geforderten Nachweisgrenze von 2 mBq/m³
Tabelle 2.1.4-2 Jahresmittelwerte der Aktivitätskonzentrationen von Co-60
(Annual mean values for activity concentrations of Co-60)
(in mBq/m³, Messwerte der Betreiber)

<table>
<thead>
<tr>
<th>Probenahmestelle</th>
<th>N</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>BER Berlin</td>
<td>2</td>
<td>[< 0,02]³</td>
<td>< 0,02</td>
<td>[< 0,25]³</td>
<td>< 0,3</td>
<td>< 0,29</td>
<td>< 0,28</td>
<td>< 0,27</td>
</tr>
<tr>
<td>KKB Brunsbüttel</td>
<td>2</td>
<td>[< 0,05]³</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td>< 0,06</td>
<td>< 0,08</td>
<td></td>
</tr>
<tr>
<td>KBR Brokdorf</td>
<td>2</td>
<td>[< 0,17]³</td>
<td>< 0,18</td>
<td>< 0,18</td>
<td>< 0,21</td>
<td>< 0,18</td>
<td>< 0,18</td>
<td>< 0,24</td>
</tr>
<tr>
<td>KKK Krümmel</td>
<td>3</td>
<td>[< 0,06]³</td>
<td>< 0,06</td>
<td>< 0,06</td>
<td>< 0,07</td>
<td>< 0,03</td>
<td>< 0,03</td>
<td></td>
</tr>
<tr>
<td>GKSS Geesthacht</td>
<td>1</td>
<td>[< 0,06]³</td>
<td>< 0,05</td>
<td>< 0,04</td>
<td>< 0,04</td>
<td>< 0,04</td>
<td>< 0,04</td>
<td></td>
</tr>
<tr>
<td>KKS Stade</td>
<td>1</td>
<td>[< 0,15]³</td>
<td>< 0,26</td>
<td>< 0,31</td>
<td>< 0,23</td>
<td>0,2</td>
<td>0,21</td>
<td></td>
</tr>
<tr>
<td>KKW Unterweser</td>
<td>2</td>
<td>< 0,40</td>
<td>< 0,40</td>
<td>< 0,40</td>
<td>< 0,40</td>
<td>0,4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>KG Grohnde</td>
<td>3</td>
<td>< 0,12</td>
<td>< 0,11</td>
<td>< 0,11</td>
<td>< 0,12</td>
<td>0,14</td>
<td>0,13</td>
<td></td>
</tr>
<tr>
<td>KKE Emsland</td>
<td>2</td>
<td>< 0,18</td>
<td>< 0,21</td>
<td>< 0,18</td>
<td>< 0,20</td>
<td>0,19</td>
<td>< 0,18</td>
<td></td>
</tr>
<tr>
<td>KWW Würgassen</td>
<td>2</td>
<td>< 0,10</td>
<td>< 0,10</td>
<td>< 0,10</td>
<td>< 0,10</td>
<td>0,1</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>FZ Jülich</td>
<td>3</td>
<td>< 0,4</td>
<td>< 0,4</td>
<td>< 0,40</td>
<td>< 0,40</td>
<td>0,4</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>THTR Hamm-Uentrop</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>KWB Biblis</td>
<td>3</td>
<td>[< 0,18]³</td>
<td>< 0,2</td>
<td>< 0,22</td>
<td>< 0,18</td>
<td>< 0,19</td>
<td>< 0,19</td>
<td>< 0,17</td>
</tr>
<tr>
<td>KKP Philippsburg</td>
<td>4</td>
<td>< 0,03</td>
<td>< 0,03</td>
<td>< 0,03</td>
<td>< 0,03</td>
<td>0,03</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td>KWO Obrigheim</td>
<td>3</td>
<td>< 0,05</td>
<td>< 0,06</td>
<td>< 0,05</td>
<td>< 0,04</td>
<td>0,04</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td>GKN Neckarwestheim</td>
<td>2</td>
<td>< 0,15</td>
<td>< 0,13</td>
<td>< 0,13</td>
<td>< 0,12</td>
<td>0,14</td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>FZN Karlsruhe</td>
<td>3</td>
<td>< 0,008</td>
<td>< 0,008</td>
<td>< 0,007</td>
<td>< 0,006</td>
<td>0,006</td>
<td>0,006</td>
<td></td>
</tr>
<tr>
<td>KKI Isar</td>
<td>3</td>
<td>-</td>
<td>[< 0,21]³</td>
<td>< 0,22</td>
<td>[< 0,21]³</td>
<td>0,21</td>
<td>0,23</td>
<td></td>
</tr>
<tr>
<td>KKG Grafenheinfeld</td>
<td>3</td>
<td>-</td>
<td>[< 0,062]³</td>
<td>< 0,064</td>
<td>[< 0,067]³</td>
<td>[< 0,06]³</td>
<td>0,058</td>
<td>0,066</td>
</tr>
<tr>
<td>KRB Gundremmingen II</td>
<td>3</td>
<td>-</td>
<td>[< 0,14]³</td>
<td>< 0,18</td>
<td>[< 0,14]³</td>
<td>[< 0,18]³</td>
<td>0,2</td>
<td>0,19</td>
</tr>
<tr>
<td>KGR Greifswald</td>
<td>2</td>
<td>< 0,002</td>
<td>[< 0,002]³</td>
<td>< 0,28</td>
<td>[< 0,25]³</td>
<td>[< 0,08]³</td>
<td>< 0,0007</td>
<td>0,0008³</td>
</tr>
<tr>
<td>VKTA Rossendorf</td>
<td>3</td>
<td>[<0,002]³</td>
<td>< 0,002</td>
<td>< 0,016</td>
<td>< 0,013</td>
<td>0,015</td>
<td>0,011</td>
<td></td>
</tr>
<tr>
<td>KKR Rheinsberg</td>
<td>2</td>
<td>< 0,08</td>
<td>< 0,08</td>
<td>< 0,09</td>
<td>< 0,10</td>
<td>0,1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>KMK Mülheim-Kärlich</td>
<td>2</td>
<td>[< 0,2]³</td>
<td>< 0,14</td>
<td>< 0,12</td>
<td>< 0,18</td>
<td>0,19</td>
<td>< 0,19</td>
<td>< 0,21</td>
</tr>
</tbody>
</table>

N: Zahl der Messstationen

[]: unvollständige Messreihe (i: Anzahl der Monate)

* Messungen eingestellt + ab Q2 eingestellt

Tabelle 2.1.4-3 Umgebungsstrahlung bei Kernkraftwerken und Forschungsreaktoren
(Ambient radiation from nuclear power plants and research reactors)
(γ-Ortsdosisleistung in nSv/h, Messwerte der Betreiber)

<table>
<thead>
<tr>
<th>Probenahmestelle</th>
<th>N</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>BER Berlin</td>
<td>2</td>
<td>72</td>
<td>72</td>
<td>73</td>
<td>a</td>
<td>[73]³</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>KKB Brunsbüttel</td>
<td>2</td>
<td>82</td>
<td>84</td>
<td>82</td>
<td>85</td>
<td>83</td>
<td>91</td>
<td>88</td>
</tr>
<tr>
<td>KBR Brokdorf</td>
<td>2</td>
<td>60</td>
<td>59</td>
<td>58</td>
<td>59</td>
<td>58</td>
<td>56</td>
<td>74MT</td>
</tr>
<tr>
<td>KKK Krümmel</td>
<td>3</td>
<td>57</td>
<td>58</td>
<td>61</td>
<td>57</td>
<td>53</td>
<td>54</td>
<td>64MT</td>
</tr>
<tr>
<td>GKSS Geesthacht</td>
<td>1</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>89</td>
<td>88</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>KKS Stade</td>
<td>1</td>
<td>87MT</td>
<td>97</td>
<td>99</td>
<td>107</td>
<td>104</td>
<td>104</td>
<td>a</td>
</tr>
<tr>
<td>KKW Unterweser</td>
<td>2</td>
<td>94</td>
<td>98</td>
<td>101</td>
<td>102</td>
<td>104</td>
<td>101</td>
<td>a</td>
</tr>
<tr>
<td>KG Grohnde</td>
<td>3</td>
<td>83</td>
<td>86</td>
<td>80</td>
<td>77</td>
<td>84</td>
<td>92MT</td>
<td>a</td>
</tr>
<tr>
<td>KKE Emsland</td>
<td>2</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>76</td>
<td>74</td>
<td>a</td>
</tr>
<tr>
<td>KWW Würgassen</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FZ Jülich</td>
<td>12</td>
<td>62MT</td>
<td>79</td>
<td>83</td>
<td>84</td>
<td>97MT</td>
<td>109</td>
<td>111</td>
</tr>
<tr>
<td>THTR Hamm-Uentrop</td>
<td>2</td>
<td>85</td>
<td>86</td>
<td>88</td>
<td>100¹</td>
<td>103¹</td>
<td>103¹</td>
<td>101¹</td>
</tr>
<tr>
<td>KWB Biblis</td>
<td>3</td>
<td>[95]³</td>
<td>96</td>
<td>103</td>
<td>106</td>
<td>106</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>KKP Philippsburg</td>
<td>4</td>
<td>106</td>
<td>105</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>95</td>
</tr>
<tr>
<td>KWO Obrigheim</td>
<td>2</td>
<td>101</td>
<td>102</td>
<td>115</td>
<td>120</td>
<td>120</td>
<td>119</td>
<td>120</td>
</tr>
</tbody>
</table>
Teil B - II - Künstliche Umweltradioaktivität

Zahl der Messstationen

- *Messungen eingestellt*
- [] umvollständige Messreihe (i: Anzahl der Monate)
- MT Austausch des Messsystems
- a Daten liegen nicht vor
- j Anzahl der Messstationen auf 6 reduziert, gemäß überarbeitetem Umgebungsüberwachungsprogramm
- k Anzahl der Messstationen auf 2 reduziert, gemäß überarbeitetem Immissionsüberwachungsprogramm
- y Ersatzwert Sonde NLÖ unweit abgebauter Sonde
- z Anzahl der Messstationen auf 2 reduziert (Bedingungen des Restbetriebes)
- l leicht erhöhte ODL-Messwerte an einer Messstelle durch Bodenbearbeitung im Umfeld der Messstelle

Tabelle 2.1.4-4 Deposition mit dem Niederschlag bezogen auf Co-60

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Probenahmestelle</td>
<td>N</td>
<td>(Bq/l)</td>
<td>(Bq/m²)</td>
<td>(Bq/l)</td>
<td>(Bq/m²)</td>
<td>(Bq/l)</td>
<td>(Bq/m²)</td>
<td>(Bq/l)</td>
<td>(Bq/m²)</td>
</tr>
<tr>
<td>GKN Neckarwestheim</td>
<td>2</td>
<td>< 1,4</td>
<td>[< 0,36]⁹</td>
<td>< 0,36</td>
<td>< 0,39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FZ Karlsruhe</td>
<td>6</td>
<td>< 0,87</td>
<td>< 0,8</td>
<td>< 0,79</td>
<td>< 0,84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKI Isar</td>
<td>3</td>
<td>< 1,6</td>
<td>< 1,5</td>
<td>< 1,4</td>
<td>< 1,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKG Grafenrheinfeld</td>
<td>3</td>
<td>< 0,56</td>
<td>< 0,48</td>
<td>< 0,51</td>
<td>< 0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRB Gundremmingen II</td>
<td>3</td>
<td>< 1,6</td>
<td>< 1,4</td>
<td>< 1,5</td>
<td>< 1,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KGR Greifswald</td>
<td>20</td>
<td>< 1,7</td>
<td>< 1,7</td>
<td>< 2,0</td>
<td>< 2,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VKTA Rossendorf</td>
<td>3</td>
<td>< 0,61</td>
<td>< 0,52</td>
<td>< 0,53</td>
<td>< 0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKR Rheinsberg</td>
<td>4</td>
<td>< 2,3</td>
<td>< 1,6</td>
<td>< 2,0</td>
<td>< 2,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KMK Mülheim-Kärlich</td>
<td>2</td>
<td>< 0,70</td>
<td>< 0,64</td>
<td>< 0,66</td>
<td>< 0,66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KWW Würgassen</td>
<td>2</td>
<td>< 0,007</td>
<td>< 0,006</td>
<td>< 0,005</td>
<td>< 0,003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FZ Jülich</td>
<td>1</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THTR Hamm-Uentrop</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKB Brunsbüttel</td>
<td>2</td>
<td>< 0,92</td>
<td>< 1,1</td>
<td>< 1,3</td>
<td>< 1,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBR Brokdorf</td>
<td>2</td>
<td>< 1,4</td>
<td>< 1,4</td>
<td>< 1,4</td>
<td>< 1,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKU Unterweser</td>
<td>2</td>
<td>< 2,7</td>
<td>< 2,4</td>
<td>< 2,7</td>
<td>< 2,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KGK Krümmel</td>
<td>4</td>
<td>< 2,7</td>
<td>< 2,7</td>
<td>< 2,7</td>
<td>< 2,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRR Rheinsberg</td>
<td>2</td>
<td>< 1,8</td>
<td>< 1,8</td>
<td>< 2,2</td>
<td>< 1,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKV Stade</td>
<td>2</td>
<td>< 2,6</td>
<td>< 2,7</td>
<td>< 2,7</td>
<td>< 2,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KWB Biblis</td>
<td>2</td>
<td>< 2,8⁹</td>
<td>< 2,3⁹</td>
<td>< 3,0</td>
<td>< 2,8⁹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKK Krümmel</td>
<td>4</td>
<td>[< 2,8]⁹</td>
<td>[< 2,9]⁹</td>
<td>< 3,0</td>
<td>< 2,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKG Grafenrheinfeld</td>
<td>2</td>
<td>[< 0,51]⁹</td>
<td>[< 0,59]⁹</td>
<td>< 0,62</td>
<td>< 0,61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRB Gundremmingen II</td>
<td>2</td>
<td>[< 2,0]⁹</td>
<td>[< 2,3]⁹</td>
<td>< 2,1</td>
<td>< 1,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KGR Greifswald</td>
<td>2</td>
<td>[< 1,9]⁹</td>
<td>< 1,8</td>
<td>< 1,8</td>
<td>< 1,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VKTA Rossendorf</td>
<td>2</td>
<td>< 0,54</td>
<td>< 0,51</td>
<td>< 0,69</td>
<td>< 0,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKR Rheinsberg</td>
<td>2</td>
<td>< 0,20</td>
<td>< 0,2</td>
<td>< 0,2</td>
<td>< 0,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KMK Mülheim-Kärlich</td>
<td>2</td>
<td>< 0,68</td>
<td>< 0,92</td>
<td>< 0,98</td>
<td>< 0,51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[]³ unvollständige Messreihe (i: Anzahl der Monate)

N Zahl der Messstationen

* Messungen eingestellt
Die nuklidspezifisch nachgewiesenen Aktivitätsableitungen werden vom Betreiber vierteljährlich und jährlich dokumentiert und an die zuständige Aufsichtsbehörde übermittelt. Aus der lückenlosen Bilanzierung der Aktivitätsableitungen radioaktiver Stoffe wird die Strahlenexposition der Bevölkerung in der Umgebung der kerntechnischen Anlagen ermittelt und die Einhaltung der Dosisgrenzwerte des § 47 Strahlenschutzverordnung (StrlSchV) überprüft. Auf die Bestimmung der Strahlenexposition aus den Emissionsdaten muss deshalb zurückgegriffen werden, weil die Aktivitätskonzentrationen und spezifischen Aktivitäten der aus kerntechnischen Anlagen abgeleiteten Radionuklide in den Umweltmedien Luft und Wasser und in Nahrungsmitteln im Allgemeinen so gering sind, dass sie messtechnisch nicht nachgewiesen werden können. Die Aktivitätsableitungen sind dagegen genügend genau erfassbar (Tabellen 2.1.5-1 bis 2.1.5-8).

Die bilanzierten Jahreswerte der Aktivitätsableitungen radioaktiver Stoffe mit der Fortluft der Kernkraftwerke im Jahr 2011 sind in Tabelle 2.1.5-1 für die Radionukligruppen radioaktive Edelgase und an Schwebstoffen gebundene Radionuklide mit Halbwertszeiten größer als 8 Tage, sowie für die Radionuklide I-131, C-14 (als Kohlenstoffdioxid) und H-3 aufgeführt. Die Jahresaktivitätsableitungen der Reaktoren MZFR, KNK und AVR (siehe Tabelle 1.3-1) sind in den Ableitungswerten der Forschungszentren Karlsruhe und Jülich enthalten (Tabelle 2.1.5-5). Die einzelnen in einer Radionukligruppe zusammengefassten Radionuklide zeigen entsprechend ihrer chemisch-physikalischen Natur in den Umweltmedien und im menschlichen Körper unterschiedliches Verhalten. Daher ist für die Berechnung der Strahlenlizenz die Kenntnis der Zusammensetzung des abgeleiteten Radionuklidgemisches erforderlich. Die auf Grund von Einzelaktivitätsmessungen ermittelte Zusammensetzung der 2011 abgeleiteten radioaktiven Edelgase ist aus Tabelle 2.1.5-2 zu ersehen. Tabelle 2.1.5-3 enthält die nuklidspezifischen Aktivitätsableitungen der an Schwebstoffen gebundenen Radionuklide einschließlich der Betastrahlung C-14 und C-14 als Kohlenstoffdioxid sowie der Alphastrahlung des Alphastrahlers Pu-238, Pu-239+240, Am-241, Cm-242 und Cm-244.

Teil B - II - Künstliche Umwelträadioaktivität

Druckwasserreaktoren wird zusätzlich organisch gebundenes C-14 abgeleitet, dessen Dosisbeitrag aber vernachlässigbar ist. Die gesamte abgeleitete Aktivität von C-14 in allen chemischen Verbindungen über die Fortluft im Jahr 2011 beträgt an den in Tabelle 2.1.5-1 aufgeführten Standorten etwa \(4,0 \times 10^{12}\) Bq.

Tabelle 2.1.5-1 Aktivitätsableitung radioaktiver Stoffe mit der Fortluft aus Kernkraftwerken im Jahr 2011

(*Discharges of radioactive substances with exhaust air from nuclear power plants in the year 2011*)

<table>
<thead>
<tr>
<th>Kernkraftwerk</th>
<th>Aktivitätsableitung in Bq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radioaktive Edelgase</td>
</tr>
<tr>
<td>VAK Kahl b)</td>
<td>-</td>
</tr>
<tr>
<td>KKR Rheinsberg c)</td>
<td>-</td>
</tr>
<tr>
<td>KRB Gundremmingen A d)</td>
<td>-</td>
</tr>
<tr>
<td>KWL Lingen d)</td>
<td>-</td>
</tr>
<tr>
<td>KWO Obrigheim h)</td>
<td>-</td>
</tr>
<tr>
<td>KKS Stade g)</td>
<td>-</td>
</tr>
<tr>
<td>KWW Würgassen e)</td>
<td>-</td>
</tr>
<tr>
<td>KGR Greifswald c)</td>
<td>-</td>
</tr>
<tr>
<td>KWB Biblis A</td>
<td>9,8 E09</td>
</tr>
<tr>
<td>KWB Biblis B</td>
<td>1,6 E11</td>
</tr>
<tr>
<td>GKN Neckarwestheim 1</td>
<td>9,7 E10</td>
</tr>
<tr>
<td>KKB Brunsbüttel</td>
<td>nn</td>
</tr>
<tr>
<td>KKI Isar 1</td>
<td>2,4 E11</td>
</tr>
<tr>
<td>KKW Untermeser</td>
<td>3,8 E12</td>
</tr>
<tr>
<td>KKP Philippensburg 1</td>
<td>8,0 E11</td>
</tr>
<tr>
<td>KKG Grafenreinfeld</td>
<td>1,0 E11</td>
</tr>
<tr>
<td>KKK Krümmel</td>
<td>nn</td>
</tr>
<tr>
<td>KRB Gundremmingen B, C</td>
<td>1,0 E13</td>
</tr>
<tr>
<td>KGW Grohnde</td>
<td>1,5 E12</td>
</tr>
<tr>
<td>THTR Hamm-Uentrop f)</td>
<td>-</td>
</tr>
<tr>
<td>KKP Philippensburg 2</td>
<td>3,8 E11</td>
</tr>
<tr>
<td>KMK Mülheim-Kärlich f)</td>
<td>-</td>
</tr>
<tr>
<td>KBR Brokdorf</td>
<td>9,7 E11</td>
</tr>
<tr>
<td>KKI Isar 2</td>
<td>3,4 E11</td>
</tr>
<tr>
<td>KKE Emmsland</td>
<td>1,5 E11</td>
</tr>
<tr>
<td>GKN Neckarwestheim 2</td>
<td>3,2 E11</td>
</tr>
</tbody>
</table>

a) Halbwertszeit > 8 Tage, ohne I-131, einschließlich Sr-89, Sr-90 und Alphastrahler
b) Betrieb beendet 1985; wurde im Mai 2010 aus dem Atomgesetz entlassen
c) Betrieb beendet 1990
d) Betrieb beendet 1977
e) Betrieb beendet 1994
f) Messung / Angabe nicht erforderlich
- nicht nachgewiesen (Messwerte der Aktivitätskonzentration bzw. Aktivitätsableitung unter der Erkennungsgrenze)
1) Dieser Wert wird auf den Reaktorunfall in Fukushima (Japan) zurückgeführt.
2) Dieser Wert enthält Aktivitätsableitungen, die auf den Reaktorunfall in Fukushima (Japan) zurückgeführt werden.
Tabelle 2.1.5-2 Aktivitätsableitung radioaktiver Edelgase mit der Fortluft aus Kernkraftwerken im Jahr 2011
(Discharges of radioactive noble gases with exhaust air from nuclear power plants in the year 2011)

<table>
<thead>
<tr>
<th>Radio- nuklid</th>
<th>Kahl/ Rhein- berg</th>
<th>Gundremmingen A / Lingen</th>
<th>Obrigheim</th>
<th>Würgassen</th>
<th>Stade</th>
<th>Greifswald</th>
<th>Biblis A</th>
<th>Biblis B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar-41</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7,2 E09</td>
<td>9,2 E09</td>
<td></td>
</tr>
<tr>
<td>Kr-85m</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nn</td>
<td>nn</td>
<td></td>
</tr>
<tr>
<td>Kr-85</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nn</td>
<td>1,5 E11</td>
<td></td>
</tr>
<tr>
<td>Kr-87</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nn</td>
<td>nn</td>
<td></td>
</tr>
<tr>
<td>Kr-88</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nn</td>
<td>nn</td>
<td></td>
</tr>
<tr>
<td>Kr-89</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nn</td>
<td>nn</td>
<td></td>
</tr>
<tr>
<td>Xe-131m</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,1 E09</td>
<td>nn</td>
<td></td>
</tr>
<tr>
<td>Xe-133m</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,1 E08</td>
<td>nn</td>
<td></td>
</tr>
<tr>
<td>Xe-133</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,7 E08</td>
<td>6,0 E07</td>
<td></td>
</tr>
<tr>
<td>Xe-135</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,3 E08</td>
<td>nn</td>
<td></td>
</tr>
<tr>
<td>Xe-135m</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8,8 E08</td>
<td>nn</td>
<td></td>
</tr>
<tr>
<td>Xe-137</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nn</td>
<td>nn</td>
<td></td>
</tr>
<tr>
<td>Xe-138</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nn</td>
<td>nn</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radionuklid</th>
<th>Neckar- westheim 1</th>
<th>Brunsbüttel</th>
<th>Isar 1</th>
<th>Unter- wasser</th>
<th>Philippsburg 1</th>
<th>Grafen- rheinfeld</th>
<th>Krümmel</th>
<th>Gundrem- mingen B, C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar-41</td>
<td>9,6 E10</td>
<td>nn</td>
<td>2,4 E08</td>
<td>3,4 E10</td>
<td>2,3 E08</td>
<td>8,3 E10</td>
<td>nn</td>
<td>3,5 E11</td>
</tr>
<tr>
<td>Kr-85m</td>
<td>nn</td>
<td>nn</td>
<td>1,7 E07</td>
<td>nn</td>
<td>1,9 E09</td>
<td>nn</td>
<td>nn</td>
<td>9,5 E07</td>
</tr>
<tr>
<td>Kr-85</td>
<td>nn</td>
<td>nn</td>
<td>4,4 E10</td>
<td>1,2 E12</td>
<td>2,9 E10</td>
<td>2,0 E10</td>
<td>nn</td>
<td>1,3 E12</td>
</tr>
<tr>
<td>Kr-87</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>1,5 E10</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>1,8 E08</td>
</tr>
<tr>
<td>Kr-88</td>
<td>nn</td>
<td>nn</td>
<td>7,2 E10</td>
<td>nn</td>
<td>2,2 E08</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Kr-89</td>
<td>nn</td>
<td>nn</td>
<td>5,0 E08</td>
<td>nn</td>
<td>1,7 E10</td>
<td>nn</td>
<td>nn</td>
<td>1,9 E10</td>
</tr>
<tr>
<td>Xe-131m</td>
<td>nn</td>
<td>nn</td>
<td>9,8 E08</td>
<td>1,5 E12</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>3,9 E11</td>
</tr>
<tr>
<td>Xe-133m</td>
<td>nn</td>
<td>nn</td>
<td>5,5 E08</td>
<td>4,0 E09</td>
<td>1,4 E09</td>
<td>nn</td>
<td>nn</td>
<td>9,9 E10</td>
</tr>
<tr>
<td>Xe-133</td>
<td>nn</td>
<td>nn</td>
<td>6,8 E09</td>
<td>1,1 E12</td>
<td>1,5 E11</td>
<td>nn</td>
<td>nn</td>
<td>7,1 E12</td>
</tr>
<tr>
<td>Xe-135m</td>
<td>nn</td>
<td>nn</td>
<td>3,5 E10</td>
<td>4,0 E08</td>
<td>1,6 E11</td>
<td>nn</td>
<td>nn</td>
<td>3,4 E11</td>
</tr>
<tr>
<td>Xe-135</td>
<td>1,3 E09</td>
<td>nn</td>
<td>1,7 E10</td>
<td>3,7 E10</td>
<td>1,6 E11</td>
<td>nn</td>
<td>nn</td>
<td>2,2 E11</td>
</tr>
<tr>
<td>Xe-137</td>
<td>nn</td>
<td>nn</td>
<td>3,4 E10</td>
<td>1,1 E11</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>3,4 E11</td>
</tr>
<tr>
<td>Xe-138</td>
<td>nn</td>
<td>nn</td>
<td>8,8 E09</td>
<td>1,1 E11</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>1,0 E11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radionuklid</th>
<th>Grohnde</th>
<th>Hamm- Uentrop</th>
<th>Philippsburg 2</th>
<th>Mühlheim- Kärlich</th>
<th>Brokdorf</th>
<th>Isar 2</th>
<th>Emsland</th>
<th>Neckar- westheim 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar-41</td>
<td>2,5 E10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,3 E11</td>
<td>1,2 E11</td>
<td>1,5 E11</td>
<td>8,2 E10</td>
</tr>
<tr>
<td>Kr-85m</td>
<td>nn</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,4 E10</td>
<td>2,2 E07</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Kr-85</td>
<td>8,5 E10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7,2 E10</td>
<td>2,0 E11</td>
<td>nn</td>
<td>2,0 E11</td>
</tr>
<tr>
<td>Kr-87</td>
<td>nn</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7,6 E08</td>
<td>4,0 E07</td>
<td>nn</td>
<td>1,2 E08</td>
</tr>
<tr>
<td>Kr-88</td>
<td>nn</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5,4 E08</td>
<td>1,2 E08</td>
<td>nn</td>
<td>7,6 E07</td>
</tr>
<tr>
<td>Kr-89</td>
<td>nn</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,6 E09</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Xe-131m</td>
<td>3,3 E10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,4 E11</td>
<td>6,1 E09</td>
<td>1,4 E10</td>
<td>4,1 E10</td>
</tr>
<tr>
<td>Xe-133m</td>
<td>1,4 E10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,7 E09</td>
<td>3,8 E08</td>
<td>8,6 E08</td>
<td>8,7 E07</td>
</tr>
<tr>
<td>Xe-133</td>
<td>1,3 E12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,0 E09</td>
<td>7,7 E11</td>
<td>1,1 E09</td>
<td>3,6 E07</td>
</tr>
<tr>
<td>Xe-135m</td>
<td>nn</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9,9 E07</td>
<td>nn</td>
<td>nn</td>
<td>6,7 E07</td>
</tr>
<tr>
<td>Xe-135</td>
<td>6,3 E10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,0 E09</td>
<td>3,1 E10</td>
<td>3,3 E08</td>
<td>6,0 E07</td>
</tr>
<tr>
<td>Xe-137</td>
<td>nn</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6,5 E08</td>
<td>nn</td>
<td>nn</td>
<td>8,9 E08</td>
</tr>
<tr>
<td>Xe-138</td>
<td>nn</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8,8 E08</td>
<td>nn</td>
<td>4,5 E08</td>
<td>nn</td>
</tr>
</tbody>
</table>

- Messung / Angabe nicht erforderlich
- nn nicht nachgewiesen (Messwerte der Aktivitätskonzentration bzw. Aktivitätsableitung unter der Erkennungsgrenze)
Tabelle 2.1.5-3 Aktivitätsableitung von an Schwebstoffen gebundenen Radionukliden mit der Fortluft aus Kernkraftwerken im Jahr 2011 (I-131: Tabelle 2.1.5-1)

(Discharges of radioactive particulates with exhaust air from nuclear power plants in the year 2011 - I-131: Table 2.1.5-1)

<table>
<thead>
<tr>
<th>Radionuklid</th>
<th>Aktivitätsableitung in Bq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kahl</td>
</tr>
<tr>
<td>Cr-51</td>
<td>-</td>
</tr>
<tr>
<td>Mn-54</td>
<td>-</td>
</tr>
<tr>
<td>Fe-59</td>
<td>-</td>
</tr>
<tr>
<td>Co-57</td>
<td>-</td>
</tr>
<tr>
<td>Co-58</td>
<td>-</td>
</tr>
<tr>
<td>Co-60</td>
<td>-</td>
</tr>
<tr>
<td>Zn-65</td>
<td>-</td>
</tr>
<tr>
<td>Sr-89</td>
<td>-</td>
</tr>
<tr>
<td>Sr-90</td>
<td>-</td>
</tr>
<tr>
<td>Zr-95</td>
<td>-</td>
</tr>
<tr>
<td>Nb-95</td>
<td>-</td>
</tr>
<tr>
<td>Ru-103</td>
<td>-</td>
</tr>
<tr>
<td>Ru-106</td>
<td>-</td>
</tr>
<tr>
<td>Ag-110m</td>
<td>-</td>
</tr>
<tr>
<td>Sb-124</td>
<td>-</td>
</tr>
<tr>
<td>Sb-125</td>
<td>-</td>
</tr>
<tr>
<td>Te-123m</td>
<td>-</td>
</tr>
<tr>
<td>Cs-134</td>
<td>-</td>
</tr>
<tr>
<td>Cs-137</td>
<td>-</td>
</tr>
<tr>
<td>Ba-140</td>
<td>-</td>
</tr>
<tr>
<td>La-140</td>
<td>-</td>
</tr>
<tr>
<td>Ce-141</td>
<td>-</td>
</tr>
<tr>
<td>Ce-144</td>
<td>-</td>
</tr>
<tr>
<td>Eu-152</td>
<td>-</td>
</tr>
<tr>
<td>Eu-154</td>
<td>-</td>
</tr>
<tr>
<td>Eu-155</td>
<td>-</td>
</tr>
<tr>
<td>Pu-238</td>
<td>-</td>
</tr>
<tr>
<td>Pu-(239+240)</td>
<td>-</td>
</tr>
<tr>
<td>Am-241</td>
<td>-</td>
</tr>
<tr>
<td>Pu-241</td>
<td>-</td>
</tr>
<tr>
<td>Cm-242</td>
<td>-</td>
</tr>
<tr>
<td>Cm-244</td>
<td>-</td>
</tr>
<tr>
<td>Radio-</td>
<td>Aktivitätsableitung in Bq</td>
</tr>
<tr>
<td>nuklid</td>
<td>Biblis B</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr-51</td>
<td>nn</td>
</tr>
<tr>
<td>Mn-54</td>
<td>nn</td>
</tr>
<tr>
<td>Fe-59</td>
<td>nn</td>
</tr>
<tr>
<td>Co-57</td>
<td>nn</td>
</tr>
<tr>
<td>Co-58</td>
<td>nn</td>
</tr>
<tr>
<td>Co-60</td>
<td>nn</td>
</tr>
<tr>
<td>Zn-65</td>
<td>nn</td>
</tr>
<tr>
<td>Sr-89</td>
<td>nn</td>
</tr>
<tr>
<td>Sr-90</td>
<td>nn</td>
</tr>
<tr>
<td>Zr-95</td>
<td>nn</td>
</tr>
<tr>
<td>Nb-95</td>
<td>nn</td>
</tr>
<tr>
<td>Ru-103</td>
<td>nn</td>
</tr>
<tr>
<td>Ru-106</td>
<td>nn</td>
</tr>
<tr>
<td>Ag-110m</td>
<td>nn</td>
</tr>
<tr>
<td>Sn-113</td>
<td>nn</td>
</tr>
<tr>
<td>Sb-124</td>
<td>nn</td>
</tr>
<tr>
<td>Sb-125</td>
<td>nn</td>
</tr>
<tr>
<td>Te-123m</td>
<td>1,5 E05</td>
</tr>
<tr>
<td>Cs-134</td>
<td>nn</td>
</tr>
<tr>
<td>Cs-137</td>
<td>nn</td>
</tr>
<tr>
<td>Ba-140</td>
<td>nn</td>
</tr>
<tr>
<td>La-140</td>
<td>nn</td>
</tr>
<tr>
<td>Ce-141</td>
<td>nn</td>
</tr>
<tr>
<td>Ce-144</td>
<td>nn</td>
</tr>
<tr>
<td>Eu-152</td>
<td>nn</td>
</tr>
<tr>
<td>Eu-154</td>
<td>nn</td>
</tr>
<tr>
<td>Eu-155</td>
<td>nn</td>
</tr>
<tr>
<td>Pu-238</td>
<td>nn</td>
</tr>
<tr>
<td>Pu-(239+</td>
<td>nn</td>
</tr>
<tr>
<td></td>
<td>240)</td>
</tr>
<tr>
<td>Am-241</td>
<td>nn</td>
</tr>
<tr>
<td>Pu-241</td>
<td>nn</td>
</tr>
<tr>
<td>Cm-242</td>
<td>nn</td>
</tr>
<tr>
<td>Cm-244</td>
<td>nn</td>
</tr>
</tbody>
</table>

- Messung / Angabe nicht erforderlich
nn nicht nachgewiesen (Messwerte der Aktivitätskonzentration bzw. Aktivitätsableitung unter der Erkennungsgrenze)

<table>
<thead>
<tr>
<th>Radio- nuklid</th>
<th>Grohnde</th>
<th>Hamm-Uentrop</th>
<th>Philippsburg</th>
<th>Mühlheim-Kärlich</th>
<th>Brokdorf</th>
<th>Isar 2</th>
<th>Emsland</th>
<th>Neckarwestheim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr-51</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Mn-54</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Fe-59</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Co-57</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Co-58</td>
<td>nn</td>
<td>nn</td>
<td>6,2 E03</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Fe-59</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Co-60</td>
<td>nn</td>
<td>nn</td>
<td>4,5 E04</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>6,0 E03</td>
</tr>
<tr>
<td>Zn-65</td>
<td>nn</td>
<td>nn</td>
<td>1,7 E04</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Sr-89</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Sr-90</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Zr-95</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Nb-95</td>
<td>4,6 E04</td>
<td>nn</td>
<td>2,7 E04</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Ru-103</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Ru-106</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Ag-110m</td>
<td>1,3 E05</td>
<td>nn</td>
<td>1,1 E04</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Sn-113</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Sb-124</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Sb-125</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Te-123m</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Cs-134</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Cs-137</td>
<td>nn</td>
<td>nn</td>
<td>8,4 E03</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Ba-140</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>La-140</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Ce-141</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Ce-144</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Eu-152</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Eu-154</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Eu-155</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Pu-238</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Pu-(239+240)</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Am-241</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Pu-241</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Cm-242</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Cm-244</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
</tbody>
</table>

- Messung / Angabe nicht erforderlich
 nn nicht nachgewiesen (Messwerte der Aktivitätskonzentration bzw. Aktivitätsableitung unter der Erkennungsgrenze)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>radioaktive Edelgase</th>
<th>I-131</th>
<th>an Schwebstoffen gebundene Radionuklide</th>
<th>Bruttostromerzeugung in MWa</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>1,5 E13</td>
<td>2,8 E08</td>
<td>7,4 E07</td>
<td>19.552</td>
</tr>
<tr>
<td>2002</td>
<td>1,8 E13</td>
<td>3,3 E08</td>
<td>5,7 E07</td>
<td>18.816</td>
</tr>
<tr>
<td>2003</td>
<td>1,4 E13</td>
<td>1,4 E08</td>
<td>6,2 E07</td>
<td>18.847*</td>
</tr>
</tbody>
</table>
Tabelle 2.1.5-5: Aktivitätsableitung radioaktiver Stoffe mit der Fortluft aus Forschungszentren und Forschungsreaktoren von Universitäten im Jahr 2011

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Aktivitätsableitung in Bq</th>
<th>Bruttostrom-erzeugung in MWe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radioaktive Edelgase</td>
<td>I-131</td>
</tr>
<tr>
<td>2004</td>
<td>2,8 E13</td>
<td>2,5 E08</td>
</tr>
<tr>
<td>2005</td>
<td>2,8 E13</td>
<td>1,7 E08</td>
</tr>
<tr>
<td>2006</td>
<td>1,7 E13</td>
<td>2,3 E08</td>
</tr>
<tr>
<td>2007</td>
<td>2,2 E13</td>
<td>1,9 E08</td>
</tr>
<tr>
<td>2008</td>
<td>1,6 E13</td>
<td>5,7 E07</td>
</tr>
<tr>
<td>2009</td>
<td>1,3 E13</td>
<td>6,6 E07</td>
</tr>
<tr>
<td>2010</td>
<td>2,3 E13</td>
<td>8,7 E07</td>
</tr>
<tr>
<td>2011</td>
<td>1,9 E13</td>
<td>3,9 E07</td>
</tr>
</tbody>
</table>

* Quelle: atw, International Journal for Nuclear Power, Betriebsergebnisse, Berlin

Die Jahresaktivitätsableitungen der Forschungsreaktoren FRJ1, FRJ2, RFR, FRG1, FRG2 und BER II sind in den Ableitungen der Forschungszentren in Karlsruhe, Jülich, Dresden-Rossendorf, Geesthacht und Berlin enthalten (Tabelle 2.1.5-5).
Tabelle 2.1.5-6 Aktivitätsableitung alphastrahlender radioaktiver Stoffe mit der Fortluft aus Kernbrennstoff verarbeitenden Betrieben
(Discharges of alpha emitting radioactive substances with exhaust air from processing facilities for nuclear fuels)

<table>
<thead>
<tr>
<th>Betrieb</th>
<th>Aktivitätsableitung in Bq</th>
<th>2011</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANF GmbH (Lingen)</td>
<td></td>
<td>< 1,5 E04</td>
<td>< 1,5 E04</td>
</tr>
<tr>
<td>URENCO D (Gronau)</td>
<td></td>
<td>7,9 E04</td>
<td>7,2 E04</td>
</tr>
</tbody>
</table>

< Messwert kleiner Erkennungsgrenze; der angegebene Wert entspricht der Erkennungsgrenze

Tabelle 2.1.5-7 Aktivitätsableitung radioaktiver Stoffe mit der Fortluft aus den Endlagern Morsleben und Schachtanlage Asse II
(Discharges of radioactive substances with exhaust air from the Morsleben and the Asse final disposal facilities)

<table>
<thead>
<tr>
<th>Radionuklid</th>
<th>Aktivitätsableitung in Bq</th>
<th>2011</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-3</td>
<td></td>
<td>8,4 E09</td>
<td>1,2 E10</td>
</tr>
<tr>
<td>C-14</td>
<td></td>
<td>7,1 E08</td>
<td>6,4 E08</td>
</tr>
<tr>
<td>Rn-222a)</td>
<td></td>
<td>3,3 E09</td>
<td>8,9 E09</td>
</tr>
<tr>
<td>an Schwebstoffen gebundene Radionuklide</td>
<td></td>
<td>1,7 E06</td>
<td>1,8 E06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radionuklid</th>
<th>Aktivitätsableitung in Bq</th>
<th>2011</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-3</td>
<td></td>
<td>4,2 E10</td>
<td>3,8 E10</td>
</tr>
<tr>
<td>C-14</td>
<td></td>
<td>1,3 E09</td>
<td>9,0 E08</td>
</tr>
<tr>
<td>Rn-222 (Gas)</td>
<td></td>
<td>1,1 E11</td>
<td>1,1 E11</td>
</tr>
<tr>
<td>an Schwebstoffen gebundene Radionuklide</td>
<td></td>
<td>2,3 E061)</td>
<td>2,0 E06</td>
</tr>
</tbody>
</table>

*a) gleichgewichtäquivalente Radon-222-Aktivitätskonzentration

1) Dieser Wert enthält Aktivitätsableitungen, die auf den Reaktorunfall in Fukushima (Japan) zurückgeführt werden*
2.2 Meerwasser und Binnengewässer
(Seawater and inland water)

2.2.1 Meerwasser, Schwebstoff, Sediment
(Seawater, suspended matter, sediment)

Meerwasser in der Nordsee

Abbildung 2.2.1-1 Der zeitliche Verlauf der Aktivitätskonzentration von Cs-137 (Bq/m³) an zwei Positionen in der Deutschen Bucht seit 1961
(Temporal trend of the activity concentration of Cs-137 (Bq/m³) at two positions in the German Bight since 1961)
Teil B

In den Abbildung 2.2.1-3 und 2.2.1-4 wird die Verteilung der Aktivitätskonzentration von Cs-137 an der Wasseroberfläche der Nordsee vom Englischen Kanal bis nördlich der Shetlandinseln in den Jahren 2010 und 2011 dargestellt. Im Jahre 2010 wurden dabei Proben zu Vergleichszwecken aus Tiefen bis 1000 m genommen. Insgesamt befinden sich die Konzentrationen dieses Radionuklids für die gesamte Nordsee auf einem sehr niedrigen Niveau. Die höchsten Aktivitätskonzentrationen an Cs-137 werden seit Jahren im Skagerrak und dem darauf folgenden norwegischen Küstenstrom nachgewiesen, mit bis zu 10,6 Bq/m³ im Jahr 2011. Ursache ist der Ausstrom relativ hoch kontaminierten Ostseewassers durch das Kattegat (siehe Kapitel Meerwasser in der Ostsee weiter unten im Text). In der westlichen und südlichen Nordsee finden sich Aktivitätskonzentrationen um 4 Bq/m³, die gegenüber den Messwerten im Atlantik nördlich Schottlands (ca. 1,5 Bq/m³) leicht erhöht sind. Ursache sind in diesem Fall nicht die aktuellen Einleitungen der Wiederaufarbeitungsanlagen für Kernbrennstoffe in Sellafield und La Hague, sondern die Resuspension vor allem aus dem Sediment der Irischen See, welches in den 70er Jahren des vorigen Jahrhunderts massiv durch damals legale Einleitungen kontaminiert wurde.

In Abbildung 2.2.1-6 ist die Verteilung der Aktivitätskonzentration von Tritium (H-3) im Oberflächenwasser der Nordsee im August 2010 dargestellt. Während an der englischen Ostküste nur eine geringfügige Erhöhung der Konzentration gegenüber den Hintergrundwerten im Atlantik festzustellen ist, lässt sich an der Festlandküste der Einfluss der Einleitungen der WAA La Hague deutlich sehen. Hier treten Werte bis zu 3,6 Bq/L auf. Obwohl Tritium bei diesen Aktivitätskonzentrationen als radiologisch unbedenklich angesehen wird, strebt die grundsätzliche Strategie für radioaktive Substanzen im Geltungsbereich der OSPAR-Kommission eine Verminderung auch dieser legalen Einleitungen an.

Zum Redaktionsschluss waren die Analysen aus dem Jahr 2011 für die Radionuklide Sr-90, Tritium und der Transurane nur zu einem geringen Grad fertiggestellt, so dass eine Darstellung hier nicht sinnvoll ist. Die bisher vorliegenden Messwerte lassen jedoch nichts Ungewöhnliches erkennen.

Es ist festzuhalten, dass es sich wie bei allen hier dargestellten Messwerten um extrem geringe Aktivitätskonzentrationen handelt, von denen keine Gefahr für Mensch oder Umwelt ausgeht.
Abbildung 2.2.1-3 Die Verteilung der Aktivitätskonzentration von Cs-137 (Bq/m³) im Wasser der Nordsee im August 2010

(Distribution of the activity concentration of Cs-137 (Bq/m³) in seawater of the North Sea in August 2010)
Abbildung 2.2.1-4 Die Verteilung der Aktivitätskonzentration von Cs-137 (Bq/m³) im Wasser der Nordsee im August 2011

(Distribution of the activity concentration of Cs-137 (Bq/m³) in seawater of the North Sea in August 2011)
Abbildung 2.2.1-5 Die Verteilung der Aktivitätskonzentration von Sr-90 (Bq/m³) im Wasser der Nordsee im August 2010

(Distribution of the activity concentration of Sr-90 (Bq/m³) in seawater of the North Sea in August 2010)

Wasseroberfläche, 0 - 10 m Schicht

<table>
<thead>
<tr>
<th>Tiefe (m)</th>
<th>Aktivitätskonzentration (Bq/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,9</td>
</tr>
<tr>
<td>100</td>
<td>0,8</td>
</tr>
<tr>
<td>250</td>
<td>0,9</td>
</tr>
<tr>
<td>500</td>
<td>0,8</td>
</tr>
<tr>
<td>1000</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Wassersäule, bis zu 1000 m Tiefe

<table>
<thead>
<tr>
<th>Tiefe (m)</th>
<th>Aktivitätskonzentration (Bq/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>1,2</td>
</tr>
<tr>
<td>1,3</td>
<td>1,4</td>
</tr>
<tr>
<td>1,5</td>
<td>1,2</td>
</tr>
<tr>
<td>1,2</td>
<td>1,3</td>
</tr>
<tr>
<td>1,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

90 Sr [Bq/m³]

August 2010

Wasseroberfläche, 0 - 10 m Schicht

Wassersäule, bis zu 1000 m Tiefe
Abbildung 2.2.1-6 Die Verteilung der Aktivitätskonzentration von H-3 (Bq/L) im Wasser der Nordsee im August 2010
(Distribution of the activity concentration of H-3 (Bq/L) in seawater of the North Sea in August 2010)
Meerwasser der Ostsee

Es ist festzuhalten, dass während der über 20-jährigen Laufzeit der internationalen Radioaktivitäts-Überwachungsprogramme (HELCOM-MORS EG) keinerlei Messwerte im Wasser der Ostsee gefunden wurden, die auf Einleitungen der nuklearen Anlagen der Ostseeanrainerstaaten zurückzuführen wären.
Abbildung 2.2.1-9 Zeitreihe der Mittelwerte der Cs-137-Aktivitätskonzentrationen an 7 Indikatorstationen in der westlichen Ostsee

(Timeseries of mean values of Cs-137-activity concentrations from 7 indicator stations in the western Baltic Sea)

Abbildung 2.2.1-10 Verteilung der Aktivitätskonzentration von Sr-90 (Bq/m³) im Oberflächenwasser der westlichen Ostsee im Juli 2011

(Spatial distribution of the activity concentration of Sr-90 (Bq/m³) in surface sea water of the western Baltic Sea in July 2011)
Abbildung 2.2.1-11 Verteilung der Aktivitätskonzentration von H-3 (kBq/m³) im Oberflächenwasser der westlichen Ostsee im Juli 2011
(Spatial distribution of the activity concentration of H-3 (kBq/m³) in surface sea water of the western Baltic Sea in July 2011)

Abbildung 2.2.1-12 Verteilung der spezifischen Aktivität von Cs-137 (Bq/kg TM) in Schwebstoffproben aus der westlichen Ostsee im Juli 2011
(Spatial distribution of the specific activity of Cs-137 (Bq/kg DW) in suspended matter from the western Baltic Sea in July 2011)
Schwebstoffe

In Abbildung 2.2.1-12 ist die spezifische Aktivität von Cs-137 (Bq/kg Trockenmasse) in Schwebstoff an einigen ausgewählten Stationen der westlichen Ostsee dargestellt. Die Schwebstoffproben wurden mittels einer Durchflusszentrifuge aus jeweils ca. 8 m³ Meerwasser gewonnen. Die in 2011 gefundenen Aktivitäten im Bereich von 5 - 30 Bq/kg TM sind im langjährig gefundenen Schwankungsbereich der Cs-137-Konzentrationen im Schwebstoff, der sich bis ca. 50 Bq/kg TM erstreckt. Falls ein nennenswerter Eintrag aus dem Fukushima-Unfall in der westlichen Ostsee stattgefunden hätte, hätte das Nuklid Cs-134 nachweisbar sein müssen. Dies war bei keiner der gewonnenen Schwebstoffproben der Fall.

Sedimente

Das Cs-137 aus dem Tschernobyl-Unfall wurde in den Sedimenten der westlichen und zentralen Ostsee regional sehr unterschiedlich deponiert. Die höchste Konzentration findet sich vielfach nicht mehr an der Sedimentoberfläche, sondern je nach Ort in Tiefen von 2 bis 8 cm. In der Abbildung 2.2.1-13 ist das Inventar in kBq/m² einiger ausgewählter Sedimentstationen der westlichen Ostsee bis in 24 cm Tiefe im Jahre 2011 dargestellt. Die höchsten Werte mit bis zu 4,7 kBq/m² (Eckernförder Bucht) sind in den wasseraustauscharmen Buchten, Bodden und dem als Senke fungierenden Arkonabecken zu finden. Es zeigt sich, dass auch über 20 Jahre nach dem Tschernobyl-Unfall noch beachtliche Depositionen gefunden werden können. Dabei wurden spezifische Aktivitäten von bis zu 124 Bq/kg Trockenmasse festgestellt.

Die Inventare hängen stark von der Feinkörnigkeit der Sedimente ab. Dabei sind die in diesem Teil der Ostsee gefundenen Inventare an Cs-137 wesentlich geringer als z. B. im Finnischen oder Bottnischen Meerbusen, jedoch höher als in fast allen Gebieten des Weltmeeres mit Ausnahme der Irischen See.

Abbildung 2.2.1-13 Cs-137 Inventar (kBq/m²) in Sedimentkernen der westlichen Ostsee im Juli 2011
Das Inventar wird bis 24 cm Sedimenttiefe erfasst

(Cs-137 Inventory (kBq/m²) in sediment cores of the western Baltic Sea in July 2011
The inventory is calculated down to 24 cm depth)
2.2.2 Oberflächenwasser, Schwebstoff und Sediment der Binnengewässer

(Surface water, suspended matter, and sediment in inland water)

In diesem Kapitel wird über die Ergebnisse der Messstellen der Länder sowie der Bundesanstalt für Gewässerkunde (BfG) aus der großräumigen Überwachung der Binnengewässer gemäß dem Routinemessprogramm (RMP) zum Strahlenschutzzweckgesetz (StrVG) für das Jahr 2011 berichtet.

Die gemäß der Richtlinie zur Emissions- und Immisionsüberwachung kerntechnischer Anlagen (REI) von den Messstellen der Länder und den Betreibern ermittelten Ergebnisse der Umgebungüberwachung kerntechnischer Anlagen sind im nachfolgenden Kapitel zusammengefasst und bewertet.

Hinweise zu den insgesamt erhaltenen Ergebnissen von Wasser-, Schwebstoff- und Sedimentmessungen nach StrVG bzw. REI können der Tabelle 2.2.2-1 entnommen werden.

Eine Bewertung der bei der großräumigen Überwachung nach dem StrVG im Berichtsjahr 2011 erhaltenen Messergebnisse ergibt für den radiologischen Gütezustand der Binnengewässer folgendes Bild:

Oberflächenwasserproben

Schwebstoffproben

In Schwebstoffproben lagen die mittleren spezifischen Aktivitäten von Cs-137 vorwiegend unter 100 Bq/kg TM. Höhere Werte für Cs-137 wurden wiederum von einzelnen Seen berichtet: der maximale Jahresmittelwert lag bei 255 Bq/kg TM (Steinhuder Meer, Niedersachsen), Co-58 und Co-60 konnten in Main, Mosel und Rhein nachgewiesen werden, wobei die Werte im Mittel bis 7,2 Bq/kg TM betrugen und damit geringfügig über der geforderten Nachweigsgrenze des RMP. Für l-131 trat sporadisch auf mit Einzelkonzentrationen bis 0,12 Bq/l. Die Bestimmungen von Alpha-Strahlern ergaben für U-234, U-235 und U-238 durchweg Werte, die den natürlichen Gehalten entsprechen: für U-238 schwankten die Werte beispielsweise regional zwischen 0,0002 und 0,11 Bq/l.

Sedimentproben

In Sedimentproben betrugen die mittleren spezifischen Aktivitäten von Cs-137 meist unter 100 Bq/kg TM. In einzelnen Seen traten auch hier noch höhere mittlere Gehalte an Cs-137 auf: der maximale Jahresmittelwert ergab sich zu 211 Bq/kg TM (Wittensee, Schleswig-Holstein), Co-60 – in Mosel und Weser (Unterweser) gemessen - lag jeweils deutlich unter der Nachweigsgrenze des RMP von 5 Bq/kg TM.

Strahlensexposition

Die aus den verschiedenen Quellen in die Binnengewässer anthropogen eingetragenen Radionuklide können über die für den aquatischen Bereich sensitiven Expositionsfade „Trinkwasser“ und „Aufenthalt auf Spülfeldern“ eine zusätzliche interne bzw. externe Strahlensexposition von Personen bewirken.

Nimmt man eine Kontamination von Oberflächenwasser mit H-3 von 10 Bq/l sowie mit Sr-90 und Cs-137 von jeweils 0,01 Bq/l an, so errechnet sich die zusätzliche effektive Dosis für Erwachsene (> 17 a; 350 lA Konsum) auf dem
„Trinkwasser“-Pfad zu ca. 0,21 µSv/a, falls derartiges Wasser unaufbereitet als Trinkwasser genutzt würde. Für Kleinkinder (<= 1 a; 170 l/a Konsum) beträgt die zusätzlich effektive Dosis hier ca. 0,54 µSv/a. Allein der von dem natürlichen Radionuklid K-40 für einen mittleren Gehalt von 0,4 Bq/l zu erwartende Dosisbeitrag liegt mit ca. 0,87 bzw. 4,2 µSv/a deutlich darüber.

Insbesondere Cs-137 war auch 2011 in Sedimenten noch deutlich nachweisbar. Würde Sediment mit einem Cs-137-Gehalt von 100 Bq/kg TM bei Ausbaumaßnahmen für die Schifffahrt gebaggert und an Land gelagert, so kann die auf dem Expositionspfad „Aufenthalt auf Spülfeldern“ für Standardbedingungen für Erwachsene (> 17 a) zu erwartende zusätzliche effektive Dosis zu ca. 11 µSv/a abgeschätzt werden. Im Vergleich dazu liegt der Dosisbeitrag der natürlichen Radionuklide K-40, Th-nat und U-nat bei typischen Gehalten von 500, 40 und 40 Bq/kg TM für diesen Expositionspfad mit insgesamt ca. 28 µSv/a wesentlich höher.

Tabelle 2.2.2-1 Übersicht über die für 2011 insgesamt ausgewerteten Messwerte von Wasser-, Schwebstoff- und Sedimentmessungen nach StrVG und REI mit den jeweiligen maximalen gemessenen Werten und den zugehörigen Gewässern und Bezugszeiten

(Overview of all measuring results for surface water, suspended matter, and sediment evaluated in 2011, in accordance with the StrVG and REI, along with the respective maximal measured values and the corresponding water sources and reference times)

<table>
<thead>
<tr>
<th>Kompartiment</th>
<th>Nuklid</th>
<th>Anzahl der Werte</th>
<th>Maximale Werte</th>
<th>Gewässer</th>
<th>Ort / KT-Anlage</th>
<th>Datum / Zeitraum</th>
<th>Überwachungsprogramm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>Ga(^{1+})-Aktivität</td>
<td>192</td>
<td>0,19</td>
<td>Oder</td>
<td>Schwedt, km 690,55</td>
<td>Februar</td>
<td>StrVG</td>
</tr>
<tr>
<td></td>
<td>Gf(^{(2)})/Rg(^{(3)})-Aktivität</td>
<td>111</td>
<td>5,3</td>
<td>Salzbach</td>
<td>ERAM Morsleben</td>
<td>Juli</td>
<td>REI</td>
</tr>
<tr>
<td></td>
<td>H-3</td>
<td>1627</td>
<td>3000</td>
<td>Ems</td>
<td>KKE Emsland, Auslaufbauwerk</td>
<td>I. Quartal</td>
<td>REI</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>1621</td>
<td>0,185</td>
<td>Isar</td>
<td>HML München, Garching, km 130,3</td>
<td>18.10.</td>
<td>REI</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>299</td>
<td>0,02</td>
<td>Marbach-Talsperre</td>
<td>Erbach</td>
<td>04.10.</td>
<td>StrVG</td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>653</td>
<td>0,12</td>
<td>Sauer</td>
<td>Bollendorf, km 80,0</td>
<td>15.11.</td>
<td>StrVG</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>1557</td>
<td>0,062</td>
<td>Arendsee</td>
<td>Arendsee</td>
<td>05.05.</td>
<td>StrVG</td>
</tr>
<tr>
<td></td>
<td>Pu-(239+240)</td>
<td>108</td>
<td>0,000004</td>
<td>Elbe</td>
<td>HH (Bunthaus), km 609,8</td>
<td>März</td>
<td>StrVG</td>
</tr>
<tr>
<td>CSchwebstoff (Bq/kg TM)</td>
<td>Co-58</td>
<td>50</td>
<td>10,2</td>
<td>Mosel</td>
<td>Perl, km 241,96</td>
<td>November</td>
<td>StrVG</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>505</td>
<td>35,6</td>
<td>Mosel</td>
<td>Perl, km 241,96</td>
<td>November</td>
<td>StrVG</td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>290</td>
<td>52,1</td>
<td>Naab</td>
<td>Wernberg-Köblitz, km 87,2</td>
<td>I. Quartal</td>
<td>StrVG</td>
</tr>
<tr>
<td></td>
<td>Cs-134</td>
<td>505</td>
<td>0,6</td>
<td>Teschendorfer See</td>
<td>Teschendorf</td>
<td>20.06.</td>
<td>StrVG</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>505</td>
<td>373</td>
<td>Steinhuder Meer</td>
<td>Wunstorf</td>
<td>III. Quartal</td>
<td>StrVG</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Ga-Aktivität</td>
<td>4</td>
<td>601</td>
<td>Hirschkanal</td>
<td>KIT Karlsruhe</td>
<td>I. Quartal</td>
<td>REI</td>
</tr>
<tr>
<td></td>
<td>Gf-Aktivität</td>
<td>4</td>
<td>2220</td>
<td>Hirschkanal</td>
<td>KIT Karlsruhe</td>
<td>III. Quartal</td>
<td>REI</td>
</tr>
<tr>
<td></td>
<td>Co-58</td>
<td>28</td>
<td>1,42</td>
<td>Rhein</td>
<td>KKP Philippsburg, Auslaufbauwerk</td>
<td>II. Quartal</td>
<td>REI</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>1026</td>
<td>6,27</td>
<td>Donau</td>
<td>KRB Gundremmingen, Auslaufbauwerk</td>
<td>I. Quartal</td>
<td>REI</td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>643</td>
<td>150</td>
<td>Rhein</td>
<td>KKP Philippsburg, Auslaufbauwerk</td>
<td>I. Quartal</td>
<td>REI</td>
</tr>
<tr>
<td></td>
<td>Cs-134</td>
<td>901</td>
<td>0,88</td>
<td>Geestezufluss</td>
<td>Bremerhaven</td>
<td>07.07.</td>
<td>StrVG</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>1026</td>
<td>278</td>
<td>Hirschkanal</td>
<td>KIT Karlsruhe</td>
<td>12.05.</td>
<td>REI</td>
</tr>
<tr>
<td></td>
<td>Am-241</td>
<td>20</td>
<td>19,4</td>
<td>Hirschkanal</td>
<td>KIT Karlsruhe</td>
<td>12.05.</td>
<td>REI</td>
</tr>
</tbody>
</table>

1) Gesamt-Alpha-Aktivität
2) Gesamt-Beta-Aktivität
3) Rest-Beta-Aktivität
Abbildung 2.2.2-1 H-3-Gehalte (Bq/l) in Oberflächenwasser aus dem Rhein (Jahresmittelwerte)

(Contents of H-3 (Bq/l) in surface water from the Rhine - annual mean values)

Abbildung 2.2.2-2 H-3-Gehalte (Bq/l) in Oberflächenwasser ausgewählter Binnengewässer (Jahresmittelwerte)

(Contents of H-3 (Bq/l) in surface water from selected inland waters - annual mean values)
Abbildung 2.2.2-3 Aktivitätskonzentrationen (Bq/l) von Sr-90 in Oberflächenwasser ausgewählter Binnenwässer (Jahresmittelwerte)

(Sr-90 activity concentrations (Bq/l) in surface water from selected inland waters - annual mean values)

Abbildung 2.2.2-4 Aktivitätskonzentrationen (Bq/l) von Cs-137 in Oberflächenwasser ausgewählter Binnenwässer (Jahresmittelwerte)

(Cs-137 activity concentrations (Bq/l) in surface water from selected inland waters - annual mean values)
Abbildung 2.2.2-5 Spezifische Aktivitäten (Bq/kg TM) von Co-60 in Schwebstoffproben ausgewählter Binnengewässer (Jahresmittelwerte)

(Co-60 specific activities for samples of suspended matter in Bq/kg TM from selected inland waters - annual mean values)

Abbildung 2.2.2-6 Spezifische Aktivitäten (Bq/kg TM) von Cs-137 in Schwebstoffproben ausgewählter Binnengewässer (Jahresmittelwerte)

(Cs-137 specific activities for samples of suspended matter in Bq/kg TM from selected inland waters - annual mean values)
Abbildung 2.2.2-7 Spezifische Aktivitäten (Bq/kg TM) von Co-60 in Sedimentproben ausgewählter Binnen-
gewässer (Jahresmittelwerte)
(Co-60 specific activities for sediment samples in Bq/kg TM from selected inland waters - annual mean values)

Abbildung 2.2.2-8 Spezifische Aktivitäten (Bq/kg TM) von Cs-137 in Sedimentproben ausgewählter Binnen-
gewässer (Jahresmittelwerte)
(Cs-137 specific activities for sediment samples in Bq/kg TM from selected inland waters annual mean values)
Tabelle 2.2.2-2: Überwachung von Oberflächenwasser, Schwebstoff und Sediment aus Fließgewässern nach StrVG

(Monitoring of surface water, suspended matter, and sediment from rivers in accordance with the StrVG)

<table>
<thead>
<tr>
<th>GEWÄSSER Kompartiment</th>
<th>Nuklid</th>
<th>Probenahmeort, Flusskilometer</th>
<th>Anzahl 2011</th>
<th>Aktivitätskonzentration / spez. Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Einzelwerte 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N <NWG</td>
</tr>
<tr>
<td>Rhein</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td>H-3</td>
<td>Weil, km 172,97</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Koblenz, km 590,3</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wesel, km 814,0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>Weil, km 172,97</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Koblenz, km 590,3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Wesel, km 814,0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weil, km 172,97</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Koblenz, km 590,3</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wesel, km 814,0</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwebstoff</td>
<td>Co-60</td>
<td>Weil, km 172,97</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Koblenz, km 590,3</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wesel, km 814,0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Weil, km 172,97</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Koblenz, km 590,3</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>Wesel, km 814,0</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weil, km 172,97</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Koblenz, km 590,3</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment</td>
<td>Co-60</td>
<td>Weil, km 170,3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worms, km 444,50-446,60</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Koblenz, km 591,3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Düsseldorf, km 740,3-748,9</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weil, km 170,3</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worms, km 444,50-446,60</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Koblenz, km 591,3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Düsseldorf, km 740,3-748,9</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Neckar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td>H-3</td>
<td>Lauffen, km 125,2</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rockenau, km 61,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>Lauffen, km 125,2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rockenau, km 61,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lauffen, km 125,2</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rockenau, km 61,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Schwebstoff</td>
<td>Co-60</td>
<td>Rockenau, km 61,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Obertürkheim, km 189,5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Rockenau, km 61,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sediment</td>
<td>Co-60</td>
<td>Guttenbach, km 72,0-77,2</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lauffen, km 125,2-130,1</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neckarzimmern, km 85,8-86,2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guttenbach, km 72,0-77,2</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Main</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td>H-3</td>
<td>Wipfeld, km 316,1</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eddersheim, km 15,3</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>Wipfeld, km 316,1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eddersheim, km 15,3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Wipfeld, km 316,1</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eddersheim, km 15,3</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Schwebstoff</td>
<td>Co-60</td>
<td>Garstadt, km 323,7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hallstadt, km 388,3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Garstadt, km 323,7</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>
GEWÄSSER Kompartiment

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td></td>
<td></td>
<td>N</td>
<td><NWG</td>
</tr>
<tr>
<td>Co-60</td>
<td>Garstadt, km 316,2-324,8</td>
<td>10</td>
<td>10</td>
<td><0,016</td>
</tr>
<tr>
<td></td>
<td>Hallstadt, km 388,2</td>
<td>4</td>
<td>0</td>
<td>6,91</td>
</tr>
<tr>
<td></td>
<td>Garstadt, km 316,2-324,8</td>
<td>10</td>
<td>1</td>
<td>0,23</td>
</tr>
</tbody>
</table>

MOSEL

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td><NWG</td>
</tr>
<tr>
<td>H-3</td>
<td>Wincheringen, km 222,2</td>
<td>12</td>
<td>0</td>
<td>12,9</td>
<td>50,6</td>
</tr>
<tr>
<td></td>
<td>Koblenz, km 2,0</td>
<td>11</td>
<td>0</td>
<td>7,19</td>
<td>25,7</td>
</tr>
<tr>
<td>Sr-90</td>
<td>Wincheringen, km 222,2</td>
<td>3</td>
<td>0</td>
<td>0,0023</td>
<td>0,0031</td>
</tr>
<tr>
<td></td>
<td>Koblenz, km 2,0</td>
<td>4</td>
<td>0</td>
<td>0,0033</td>
<td>0,0051</td>
</tr>
<tr>
<td>Cs-137</td>
<td>Wincheringen, km 222,2</td>
<td>11</td>
<td>8</td>
<td><0,0010</td>
<td><0,0039</td>
</tr>
<tr>
<td></td>
<td>Koblenz, km 2,0</td>
<td>10</td>
<td>8</td>
<td><0,0011</td>
<td>0,0080</td>
</tr>
<tr>
<td>Schwebstoff (Bq/kg TM)</td>
<td>Co-58</td>
<td>Perl, km 241,96</td>
<td>5</td>
<td>0</td>
<td>3,42</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>Perl, km 241,96</td>
<td>11</td>
<td>4</td>
<td><0,44</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Trier, km 196,3</td>
<td>8</td>
<td>8</td>
<td><0,38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAAR

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td><NWG</td>
</tr>
<tr>
<td>H-3</td>
<td>Kanzem, km 5,0</td>
<td>11</td>
<td>0</td>
<td>0,76</td>
<td>1,79</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>Kanzem, km 5,0</td>
<td>4</td>
<td>0</td>
<td>0,0022</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Trier, km 184,1-196,1</td>
<td>8</td>
<td>8</td>
<td><0,46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DONAU

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td><NWG</td>
</tr>
<tr>
<td>H-3</td>
<td>Ulm-Wiblingen, km 2590,8</td>
<td>4</td>
<td>4</td>
<td><8,0</td>
<td><8,0</td>
</tr>
<tr>
<td></td>
<td>Regensburg, km 2381,3</td>
<td>12</td>
<td>0</td>
<td>0,89</td>
<td>1,90</td>
</tr>
<tr>
<td></td>
<td>Vilshofen, km 2249,0</td>
<td>12</td>
<td>0</td>
<td>1,60</td>
<td>4,92</td>
</tr>
<tr>
<td>Sr-90</td>
<td>Regensburg, km 2381,3</td>
<td>4</td>
<td>1</td>
<td><0,0015</td>
<td>0,0041</td>
</tr>
<tr>
<td></td>
<td>Vilshofen, km 2249,0</td>
<td>4</td>
<td>1</td>
<td><0,0015</td>
<td>0,0047</td>
</tr>
<tr>
<td>Cs-137</td>
<td>Ulm-Wiblingen, km 2590,8</td>
<td>4</td>
<td>4</td>
<td><0,0043</td>
<td><0,012</td>
</tr>
<tr>
<td></td>
<td>Regensburg, km 2381,3</td>
<td>11</td>
<td>11</td>
<td><0,0012</td>
<td><0,0028</td>
</tr>
<tr>
<td></td>
<td>Vilshofen, km 2249,0</td>
<td>12</td>
<td>9</td>
<td><0,0013</td>
<td>0,0028</td>
</tr>
<tr>
<td>Schwebstoff (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Ulm-Böingen, km 2582,4</td>
<td>4</td>
<td>0</td>
<td>44,4</td>
</tr>
<tr>
<td></td>
<td>Regensburg, km 2381,3</td>
<td>4</td>
<td>0</td>
<td>25,5</td>
<td>51,1</td>
</tr>
<tr>
<td></td>
<td>Vilshofen, km 2249,0</td>
<td>12</td>
<td>0</td>
<td>19,3</td>
<td>50,2</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Ulm-Böingen, km 2582,4</td>
<td>4</td>
<td>0</td>
<td>19,0</td>
</tr>
<tr>
<td></td>
<td>Regensburg, km 2379,1-2381,4</td>
<td>6</td>
<td>0</td>
<td>3,08</td>
<td>38,2</td>
</tr>
<tr>
<td></td>
<td>Straubing, km 2326,7</td>
<td>4</td>
<td>0</td>
<td>27,9</td>
<td>38,0</td>
</tr>
<tr>
<td></td>
<td>Grünau, km 2205,5</td>
<td>2</td>
<td>0</td>
<td>27,7</td>
<td>33,9</td>
</tr>
</tbody>
</table>

ISAR

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td><NWG</td>
</tr>
<tr>
<td>H-3</td>
<td>Pullach, km 162,0</td>
<td>4</td>
<td>4</td>
<td><5,2</td>
<td><5,2</td>
</tr>
<tr>
<td></td>
<td>Platte, km 9,1</td>
<td>4</td>
<td>3</td>
<td><5,2</td>
<td><5,2</td>
</tr>
<tr>
<td></td>
<td>Pullach, km 162,0</td>
<td>4</td>
<td>4</td>
<td><0,0043</td>
<td><0,022</td>
</tr>
<tr>
<td></td>
<td>Platte, km 9,1</td>
<td>4</td>
<td>4</td>
<td><0,0041</td>
<td><0,0060</td>
</tr>
<tr>
<td>Schwebstoff (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Pullach, km 162,0</td>
<td>4</td>
<td>0</td>
<td>19,7</td>
</tr>
<tr>
<td></td>
<td>Platte, km 9,1</td>
<td>4</td>
<td>0</td>
<td>15,3</td>
<td>46,0</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Pullach, km 162,0</td>
<td>5</td>
<td>0</td>
<td>20,0</td>
</tr>
<tr>
<td></td>
<td>Platte, km 9,1</td>
<td>2</td>
<td>0</td>
<td>3,86</td>
<td>33,2</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>-------------------------------</td>
<td>-------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N <NWG min. Wert max. Wert 2011 2010</td>
<td></td>
</tr>
</tbody>
</table>

EMS

- **Oberflächenwasser (Bq/l)**
 - H-3: Geeste, km 106,3
 - Anzahl: 10
 - 0: 0,97, 43,9, 17,8, 18,5
 - Co-60: Terborg, km 24,64
 - Anzahl: 6
 - 5: <0,0016, <0,0022, <0,0019
 - Sr-90: Terborg, km 24,64
 - Anzahl: 6
 - 5: <0,0016, <0,0022, <0,0019
 - Cs-137: Geeste, km 106,3
 - Anzahl: 4
 - 1: <0,0015, 0,0068, 0,0055, 0,0053

- **Schwebstoff (Bq/kg TM)**
 - Co-60: Terborg, km 24,64
 - Anzahl: 12
 - 4: 0,914, 22,2, 15,5, 17,2
 - Sr-90: Terborg, km 24,64
 - Anzahl: 6
 - 0: 0,0069, 0,028, 0,016, 0,0060

- **Sediment (Bq/kg TM)**
 - Cs-137: Herbrum, km 212,75
 - Anzahl: 2
 - 0: 3,65, 4,72, 4,19, 5,13

WESER / UNTERWESER / JADEBUSEN

- **Oberflächenwasser (Bq/l)**
 - H-3: Rinteln, km 163,2
 - Anzahl: 12
 - 0: 1,28, 8,95, 5,44, 4,43
 - Sr-90: Langwedel, km 329,4
 - Anzahl: 12
 - 0: 1,19, 5,89, 3,33, 2,95
 - Cs-137: Blexen, km 430,0
 - Anzahl: 12
 - 0: 1,05, 4,80, 3,21, 4,68

- **Schwebstoff (Bq/kg TM)**
 - Co-60: Rinteln, km 163,2
 - Anzahl: 4
 - 0: <0,25, <0,53, nn, <0,35
 - Cs-137: Wilhelmshaven, km 242,9
 - Anzahl: 4
 - 0: 4,32, 12,0, 8,2, 7,19

- **Sediment (Bq/kg TM)**
 - Co-60: Minden, km 204,40
 - Anzahl: 4
 - 0: 3,04, 6,94, 5,54, 10,1
 - Cs-137: Bremen, km 373,97
 - Anzahl: 4
 - 0: 3,45, 5,93, 5,22, 6,2

ELBE

- **Oberflächenwasser (Bq/l)**
 - H-3: Dresden, km 58,0
 - Anzahl: 8
 - 0: 2,39, 9,08, 4,39, 4,19
 - Sr-90: Tangermünde, km 389,10
 - Anzahl: 11
 - 0: 1,40, 5,46, 2,93, 3,01
 - Cs-137: HH (Bunthaus), km 609,8
 - Anzahl: 4
 - 0: 3,90, 4,99, 4,34, 3,24
 - Pu-(239+240) (Bq/kg TM)**
 - Anzahl: 2
 - 1: <0,000002, 0,000004, 0,000004

- **Schwebstoff (Bq/kg TM)**
 - I-131: HH (Bunthaus), km 609,8
 - Anzahl: 4
 - 3: <1,27, <7,04, <3,88, nn
 - Cs-137: Dresden, km 58,0
 - Anzahl: 6
 - 0: 14,0, 20,7, 17,5, 19,2

- **Sediment (Bq/kg TM)**
 - Co-60: Arneburg, km 403,5
 - Anzahl: 5
 - 0: 1,09, 32,6, 16,0, 20,9
 - Sr-90: HH (Bunthaus), km 609,8
 - Anzahl: 4
 - 0: 15,5, 24,7, 20,6, 21,0
 - Cs-137: Cuxhaven, km 726,3
 - Anzahl: 3
 - 0: 2,76, 6,96, 4,58, 4,28
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>N <NWG</td>
<td>min. Wert</td>
<td>max. Wert</td>
<td>2011</td>
</tr>
<tr>
<td>ODER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bq/l)</td>
<td>H-3</td>
<td>Eisenhüttenstadt, km 553,20</td>
<td>9</td>
<td>0</td>
<td>0,57</td>
<td>1,38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schwedt, km 690,55</td>
<td>9</td>
<td>0</td>
<td>0,69</td>
<td>1,41</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>Eisenhüttenstadt, km 553,20</td>
<td>2</td>
<td>0</td>
<td>0,0031</td>
<td>0,0051</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schwedt, km 690,55</td>
<td>4</td>
<td>0</td>
<td>0,0051</td>
<td>0,0063</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Eisenhüttenstadt, km 553,20</td>
<td>11</td>
<td>8</td>
<td>0,0014</td>
<td><0,0040</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schwedt, km 690,55</td>
<td>11</td>
<td>3</td>
<td><0,0015</td>
<td>0,0097</td>
</tr>
<tr>
<td>Schwebstoff</td>
<td>Cs-137</td>
<td>Eisenhüttenstadt, km 553,20</td>
<td>4</td>
<td>0</td>
<td>9,68</td>
<td>16,9</td>
</tr>
<tr>
<td>(Bq/kg TM)</td>
<td></td>
<td>Schwedt, km 690,55</td>
<td>1</td>
<td>0</td>
<td>11,4</td>
<td>11,4</td>
</tr>
<tr>
<td>Sediment</td>
<td>Cs-137</td>
<td>Hohensaaten, km 667,5</td>
<td>3</td>
<td>0</td>
<td>9,48</td>
<td>11,1</td>
</tr>
<tr>
<td>SPREE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bq/l)</td>
<td>H-3</td>
<td>Berlin-Schöneweide, km 27,2</td>
<td>4</td>
<td>4</td>
<td><2,10</td>
<td><4,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Berlin-Schöneweide, km 27,2</td>
<td>10</td>
<td>0</td>
<td>0,49</td>
<td>1,28</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>Berlin-Schöneweide, km 27,2</td>
<td>4</td>
<td>0</td>
<td>0,0039</td>
<td>0,0049</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Berlin-Schöneweide, km 0,60</td>
<td>4</td>
<td>0</td>
<td>0,0010</td>
<td>0,0017</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Berlin-Schöneweide, km 27,2</td>
<td>12</td>
<td>7</td>
<td><0,0019</td>
<td>0,0079</td>
</tr>
<tr>
<td>Schwebstoff</td>
<td>I-131</td>
<td>Berlin-Schöneweide, km 27,2</td>
<td>10</td>
<td>8</td>
<td><9,73</td>
<td><150</td>
</tr>
<tr>
<td>(Bq/kg TM)</td>
<td></td>
<td>Berlin, km 9,20 (Einmündung Landwehrkanal)</td>
<td>4</td>
<td>4</td>
<td><1,15</td>
<td><11,6</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Berlin-Schöneweide, km 27,2</td>
<td>10</td>
<td>0</td>
<td>14,9</td>
<td>31,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Berlin, km 9,20 (Einmündung Landwehrkanal)</td>
<td>4</td>
<td>0</td>
<td>4,41</td>
<td>17,0</td>
</tr>
<tr>
<td>Sediment</td>
<td>Cs-137</td>
<td>Fürstenwalde, km 74,7</td>
<td>-</td>
<td>4</td>
<td>11,5</td>
<td>21,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Berlin, km 9,20 (Einmündung Landwehrkanal)</td>
<td>0</td>
<td>0</td>
<td>0,0058</td>
<td>0,0058</td>
</tr>
<tr>
<td>HAVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bq/l)</td>
<td>H-3</td>
<td>Zehdenick, km 15,1</td>
<td>9</td>
<td>0</td>
<td>0,76</td>
<td>1,66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>0,0027</td>
<td>0,0047</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td></td>
<td>10</td>
<td>5</td>
<td><0,0011</td>
<td>0,0058</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwebstoff</td>
<td>Cs-137</td>
<td>Zehdenick, km 15,1</td>
<td>4</td>
<td>0</td>
<td>34,9</td>
<td>49,9</td>
</tr>
<tr>
<td>(Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment</td>
<td>Cs-137</td>
<td>Zehdenick, km 15,1</td>
<td>5</td>
<td>0</td>
<td>27,0</td>
<td>33,0</td>
</tr>
<tr>
<td>SAALE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bq/l)</td>
<td>H-3</td>
<td>Halle/Planena, km 104,5</td>
<td>11</td>
<td>0</td>
<td>0,50</td>
<td>3,96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Camburg, km 187,0</td>
<td>4</td>
<td>4</td>
<td><3,7</td>
<td><4,0</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>Halle/Planena, km 104,5</td>
<td>4</td>
<td>0</td>
<td>0,0030</td>
<td>0,0048</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Camburg, km 187,0</td>
<td>4</td>
<td>2</td>
<td><0,0026</td>
<td><0,0039</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Halle/Planena, km 104,5</td>
<td>11</td>
<td>9</td>
<td><0,0011</td>
<td>0,0046</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Camburg, km 187,0</td>
<td>4</td>
<td>4</td>
<td><0,015</td>
<td><0,018</td>
</tr>
<tr>
<td>Schwebstoff</td>
<td>Cs-137</td>
<td>Halle/Planena, km 104,5</td>
<td>4</td>
<td>0</td>
<td>10,2</td>
<td>11,9</td>
</tr>
<tr>
<td>(Bq/kg TM)</td>
<td></td>
<td>Camburg, km 187,0</td>
<td>4</td>
<td>0</td>
<td>14,8</td>
<td>25,9</td>
</tr>
<tr>
<td>Sediment</td>
<td>Cs-137</td>
<td>Halle/Planena, km 105,5</td>
<td>5</td>
<td>0</td>
<td>3,0</td>
<td>9,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dornburg-Staudnitz, km 192,0</td>
<td>4</td>
<td>0</td>
<td>10,5</td>
<td>14,4</td>
</tr>
<tr>
<td>PEENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bq/l)</td>
<td>H-3</td>
<td>Anklam, km 96,1</td>
<td>11</td>
<td>0</td>
<td>0,65</td>
<td>1,30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>0,0020</td>
<td>0,0061</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td></td>
<td>10</td>
<td>6</td>
<td><0,0017</td>
<td>0,015</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwebstoff</td>
<td>Cs-137</td>
<td>Anklam, km 96,1</td>
<td>4</td>
<td>0</td>
<td>34,6</td>
<td>39,5</td>
</tr>
<tr>
<td>(Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment</td>
<td>Cs-137</td>
<td>Anklam, km 96,1</td>
<td>5</td>
<td>0</td>
<td>30,6</td>
<td>87,9</td>
</tr>
</tbody>
</table>

TEIL B - II - KÜNSTLICHE UMWELTRADIOAKTIVITÄT - 165 -
Tabelle 2.2.2-3 Überwachung von Oberflächenwasser, Schwebstoff und Sediment aus Seen und Talsperren nach StrVG (Monitoring of surface water, suspended matter, and sediment from lakes and dams in accordance with the StrVG)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>------------------------------</td>
<td>--------</td>
<td>-------------------------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>TRAVE / UNTERTRAVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>Travemünde, km 26,9</td>
<td>11</td>
<td>0.53, 1.44, 0.95, 1.10</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td></td>
<td>4</td>
<td>0.0027, 0.0056, 0.0045, 0.0045</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td></td>
<td>12</td>
<td><0.0015, 0.019, 0.0096, 0.007</td>
</tr>
<tr>
<td>Schwebstoff (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Travemünde, km 26,9</td>
<td>4</td>
<td>25.7, 69.6, 49.3, 40.3</td>
</tr>
<tr>
<td>NORD-OSTSEE-KANAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>Kiel-Holtenau, Einmündung Nord-Ostsee-Kanal</td>
<td>10</td>
<td>0.76, 1.44, 1.14, 1.04</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td></td>
<td>3</td>
<td>0.0039, 0.0058, 0.0046, 0.0062</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td></td>
<td>12</td>
<td>0.0013, 0.018, 0.0078, 0.0050</td>
</tr>
<tr>
<td>Schwebstoff (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Kiel-Holtenau, Einmündung Nord-Ostsee-Kanal</td>
<td>4</td>
<td>7.18, 27.1, 19.5, 44.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BADEN-WÜRTTEMBERG/BAYERN / Bodensee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>Langenargen</td>
<td>8</td>
<td><8.0, <8.0, nn, nn</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Nonnenhorn</td>
<td>4</td>
<td><5.2, <5.2, nn, nn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Langenargen</td>
<td>8</td>
<td><0.0043, <0.0083, nn, nn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nonnenhorn</td>
<td>4</td>
<td><0.0043, <0.0063, nn, nn</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Nonnenhorn</td>
<td>4</td>
<td><0.94, 2.63, 1.90, 6.4</td>
</tr>
<tr>
<td>BAYERN / Chiemsee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>Seeon-Seebruck</td>
<td>4</td>
<td><5.2, 0.0030, <5.2, nn</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td></td>
<td>4</td>
<td><0.0059, 0.0052, 0.0042, nn</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td><0.0043, <0.0063, nn, nn</td>
</tr>
<tr>
<td>Schwebstoff (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Seeon-Seebruck</td>
<td>4</td>
<td>28.6, 42.9, 36.6, 39.0</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Seeon-Seebruck</td>
<td>5</td>
<td>4.74, 23.4, 11.3, 9.5</td>
</tr>
<tr>
<td>Starnberger See</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>Starnberg</td>
<td>4</td>
<td><5.2, 0.0072, <5.2, nn</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td></td>
<td>4</td>
<td><0.0058, 0.0081, 0.0073, nn</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td><0.0043, <0.0063, nn, nn</td>
</tr>
<tr>
<td>Schwebstoff (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Starnberg</td>
<td>4</td>
<td>129, 166, 148, 166</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Starnberg</td>
<td>4</td>
<td>109, 133, 126, 103</td>
</tr>
<tr>
<td>BERLIN / Müggelsee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>PE-Stelle 41035</td>
<td>4</td>
<td><2.10, <4.00, nn, nn</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td></td>
<td>4</td>
<td>0.0039, 0.0063, 0.0050, 0.0040</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td><0.0016, 0.0031, <0.0022, 0.0017</td>
</tr>
<tr>
<td>Schwebstoff (Bq/kg TM)</td>
<td>Cs-137</td>
<td>PE-Stelle 41035</td>
<td>4</td>
<td>0.30, 4.01, 1.90, 1.84</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-137</td>
<td>PE-Stelle 41035</td>
<td>4</td>
<td>18.9, 30.3, 23.7, 28.7</td>
</tr>
</tbody>
</table>

nn nicht nachweisbar/nachgewiesen
- Messung/Angabe nicht erforderlich
<table>
<thead>
<tr>
<th>LAND/Gewässer Kompartiment</th>
<th>Nuklid</th>
<th>Probe- nahmeort</th>
<th>Anzahl 2011</th>
<th>Aktivitätskonzentration / spez. Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td><NWG</td>
<td>Min. Wert</td>
<td>Max. Wert</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stößensee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>Siemenswerder</td>
<td>4</td>
<td><2,10</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td></td>
<td>4</td>
<td>0,0036</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td>0,0015</td>
</tr>
<tr>
<td>Schwebstoff (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Siemenswerder</td>
<td>4</td>
<td>2,29</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Siemenswerder</td>
<td>4</td>
<td>60,1</td>
</tr>
<tr>
<td>BRANDENBURG / Stechlinsee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>Neuglobsow</td>
<td>4</td>
<td><6,14</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td></td>
<td>4</td>
<td>0,0012</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td><0,0053</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Neuglobsow</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Neuendorfer See</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>Alt-Schadow</td>
<td>4</td>
<td><8,95</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td></td>
<td>4</td>
<td>0,004</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td><0,0098</td>
</tr>
<tr>
<td>Schwebstoff (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Alt-Schadow</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Alt-Schadow</td>
<td>4</td>
<td>0,80</td>
</tr>
<tr>
<td>HESSEN / Marbach-Talsperre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>Erbach</td>
<td>4</td>
<td><5,15</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td></td>
<td>4</td>
<td>0,007</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td><0,005</td>
</tr>
<tr>
<td>Schwebstoff (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Erbach</td>
<td>4</td>
<td>15,0</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Erbach</td>
<td>4</td>
<td>3,11</td>
</tr>
<tr>
<td>MECKLENBURG-VORPOMMERN / Borgwallsee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>Lüssow</td>
<td>4</td>
<td><4,53</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td><0,0060</td>
</tr>
<tr>
<td>Schwebstoff (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Lüssow</td>
<td>3</td>
<td>1,58</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Lüssow</td>
<td>4</td>
<td>3,18</td>
</tr>
<tr>
<td>Schweriner See</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>Schwerin</td>
<td>4</td>
<td><4,57</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td></td>
<td>4</td>
<td>0,0039</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td>0,0047</td>
</tr>
<tr>
<td>Schwebstoff (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Schwerin</td>
<td>4</td>
<td>28,3</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Schwerin</td>
<td>4</td>
<td>27,9</td>
</tr>
<tr>
<td>NIEDERSACHSEN / Sösetalsperre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>Osterode am Harz</td>
<td>4</td>
<td><1,58</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td></td>
<td>4</td>
<td>0,0016</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td><0,008</td>
</tr>
<tr>
<td>Schwebstoff (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Osterode am Harz</td>
<td>4</td>
<td>31,4</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-137</td>
<td>Osterode am Harz</td>
<td>4</td>
<td>38,4</td>
</tr>
<tr>
<td>LAND/Gewässer Kompartment</td>
<td>Nuklid</td>
<td>Probe-nahmeort</td>
<td>Anzahl 2011</td>
<td>Aktivitätskonzentration / spez. Aktivität</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>---------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Einzelwerte 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Steinhuder Meer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td>H-3</td>
<td>Wunstorf</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>(Bq/l)</td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Schwebstoff</td>
<td>Cs-137</td>
<td>Wunstorf</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>(Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment</td>
<td>Cs-137</td>
<td>Wunstorf</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>(Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORDRHEIN-WESTFALEN / Mönche-Stausee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td>H-3</td>
<td>Möhnesee</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(Bq/l)</td>
<td>Sr-90</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cs-137</td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Dreilägerbach-Talsperre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td>H-3</td>
<td>Roetgen</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(Bq/l)</td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Schwebstoff</td>
<td>Cs-137</td>
<td>Roetgen</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>(Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment</td>
<td>Cs-137</td>
<td>Roetgen</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>(Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHEINLAND-PFALZ / Laacher See</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td>H-3</td>
<td>Maria Laach</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(Bq/l)</td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Sediment</td>
<td>Cs-137</td>
<td>Maria Laach</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>(Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SACHSEN / Talsperre Pöhl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td>H-3</td>
<td>Thoßfell</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(Bq/l)</td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Schwebstoff</td>
<td>Cs-137</td>
<td>Thoßfell</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>(Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment</td>
<td>Cs-137</td>
<td>Thoßfell</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>(Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SACHSEN-ANHALT / Arendsee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td>H-3</td>
<td>Arendsee</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(Bq/l)</td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Sediment</td>
<td>Cs-137</td>
<td>Arendsee</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>(Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schollener See</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td>H-3</td>
<td>Schollene</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(Bq/l)</td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Sediment</td>
<td>Cs-137</td>
<td>Schollene</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>(Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHLESWIG-HOLSTEIN / Schaalsee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td>H-3</td>
<td>Seedorf</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(Bq/l)</td>
<td>Sr-90</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Cs-137</td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Sediment</td>
<td>Cs-137</td>
<td>Seedorf</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>(Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wittensee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td>H-3</td>
<td>Groß Wittensee</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(Bq/l)</td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Sediment</td>
<td>Cs-137</td>
<td>Groß Wittensee</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>(Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THÜRINGEN / Talsperre Ohra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser</td>
<td>H-3</td>
<td>Luisenthal</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(Bq/l)</td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
2.2.3 Oberflächenwasser und Sediment der Binnengewässer in der Umgebung der Anlagen nach Atomgesetz
(Surface water and sediment from inland waters in the surroundings of facilities according to the Atomic Energy Act)

Die Auswirkungen kerntechnischer Anlagen waren in Oberflächenwasserproben aus dem Nahbereich der jeweiligen Standorte in Einzelfällen nachweisbar (Tabelle 2.2.3-1). Erhöhte H-3-Konzentrationen wurden in Proben gemessen, die direkt an Auslaufbauwerken genommen wurden: Die Werte betrugen hier im Mittel ca. 1900 Bq/l in der Ems (KKE Emsland). In Folge der Durchmischung entlang der Fließstrecke gingen die H-3-Konzentrationen aber rasch wieder zurück (siehe auch Kapitel 2.2.2). Die Aktivitätskonzentrationen anderer relevanter Spalt- und Aktivierungsprodukte unterschritten meist die Nachweisgrenze der REI von 0,05 Bq/l. Maximal wurde Co-60 in der Isar (Forschungsneutronenquelle HML München, Auslauf) mit 0,11 Bq/l im Mittel gemessen. Insbesondere Sr-90 und Cs-137 waren wegen der Vorbelastung aus anderen Quellen (Kernwaffen-Fallout und Reaktorunfall in Tschernobyl) nicht explizit aufzuzeigen. Dies gilt auch für I-131, das auf nuklearmedizinische Anwendungen zurückgeführt wurde. Transurane wurden nicht nachgewiesen.

Strahlenexposition

Die durch Ableitungen radioaktiver Abwässer aus kerntechnischen Anlagen verursachte Aufstockung der Gehalte an Spalt- und Aktivierungsprodukten in Oberflächenwasser ist aus radiologischer Sicht vernachlässigbar. Geringfügig erhöhte H-3-Konzentrationen traten z. B. als Folge von Ableitungen aus dem französischen KKW Cattenom in Proben aus der Mosel auf mit Jahresmittelwerten von ca. 36 Bq/l. Unter der Annahme, dass Oberflächenwasser dieses Flussabschnittes unverändert als Trinkwasser genutzt würde, ergibt sich die auf dem „Trinkwasser-Pfad“ für Erwachsene (> 17 a; 700 l/a Konsum) von H-3 resultierende effektive Dosis zu ca. 0,5 µSv/a. Für Kleinkinder (<= 1 a; 340 l/a Konsum) beträgt der entsprechende Wert 0,8 µSv/a. Hierdurch würde der Dosisgrenzwert von 300 µSv/a nach § 47 der Strahlenschutzverordnung (StrlSchV) zu ca. 0,1 bzw. 0,3% ausgeschöpft werden.

Co-60 wurde vereinzelt in Sedimentproben gemessen. Für den Fall, dass Sediment mit 10 Bq/kg TM Co-60 gebaggert und an Land gelagert werden würde, lässt sich die auf dem sensitiven Expositionsfall „Aufenthalt auf Spülfeldern“ zu erwartende zusätzliche externe effektive Dosis für Erwachsene (> 17 a) für Standardbedingungen zu ca. 14 µSv/a abschätzen. Sie würde damit ebenfalls weit unter dem Dosisgrenzwert nach § 47 StrlSchV von 300 µSv/a liegen.
Tabelle 2.2.3-1 Überwachung der Gewässer in der Umgebung kerntechnischer Anlagen gemäß der REI

(Monitoring of bodies of water in the surroundings of nuclear facilities in accordance with the REI)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>Min. Wert 2011</td>
</tr>
<tr>
<td>RHEIN / KKW Bezna und KKW Leibstadt (Schweiz)</td>
<td></td>
<td></td>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>Co-60</td>
<td>vor KKW Leibstadt</td>
<td>4</td>
<td><8,0</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Aare-Einmündung</td>
<td>4</td>
<td><8,0</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-60</td>
<td>vor KKW Leibstadt</td>
<td>2</td>
<td><0,40</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Aare-Einmündung</td>
<td>2</td>
<td><0,45</td>
</tr>
<tr>
<td>RHEIN / KKW Fessenheim (Frankreich)</td>
<td></td>
<td></td>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>Weil</td>
<td>13</td>
<td><8,0</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>Neuf Brisach</td>
<td>13</td>
<td><0,010</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-60</td>
<td>Neuenburg/Glüßheim km 206,5</td>
<td>2</td>
<td><0,21</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Breisach, km 232,0</td>
<td>2</td>
<td><0,35</td>
</tr>
<tr>
<td>RHEIN / HIRSCHKANAL / Forschungszentrum Karlsruhe</td>
<td></td>
<td></td>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>Ges-α</td>
<td>Hirschkanal</td>
<td>51</td>
<td>0,017</td>
</tr>
<tr>
<td></td>
<td>Ges-β</td>
<td></td>
<td>51</td>
<td>0,060</td>
</tr>
<tr>
<td></td>
<td>H-3</td>
<td></td>
<td>63</td>
<td>1,68</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td></td>
<td>4</td>
<td><0,0043</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td></td>
<td>4</td>
<td><0,0038</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Ges-α</td>
<td>Hirschkanal</td>
<td>4</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Ges-β</td>
<td></td>
<td>4</td>
<td>1240</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td></td>
<td>8</td>
<td>0,21</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td></td>
<td>8</td>
<td>58,1</td>
</tr>
<tr>
<td>RHEIN / KKW Biblis und BE-Zwischenlager</td>
<td></td>
<td></td>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>vor Auslaufbauwerk</td>
<td>16</td>
<td><2,8</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>Auslaufwerke I u. II</td>
<td>32</td>
<td>4,9</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Auslaufbauwerk</td>
<td>8</td>
<td><0,0058</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-58</td>
<td>Auslaufbauwerk</td>
<td>2</td>
<td><0,81</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>vor Auslaufbauwerk</td>
<td>4</td>
<td><0,32</td>
</tr>
<tr>
<td></td>
<td>Co-137</td>
<td>Auslaufbauwerk</td>
<td>4</td>
<td>0,37</td>
</tr>
<tr>
<td></td>
<td>Co-58</td>
<td>vor Auslaufbauwerk</td>
<td>4</td>
<td>10,2</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>Auslaufbauwerk</td>
<td>4</td>
<td>7,50</td>
</tr>
<tr>
<td>GEWÄSSER/ KT-Anlage Kompartiment</td>
<td>Nuklid</td>
<td>Probenahmestelle</td>
<td>Anzahl 2011</td>
<td>Aktivitätskonzentration / spez. Aktivität</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N <NWG</td>
<td>Einzelwerte 2011</td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>vor Auslaufbauwerk</td>
<td>8 5</td>
<td><4,63</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>vor Auslaufbauwerk</td>
<td>16 2</td>
<td><4,60</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Auslaufbauwerk</td>
<td>8 8</td>
<td><0,016</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-60</td>
<td>vor Auslaufbauwerk</td>
<td>2 2</td>
<td><0,50</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Auslaufbauwerk</td>
<td>2 0</td>
<td>7,5</td>
</tr>
<tr>
<td>RHEIN / KMK Mühlheim-Kärlich (außer Betrieb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>vor Auslaufbauwerk</td>
<td>4 2</td>
<td>7,1</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>vor Auslaufbauwerk</td>
<td>6 3</td>
<td>2,6</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Auslaufbauwerk</td>
<td>4 4</td>
<td><0,019</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-60</td>
<td>vor Auslaufbauwerk</td>
<td>2 2</td>
<td><0,42</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Auslaufbauwerk</td>
<td>2 2</td>
<td>0,52</td>
</tr>
<tr>
<td>NECKAR / GKN Neckarwestheim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>vor Auslaufbauwerk</td>
<td>12 10</td>
<td><4,8</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>vor Auslaufbauwerk</td>
<td>12 12</td>
<td>4,1</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Auslaufbauwerk</td>
<td>12 12</td>
<td><0,0051</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-60</td>
<td>vor Auslaufbauwerk</td>
<td>2 2</td>
<td><0,27</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Auslaufbauwerk</td>
<td>2 2</td>
<td>3,6</td>
</tr>
<tr>
<td>NECKAR / KKO Obrigheim (außer Betrieb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>vor Auslaufbauwerk</td>
<td>8 4</td>
<td><7,4</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>vor Auslaufbauwerk</td>
<td>8 8</td>
<td><0,0051</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Auslaufbauwerk</td>
<td>8 5</td>
<td>0,0032</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-60</td>
<td>vor Auslaufbauwerk</td>
<td>2 2</td>
<td><0,23</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Auslaufbauwerk</td>
<td>2 2</td>
<td>0,41</td>
</tr>
<tr>
<td>MAIN / KKG Grafenrheinfeld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>vor Auslaufbauwerk</td>
<td>8 8</td>
<td><5,8</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>vor Auslaufbauwerk</td>
<td>8 2</td>
<td><5,4</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Auslaufbauwerk</td>
<td>8 8</td>
<td><0,035</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-60</td>
<td>vor Auslaufbauwerk</td>
<td>4 4</td>
<td><0,39</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Auslaufbauwerk</td>
<td>4 3</td>
<td><0,53</td>
</tr>
<tr>
<td>MAIN / AREVA NP GmbH Karlsruhe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MOSEL / KKW Cattenom (Frankreich)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>Einzelwerte 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min. Wert</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-60</td>
<td>oberhalb Kläranl. Schleifbacht</td>
<td>1</td>
<td><0,71</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>unterhalb Kläranl. Schleifbacht</td>
<td>1</td>
<td><0,73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oberflächenwasser (Bq/l)</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>H-3</td>
<td>Palzemm1, km 230</td>
<td>9</td>
<td><0,016</td>
</tr>
<tr>
<td></td>
<td>Cs-60</td>
<td>vor Auslaufbauwerk</td>
<td>9</td>
<td><0,015</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>nach Auslaufbauwerk</td>
<td>4</td>
<td><0,36</td>
</tr>
</tbody>
</table>

DONAU / KRB Gundremmingen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>Einzelwerte 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min. Wert</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-60</td>
<td>vor Auslaufbauwerk</td>
<td>8</td>
<td><3,12</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>nach Auslaufbauwerk</td>
<td>8</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vor Auslaufbauwerk</td>
<td>8</td>
<td><0,0031</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Auslaufbauwerk</td>
<td>8</td>
<td>0,0056</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vor Auslaufbauwerk</td>
<td>8</td>
<td><0,0032</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Auslaufbauwerk</td>
<td>8</td>
<td>0,0024</td>
</tr>
</tbody>
</table>

ISAR / KKI Isar 1 und 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>Einzelwerte 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min. Wert</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-60</td>
<td>vor Auslaufbauwerk</td>
<td>8</td>
<td><3,05</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>nach Auslaufbauwerk</td>
<td>16</td>
<td>2,93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vor Auslaufbauwerk</td>
<td>8</td>
<td><0,0032</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Auslaufbauwerk</td>
<td>16</td>
<td>0,0026</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vor Auslaufbauwerk</td>
<td>4</td>
<td>0,0033</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Auslaufbauwerk</td>
<td>8</td>
<td>0,0026</td>
</tr>
</tbody>
</table>

ISAR / FRM II Forschungsneutronenquelle HML München

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>Einzelwerte 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min. Wert</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-60</td>
<td>nach FRM II, km 130,3</td>
<td>8</td>
<td><3,63</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>nach FRM II, km 130,3</td>
<td>7</td>
<td><0,091</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U-235</td>
<td>8</td>
<td><0,0019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pu-238</td>
<td>4</td>
<td><0,0046</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Am-241</td>
<td>2</td>
<td><0,0043</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td><0,0038</td>
</tr>
</tbody>
</table>

EMS / KKE Emsland

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>Einzelwerte 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min. Wert</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Cs-60</td>
<td>vor Auslaufbauwerk</td>
<td>5</td>
<td><1,5</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>nach FRM II, km 124,6</td>
<td>4</td>
<td><0,31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vor Auslaufbauwerk</td>
<td>5</td>
<td><0,0091</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Auslaufbauwerk</td>
<td>5</td>
<td>0,22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vor Auslaufbauwerk</td>
<td>1</td>
<td><0,084</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Auslaufbauwerk</td>
<td>1</td>
<td><0,13</td>
</tr>
<tr>
<td>GEWÄSSER/ KT-Anlage Kompartiment</td>
<td>Nuklid</td>
<td>Probenahmestelle</td>
<td>Anzahl 2011</td>
<td>Aktivitätskonzentration / spez. Aktivität</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>-----------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N <NWG</td>
<td>Min. Wert</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-60</td>
<td>vor Auslaufbauwerk, km 84,7</td>
<td>1 1</td>
<td><0,45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Auslaufbauwerk, km 106,3</td>
<td>1 1</td>
<td><0,70</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Auslaufbauwerk, km 84,7</td>
<td>1 0</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Auslaufbauwerk, km 106</td>
<td>1 0</td>
<td>29</td>
</tr>
</tbody>
</table>

WESER / KWW Würgassen (außer Betrieb)

<table>
<thead>
<tr>
<th>Oberflächenwasser (Bq/l)</th>
<th>Sediment (Bq/kg TM)</th>
<th>H-3</th>
<th>Co-60</th>
<th>Cs-137</th>
<th>Herstelle, km 47,2</th>
<th>Wehrden, km 60,2</th>
<th>Herstelle, km 47,2</th>
<th>Wehrden, km 60,2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vor Auslaufbauwerk</td>
<td></td>
<td></td>
<td></td>
<td>vor Auslaufbauwerk</td>
<td></td>
<td>vor Auslaufbauwerk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auslaufbauwerk</td>
<td>a</td>
<td></td>
<td>a</td>
<td>Auslaufbauwerk</td>
<td>a</td>
<td>Auslaufbauwerk</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WESER / KWG Grohnde

<table>
<thead>
<tr>
<th>Oberflächenwasser (Bq/l)</th>
<th>Sediment (Bq/kg TM)</th>
<th>H-3</th>
<th>Co-60</th>
<th>Cs-137</th>
<th>Grohnde, km 122</th>
<th>Hess. Oldendorf, km 147</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vor Auslaufbauwerk</td>
<td>5</td>
<td>2</td>
<td></td>
<td>0,24</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td>Auslaufbauwerk</td>
<td>5</td>
<td>0</td>
<td>6,6</td>
<td>130</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>8,7</td>
<td>7,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

UNTERWESER / KKK Unterweser

<table>
<thead>
<tr>
<th>Oberflächenwasser (Bq/l)</th>
<th>Sediment (Bq/kg TM)</th>
<th>H-3</th>
<th>Co-60</th>
<th>Cs-137</th>
<th>Selhausen</th>
<th>Jülich-Süd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vor Auslaufbauwerk</td>
<td>5</td>
<td>4</td>
<td></td>
<td>3,6</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Auslaufbauwerk</td>
<td>5</td>
<td>3</td>
<td></td>
<td>4,2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td><0,057</td>
<td><0,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td><0,0064</td>
<td><0,005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td><0,0050</td>
<td><0,0050</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td><0,0062</td>
<td><0,0062</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td><2,5</td>
<td><2,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td><0,17</td>
<td><0,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>5,8</td>
<td>5,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>5,7</td>
<td>5,7</td>
</tr>
</tbody>
</table>

RUR / Forschungszentrum Jülich

<table>
<thead>
<tr>
<th>Oberflächenwasser (Bq/l)</th>
<th>Sediment (Bq/kg TM)</th>
<th>Ges-α</th>
<th>Selhausen</th>
<th>Jülich-Süd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td><0,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td><0,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
<td><0,22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
<td><0,24</td>
</tr>
</tbody>
</table>

GOORBACH / Urananreicherungsanlage Gronau

Oberflächenwasser (Bq/l)	Sediment (Bq/kg TM)	Ges-α	Hauptentwässerungsleitungen Retentionsanlage Goorbach, unterhalb der Straßenkreuzung Uran Dinkel, nach Kläranlage Gronau	
		2	2	<0,24
		2	0	15
		2	0	15

UNTERWESER / KKK Unterweser

<table>
<thead>
<tr>
<th>Oberflächenwasser (Bq/l)</th>
<th>Sediment (Bq/kg TM)</th>
<th>Grohnde, km 122</th>
<th>Hess. Oldendorf, km 147</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 1</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 1</td>
<td>0,19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 1</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 1</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 0</td>
<td>9,3</td>
</tr>
</tbody>
</table>

<p>	Oberflächenwasser (Bq/l)	Sediment (Bq/kg TM)	Ges-α	Hauptentwässerungsleitungen Retentionsanlage Goorbach, unterhalb der Straßenkreuzung Uran Dinkel, nach Kläranlage Gronau
		2	2	<0,22
		2	0	15
		2	0	15
---	---	---	---	---
			N	<NWG
AHAUSER AA / Brennelement-Zwischenlager Ahaus				
Oberflächenwasser (Bq/l)	Ges-α	Ahauser Aa	a	a
	Rest-β			
	H-3			
	Co-60			
Sediment (Bq/kg TM)	Co-60	Einleitung Moorbach	a	a
	Cs-137	Einleitung Moorbach	a	a
		Ahauser Aa		
		Retentionsbecken	4	0
ELBE / Forschungszentrum Geesthacht				
Oberflächenwasser (Bq/l)	H-3	vor Auslaufbauwerk, km 578,6	8	8
		nach Auslaufbauwerk, km 579,6	8	8
	Co-60	vor Auslaufbauwerk, km 578,6	8	8
		nach Auslaufbauwerk, km 579,6	8	8
	Cs-137	vor Auslaufbauwerk, km 578,6	8	8
		nach Auslaufbauwerk, km 579,6	8	8
Sediment (Bq/kg TM)	Co-60	vor Auslaufbauwerk, km 578,6	6	6
		nach Auslaufbauwerk, km 578,6	6	6
	Cs-137	vor Auslaufbauwerk, km 578,6	6	6
		nach Auslaufbauwerk, km 578,6	6	6
ELBE / KKK Krümmel				
Oberflächenwasser (Bq/l)	H-3	vor Auslaufbauwerk	16	16
	Co-60	vor Auslaufbauwerk	16	16
		Auslaufbauwerk	24	24
		Auslaufbauwerk	24	24
	Cs-137	vor Auslaufbauwerk	24	24
		Auslaufbauwerk	24	24
Sediment (Bq/kg TM)	Co-60	vor Auslaufbauwerk	8	8
		Auslaufbauwerk	8	8
	Cs-137	vor Auslaufbauwerk	8	8
		Auslaufbauwerk	8	4
ELBE / KBR Brokdorf				
Oberflächenwasser (Bq/l)	H-3	vor Auslaufbauwerk	16	16
	Co-60	vor Auslaufbauwerk	16	16
		Auslaufbauwerk	24	24
		Auslaufbauwerk	24	24
	Cs-137	vor Auslaufbauwerk	24	24
		Auslaufbauwerk	24	16
Sediment (Bq/kg TM)	Co-60	vor Auslaufbauwerk	4	4
		nach Auslaufbauwerk	4	4
	Cs-137	vor Auslaufbauwerk	4	4
		nach Auslaufbauwerk	4	0
ELBE / KKS Stade (außer Betrieb)				
Oberflächenwasser (Bq/l)	H-3	vor Auslaufbauwerk, km 628,9	13	0
		Auslaufbauwerk		
	Co-60	Grauerort, km 660,6	1	0
		vor Auslaufbauwerk, km 628,9	13	13
		Auslaufbauwerk		
	Cs-137	Grauerort, km 660,6	1	1
		vor Auslaufbauwerk, km 628,9	13	8
		Auslaufbauwerk		
		Grauerort, km 660,6	1	1
<table>
<thead>
<tr>
<th>GEWÄSSER/ KT-Anlage Kompartiment</th>
<th>Nuklid</th>
<th>Probenahmestelle</th>
<th>Anzahl 2011</th>
<th>Aktivitätskonzentration / spez. Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td><NWG</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-60</td>
<td>vor Auslaufbauwerk, km 654</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>nach Auslaufbauwerk, km 660</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vor Auslaufbauwerk, km 654</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Auslaufbauwerk, km 660</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>ELBE / KKB Brunsbüttel</td>
<td>H-3</td>
<td>vor Auslaufbauwerk</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>nach Auslaufbauwerk</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>vor Auslaufbauwerk</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>nach Auslaufbauwerk</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-60</td>
<td>vor Auslaufbauwerk</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>nach Auslaufbauwerk</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vor Auslaufbauwerk</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Auslaufbauwerk</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>ELBE / GNS Gorleben</td>
<td>H-3</td>
<td>Schnackenburg, km 474,6</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>Dömitz, km 504,4</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Schnackenburg, km 474,6</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Pu-238</td>
<td>Schnackenburg, km 474,6</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Pu-(239 +240)</td>
<td>Schnackenburg, km 474,6</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-60</td>
<td>Schnackenburg, km 474,6</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Dömitz, km 504,4</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Pu-238</td>
<td>Schnackenburg, km 474,6</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Pu-(239 +240)</td>
<td>Dömitz, km 504,4</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>ELBE / KALTER BACH / WESENITZ / Forschungsstandort Rossendorf</td>
<td>H-3</td>
<td>Kalter Bach</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>Wesenitz</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Kalter Bach</td>
<td>24</td>
<td>21</td>
<td><0,0013</td>
</tr>
<tr>
<td></td>
<td>Wesenitz</td>
<td>2</td>
<td>2</td>
<td><0,0073</td>
</tr>
<tr>
<td></td>
<td>Kalter Bach</td>
<td>17</td>
<td>14</td>
<td><0,0013</td>
</tr>
<tr>
<td></td>
<td>Wesenitz</td>
<td>2</td>
<td>2</td>
<td><0,0066</td>
</tr>
<tr>
<td></td>
<td>Pu-238</td>
<td>Kalter Bach</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Pu-(239 +240)</td>
<td>Kalter Bach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-60</td>
<td>Kalter Bach</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Wesenitz</td>
<td>2</td>
<td>2</td>
<td><0,33</td>
</tr>
<tr>
<td></td>
<td>Elbe, unterhalb d. Wesenitz</td>
<td>2</td>
<td>2</td>
<td><0,32</td>
</tr>
<tr>
<td></td>
<td>Kalter Bach</td>
<td>3</td>
<td>0</td>
<td>4,9</td>
</tr>
<tr>
<td></td>
<td>Wesenitz</td>
<td>2</td>
<td>0</td>
<td>2,8</td>
</tr>
<tr>
<td></td>
<td>Elbe, unterhalb d. Wesenitz</td>
<td>2</td>
<td>0</td>
<td>1,8</td>
</tr>
</tbody>
</table>

TEIL B - II - KÜNSTLICHE UMWELTRADIOAKTIVITÄT
<table>
<thead>
<tr>
<th>GEWÄSSER/ KT-Anlage Komparti- ment</th>
<th>Nuklid</th>
<th>Probenahmestelle</th>
<th>Anzahl 2011</th>
<th>Aktivitätskonzentration / spez. Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>N <NWG</td>
<td>Einzelwerte 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min. Wert</td>
<td>Max. Wert</td>
</tr>
<tr>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>vor Salzbach</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Salzbach</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>vor Salzbach</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Salzbach</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Salzbach</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Salzbach</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Ges-β</td>
<td>vor Salzbach</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Salzbach</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-60</td>
<td>Belsdorf</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schwanefeld</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Belsdorf</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schwanefeld</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Diverse Vorfluter / Schachtanlage Asse II</td>
<td>Oberflächenwasser (Bq/l)</td>
<td>Rest-β</td>
<td>Vorfluter b. Vahlberg</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorfluter b. Wittmar</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorfluter b. Denkte</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-60</td>
<td>Vorfluter b. Bansleben</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorfluter b. Denkte</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>Vorfluter b. Bansleben</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HAVEL / KKR Rheinsberg (außer Betrieb)</td>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>50m vor Auslauf</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50m nach Auslauf</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>50m vor Auslauf</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50m nach Auslauf</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>50m vor Auslauf</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50m nach Auslauf</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-60</td>
<td>50m vor Auslauf</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50m nach Auslauf</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>50m vor Auslauf</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>GREIFSWALDER BODDEN / KGR Greifswald (außer Betrieb)</td>
<td>Oberflächenwasser (Bq/l)</td>
<td>H-3</td>
<td>vor Auslauf</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Auslauf (Hafenbecken)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>vor Auslauf</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Auslauf (Hafenbecken)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Auslauf</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Auslauf (Hafenbecken)</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Sediment (Bq/kg TM)</td>
<td>Co-60</td>
<td>vor Auslaufkanal</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Auslauf (Hafenbecken)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>vor Auslauf</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Auslauf (Hafenbecken)</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

a Daten lagen nicht vor

nn nicht nachgewiesen/nachweisbar

- Messung/Angabe nicht erforderlich
2.2.4 Ableitung radioaktiver Stoffe mit dem Abwasser aus Anlagen nach Atomgesetz
(Discharges of radioactive substances with waste water from facilities according to the Atomic Energy Act)

In den Tabellen 2.2.4-1 bis 2.2.4-3 sind die von den Kernkraftwerken, Forschungszentren und Kernbrennstoff verarbeitenden Betrieben in der Bundesrepublik Deutschland im Jahr 2011 mit dem Abwasser abgegebenen radioaktiven Stoffe zusammengestellt. Im Jahr 2011 wurden aus dem Kontrollbereich des ERAM insgesamt 9 m³ Abwasser abgeleitet (Vorjahr: 14 m³).

Sämtliche Abgaben radioaktiver Stoffe mit dem Abwasser aus Kernkraftwerken (Tabelle 2.2.4-1) liegen in der Größenordnung der Abgaben der Vorjahre und unterschreiten die entsprechenden Genehmigungswerte deutlich. Aus Druck- und Siedewasserreaktoren wurden mit dem Abwasser insgesamt 0,4 GBq bzw. 0,8 GBq Spalt- und Aktivierungsprodukte abgegeben. Die H-3-Abgaben lagen für die Druckwasserreaktoren bei 152 TBq und für die Siedewasserreaktoren bei 4 TBq.

Die Abgaben radioaktiver Stoffe mit dem Abwasser aus den Forschungszentren (Tabelle 2.2.4-2), den Kernbrennstoff verarbeitenden Betrieben (Tabelle 2.2.4-3) und des Endlagers Morsleben (Tabelle 2.2.4-4) liegen bezüglich der einzelnen Radionuklidgruppen ebenfalls in der Größenordnung der Abgaben der letzten Jahre.

Tabelle 2.2.4-1 Ableitung radioaktiver Stoffe mit dem Abwasser aus Kernkraftwerken in der Bundesrepublik Deutschland im Jahr 2011 (Summenwerte, H-3 und Alphastrahler)
(Discharges of radioactive substances with waste water from nuclear power plants in Germany in the year 2011 - summation values, H-3 and alpha sources)

<table>
<thead>
<tr>
<th>Kernkraftwerk</th>
<th>Aktivität in Bq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spalt und Aktivierungsprodukte (außer H-3)</td>
</tr>
<tr>
<td>Siedewasserreaktoren</td>
<td></td>
</tr>
<tr>
<td>KWL Lingen b</td>
<td>7,9 E05</td>
</tr>
<tr>
<td>KWWW Würgassen b</td>
<td>9,6 E05</td>
</tr>
<tr>
<td>KKB Brunsbüttel</td>
<td>1,3 E07</td>
</tr>
<tr>
<td>KKI Isar 1</td>
<td>2,3 E07</td>
</tr>
<tr>
<td>KKP Philippsburg 1</td>
<td>6,8 E07</td>
</tr>
<tr>
<td>KKK Krümmel</td>
<td>nn</td>
</tr>
<tr>
<td>KRB Gundremmingen</td>
<td>7,4 E08</td>
</tr>
<tr>
<td>Druckwasserreaktoren</td>
<td></td>
</tr>
<tr>
<td>KWO Obrigheim b</td>
<td>1,1 E08</td>
</tr>
<tr>
<td>KKS Stade b</td>
<td>1,8 E07</td>
</tr>
<tr>
<td>KWB Biblis Block A</td>
<td>1,6 E07</td>
</tr>
<tr>
<td>KWB Biblis Block B</td>
<td>9,4 E07</td>
</tr>
<tr>
<td>GKN Neckar 1</td>
<td>nn</td>
</tr>
<tr>
<td>KKV Unterweser</td>
<td>3,2 E07</td>
</tr>
<tr>
<td>KKG Grafenreinfeld</td>
<td>6,6 E07</td>
</tr>
<tr>
<td>KGW Grohnde</td>
<td>5,3 E06</td>
</tr>
<tr>
<td>KKP Philippsburg 2</td>
<td>2,9 E07</td>
</tr>
<tr>
<td>KMK Mühlheim-Kärlich b</td>
<td>2,0 E06</td>
</tr>
<tr>
<td>KBR Brokdorf</td>
<td>2,6 E06</td>
</tr>
<tr>
<td>KKI Isar 2</td>
<td>nn</td>
</tr>
<tr>
<td>KKE Emsland</td>
<td>7,9 E05</td>
</tr>
<tr>
<td>GKN Neckar 2</td>
<td>5,6 E04</td>
</tr>
<tr>
<td>KGR Greifswald Block 1 bis 5 b</td>
<td>2,2 E05</td>
</tr>
<tr>
<td>KKR Rheinsberg b</td>
<td>6,4 E06</td>
</tr>
</tbody>
</table>

b Anlage stillgelegt
nn nicht nachgewiesen (Aktivitätsableitung liegt unterhalb der Nachweisgrenze)
Tabelle 2.2.4-2 Abgabe radioaktiver Stoffe mit dem Abwasser aus Forschungszentren
(Discharges of radioactive substances with waste water from research centres)

<table>
<thead>
<tr>
<th>Forschungszentrum</th>
<th>Aktivität in Bq</th>
<th>Spalt- und Aktivierungsprodukte (außer H-3)</th>
<th>H-3</th>
<th>α-Strahler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karlsruher Institut für Technologie (KIT) (einschließlich Wiederaufarbeitungsanlage)</td>
<td>1,9 E08</td>
<td>5,9 E08</td>
<td>3,9 E11</td>
<td>8,6 E10</td>
</tr>
<tr>
<td>Forschungszentrum Jülich (einschließlich Versuchsreaktor AVR)</td>
<td>1,3 E08</td>
<td>1,9 E08</td>
<td>1,0 E12</td>
<td>5,6 E11</td>
</tr>
<tr>
<td>GKSS Forschungszentrum Geesthacht</td>
<td>8,1 E06</td>
<td>7,8 E06</td>
<td>4,5 E08</td>
<td>1,8 E08</td>
</tr>
<tr>
<td>Helmholtz-Zentrum Berlin (früher Hahn-Meit-Nord-Institut Berlin, HMI)</td>
<td>1,7 E05</td>
<td>4,5 E04</td>
<td>2,2 E08</td>
<td>4,3 E08</td>
</tr>
<tr>
<td>Garching FRM I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Garching FRM II</td>
<td>1,4 E08</td>
<td>4,1 E08</td>
<td>8,0 E09</td>
<td>1,2 E10</td>
</tr>
<tr>
<td>Forschungszentrum Dresden-Rossendorf (FZD)</td>
<td>2,0 E06</td>
<td>1,8 E06</td>
<td>3,1 E08</td>
<td>9,0 E08</td>
</tr>
</tbody>
</table>

nn nicht nachgewiesen (Aktivitätsableitung liegt unterhalb der Nachweisgrenze)

- Keine Ableitung von Abwasser

Tabelle 2.2.4-3 Ableitungen radioaktiver Stoffe (Alpha-Aktivität) mit dem Abwasser aus Kernbrennstoff verarbeitenden Betrieben
(Discharges of radioactive substances - alpha activity - with waste water from nuclear fuel production plants)

<table>
<thead>
<tr>
<th>Betrieb</th>
<th>Aktivität in Bq</th>
<th>α-Strahler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2011</td>
<td>2010</td>
</tr>
<tr>
<td>ANF GmbH (Lingen)</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>URENCO (Gronau)</td>
<td>4,6 E03</td>
<td>4,1 E03</td>
</tr>
</tbody>
</table>

nn nicht nachgewiesen (Aktivitätsableitung liegt unterhalb der Nachweisgrenze)

Tabelle 2.2.4-4 Ableitungen radioaktiver Stoffe mit dem Abwasser aus dem Endlager Morsleben
(Discharges of radioactive substances with waste water from the final repository Morsleben)

<table>
<thead>
<tr>
<th>Radionuklid</th>
<th>Aktivität in Bq</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2011</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-3</td>
<td>3,1 E03</td>
<td>5,6 E04</td>
</tr>
<tr>
<td>Nuklidgemisch (außer H-3)</td>
<td>1,3 E02</td>
<td>1,2 E02</td>
</tr>
</tbody>
</table>
2.3 Böden
(Soil)

2.3.1 Boden, Pflanzen und Futtermittel
(Soil, plants, and animal feedstuffs)

In Tabelle 2.3.1-1 sind Messwerte für als Weiden oder Wiesen genutzte Böden zusammengefasst. In Tabelle 2.3.1-2 sind entsprechende Werte für Ackerböden und in Tabelle 2.3.1-3 für Waldböden wiedergegeben. Für nicht genannte Bundesländer liegen jeweils keine vergleichbaren Daten vor.

In der Vegetationsperiode 2011 wurden verschiedene Pflanzenproben gammaspektrometrisch gemessen. Im Vordergrund standen dabei Proben solcher Pflanzen, die als Futtermittel dienen, insbesondere Weide- und Wiesenbewuchs. Die Kontamination pflanzlichen Materials ist gegenüber dem Vorjahr wieder etwas zurückgegangen, was vor allem auf Verdünnungs- und Bindungseffekte im Boden zurückzuführen ist.

In Tabelle 2.3.1-4 sind für die genannten Aufwuchsarten die ermittelten Mittel- und Maximalwerte für Cs-137 und - soweit vorhanden - Sr-90 zusammengefasst. Zum Vergleich sind die entsprechenden Mittelwerte für die beiden Vorjahre aufgenommen worden. In einigen Ländern wurden weitere im Inland erzeugte und importierte Futtermittelrohstoffe überwacht. Entsprechende Messergebnisse sind in den Tabellen 2.3.1-5 und 2.3.1-6 zusammengestellt. In Tabelle 2.3.1-7 sind Messergebnisse von pflanzlichen Indikatoren (Blätter, Nadeln, Gras, Farne) wiedergegeben. In den Tabellen 2.3.1-5 bis 2.3.1-7 sind die Ergebnisse aus Platzgründen nur summarisch für das Bundesgebiet und nicht für einzelne Länder aufgeführt.

Tabelle 2.3.1-1 Radioaktive Kontamination von Weideböden
(Radioactive contamination of pasture soil)

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Jahr</th>
<th>Entnahmetiefe (cm)</th>
<th>Aktivität in Bq/kg TM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cs-137</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>2009</td>
<td>0 - 10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>11</td>
</tr>
<tr>
<td>Bayern</td>
<td>2009</td>
<td>0 - 10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>20</td>
</tr>
<tr>
<td>Berlin</td>
<td>2009</td>
<td>0 - 10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>3</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>2009</td>
<td>0 - 10</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>9</td>
</tr>
<tr>
<td>Bremen</td>
<td>2009</td>
<td>0 - 10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>2</td>
</tr>
<tr>
<td>Hamburg</td>
<td>2009</td>
<td>0 - 10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>1</td>
</tr>
<tr>
<td>Bundesland</td>
<td>Jahr</td>
<td>Entnahme-</td>
<td>Aktivität in Bq/kg TM</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tiefe</td>
<td>Cs-137</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(cm)</td>
<td>N</td>
</tr>
<tr>
<td>Hessen</td>
<td>2009</td>
<td>0 - 10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>2</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>2009</td>
<td>0 - 10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>10</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>2009</td>
<td>0 - 10</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>16</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>2009</td>
<td>0 - 10</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>12</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>2009</td>
<td>0 - 10</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>7</td>
</tr>
<tr>
<td>Saarland</td>
<td>2009</td>
<td>0 - 10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>4</td>
</tr>
<tr>
<td>Sachsen</td>
<td>2009</td>
<td>0 - 10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>8</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>2009</td>
<td>0 - 10</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>a</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>2009</td>
<td>0 - 10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>8</td>
</tr>
<tr>
<td>Thüringen</td>
<td>2009</td>
<td>0 - 10</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>7</td>
</tr>
</tbody>
</table>

a Messwerte lagen nicht vor
- Messung / Angabe nicht erforderlich
Tabelle 2.3.1-2 Radioaktive Kontamination von Ackerböden
(Radioactive contamination of arable soil)

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Jahr</th>
<th>Entnahmetiefe (cm)</th>
<th>Aktivität in Bq/kg TM</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cs-137</td>
<td>max. Wert</td>
<td>Sr-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>2009</td>
<td>0 - 30</td>
<td>13</td>
<td>22,2</td>
<td>73,5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 30</td>
<td>9</td>
<td>18,6</td>
<td>74,9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 30</td>
<td>12</td>
<td>19,4</td>
<td>73,3</td>
<td>1</td>
</tr>
<tr>
<td>Bayern</td>
<td>2009</td>
<td>0 - 30</td>
<td>30</td>
<td>27,0</td>
<td>183,1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 30</td>
<td>30</td>
<td>27,4</td>
<td>174,9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 30</td>
<td>30</td>
<td>26,8</td>
<td>168,4</td>
<td>3</td>
</tr>
<tr>
<td>Berlin</td>
<td>2009</td>
<td>0 - 30</td>
<td>2</td>
<td>6,6</td>
<td>7,6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 30</td>
<td>2</td>
<td>6,7</td>
<td>7,7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 30</td>
<td>2</td>
<td>6,2</td>
<td>7,4</td>
<td>1</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>2009</td>
<td>0 - 30</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 30</td>
<td>9</td>
<td>6,9</td>
<td>16,0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 30</td>
<td>9</td>
<td>6,7</td>
<td>21,0</td>
<td>3</td>
</tr>
<tr>
<td>Bremen</td>
<td>2009</td>
<td>0 - 30</td>
<td>3</td>
<td>7,7</td>
<td>10,1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 30</td>
<td>3</td>
<td>8,3</td>
<td>11,6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 30</td>
<td>3</td>
<td>6,8</td>
<td>9,3</td>
<td>2</td>
</tr>
<tr>
<td>Hamburg</td>
<td>2009</td>
<td>0 - 30</td>
<td>1</td>
<td>6,6</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 30</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 30</td>
<td>1</td>
<td>6,3</td>
<td>1</td>
<td>0,8</td>
</tr>
<tr>
<td>Hessen</td>
<td>2009</td>
<td>0 - 30</td>
<td>6</td>
<td>8,8</td>
<td>18,9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 30</td>
<td>6</td>
<td>9,0</td>
<td>22,0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 30</td>
<td>6</td>
<td>8,0</td>
<td>14,3</td>
<td>2</td>
</tr>
<tr>
<td>Mecklenburg- Vorpommern</td>
<td>2009</td>
<td>0 - 30</td>
<td>7</td>
<td>8,6</td>
<td>16,2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 30</td>
<td>7</td>
<td>7,5</td>
<td>13,4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 30</td>
<td>7</td>
<td>7,7</td>
<td>15,3</td>
<td>2</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>2009</td>
<td>0 - (25/30)</td>
<td>21</td>
<td>10,5</td>
<td>38,1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - (25/30)</td>
<td>24</td>
<td>9,3</td>
<td>50,8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - (25/30)</td>
<td>24</td>
<td>8,2</td>
<td>28,4</td>
<td>3</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>2009</td>
<td>0 - 30</td>
<td>10</td>
<td>8,7</td>
<td>14,5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 30</td>
<td>10</td>
<td>8,3</td>
<td>15,4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 30</td>
<td>9</td>
<td>8,1</td>
<td>12,5</td>
<td>4</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>2009</td>
<td>0 - (25/30)</td>
<td>8</td>
<td>6,6</td>
<td>15,1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - (25/30)</td>
<td>8</td>
<td>8,3</td>
<td>30,1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - (25/30)</td>
<td>8</td>
<td>7,3</td>
<td>16,2</td>
<td>2</td>
</tr>
<tr>
<td>Saarland</td>
<td>2009</td>
<td>0 - 30</td>
<td>1</td>
<td>13,8</td>
<td>-</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 30</td>
<td>1</td>
<td>16,2</td>
<td>-</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 30</td>
<td>1</td>
<td>10,2</td>
<td>-</td>
<td>a</td>
</tr>
<tr>
<td>Sachsen</td>
<td>2009</td>
<td>0 - 30</td>
<td>7</td>
<td>8,0</td>
<td>20,1</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 30</td>
<td>7</td>
<td>7,4</td>
<td>16,6</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 30</td>
<td>7</td>
<td>6,9</td>
<td>17,1</td>
<td>a</td>
</tr>
<tr>
<td>Bundesland</td>
<td>Jahr</td>
<td>Entnahmetiefe (cm)</td>
<td>Aktivität in Bq/kg TM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>--------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cs-137</td>
<td>Sr-90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>Mittelwert</td>
<td>max. Wert</td>
<td>N</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>2009</td>
<td>0 - 30</td>
<td>15</td>
<td>9,8</td>
<td>46,3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 30</td>
<td>15</td>
<td>10,5</td>
<td>46,8</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 30</td>
<td>15</td>
<td>9,7</td>
<td>37,5</td>
<td>5</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>2009</td>
<td>0 - 30</td>
<td>5</td>
<td>7,9</td>
<td>10,7</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 30</td>
<td>5</td>
<td>7,0</td>
<td>8,6</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 30</td>
<td>5</td>
<td>6,7</td>
<td>9,2</td>
<td>a</td>
</tr>
<tr>
<td>Thüringen</td>
<td>2009</td>
<td>0 - 30</td>
<td>6</td>
<td>8,6</td>
<td>12,0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 30</td>
<td>6</td>
<td>8,3</td>
<td>11,5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 30</td>
<td>6</td>
<td>7,5</td>
<td>12,6</td>
<td>2</td>
</tr>
</tbody>
</table>

a Messwerte lagen nicht vor
- Messung / Angabe nicht erforderlich

Tabelle 2.3.1-3 Radioaktive Kontamination von Waldböden (Radioactive contamination of forest soil)

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Jahr</th>
<th>Entnahmetiefe (cm)</th>
<th>Aktivität in Bq/kg TM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cs-137</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Hessen</td>
<td>2009</td>
<td>0 - 10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>4</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>2009</td>
<td>0 - 10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>2</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>2009</td>
<td>0 - 10</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0 - 10</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0 - 10</td>
<td>a</td>
</tr>
</tbody>
</table>

a Messwerte lagen nicht vor

Tabelle 2.3.1-4 Radioaktive Kontamination von Weide- und Wiesenbewuchs (Radioactive contamination of pasture and meadow vegetation)

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Jahr</th>
<th>Aktivität in Bq/kg FM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cs-137</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>2009</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>25</td>
</tr>
<tr>
<td>Bayern</td>
<td>2009</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>57</td>
</tr>
<tr>
<td>Berlin</td>
<td>2009</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>2009</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>18</td>
</tr>
<tr>
<td>Bundesland</td>
<td>Jahr</td>
<td>Aktivität in Bq/kg FM</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cs-137</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>2009</td>
<td>2</td>
<td>0,4</td>
</tr>
<tr>
<td>2010</td>
<td>2</td>
<td>0,3</td>
</tr>
<tr>
<td>2011</td>
<td>2</td>
<td><0,3</td>
</tr>
<tr>
<td>Hamburg</td>
<td>2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>2</td>
</tr>
<tr>
<td>Hessen</td>
<td>2009</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>15</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>2009</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>23</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>2009</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>45</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>2009</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>8</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>2009</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>14</td>
</tr>
<tr>
<td>Saarland</td>
<td>2009</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>4</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>2009</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>10</td>
</tr>
<tr>
<td>Sachsen</td>
<td>2009</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>14</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>2009</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>21</td>
</tr>
<tr>
<td>Thüringen</td>
<td>2009</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>17</td>
</tr>
</tbody>
</table>

a Messwerte lagen nicht vor
* Der Wert ist nicht repräsentativ. Mittelwert ohne hohe Nachweisgrenzen < 0,3
** Der Wert ist nicht repräsentativ
Tabelle 2.3.1-5 Radioaktive Kontamination einiger Futtermittel (Produkte aus dem Inland)
(Radioactive contamination of some feedstuffs - inland production)

<table>
<thead>
<tr>
<th>Futtermittel</th>
<th>Jahr</th>
<th>Aktivität in Bq/kg TM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cs-137 N</td>
</tr>
<tr>
<td>Mais u.</td>
<td>2009</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>211</td>
</tr>
<tr>
<td>Maissilagen</td>
<td>2009</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>21</td>
</tr>
<tr>
<td>Futterrüben</td>
<td>2009</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>124</td>
</tr>
<tr>
<td>Grünfutterpflanzen (ohne Mais)</td>
<td>2009</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>5</td>
</tr>
<tr>
<td>Futtergetreide</td>
<td>2009</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>65</td>
</tr>
<tr>
<td>Futterkartoffeln</td>
<td>2009</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3</td>
</tr>
<tr>
<td>Erbsen</td>
<td>2009</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>20</td>
</tr>
<tr>
<td>Raps</td>
<td>2009</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>7</td>
</tr>
<tr>
<td>Ölkuchen/Ölschrote</td>
<td>2009</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>a</td>
</tr>
<tr>
<td>Sonnenblumen</td>
<td>2009</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>1</td>
</tr>
<tr>
<td>Kraftfuttermischung</td>
<td>2009</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>1</td>
</tr>
<tr>
<td>Silage</td>
<td>2011</td>
<td>14</td>
</tr>
</tbody>
</table>

a Messwerte lagen nicht vor
- Messung / Angabe nicht erforderlich
Tabelle 2.3.1-6 Radioaktive Kontamination von Futtermittelimporten
(Radioactive contamination of imported feedstuffs)

<table>
<thead>
<tr>
<th>Futtermittel</th>
<th>Jahr</th>
<th>N</th>
<th>Aktivität in Bq/kg TM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cs-137</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mittelwert</td>
</tr>
<tr>
<td>Futtergetreide</td>
<td>2009</td>
<td>13</td>
<td><0,4</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>16</td>
<td><0,3</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>12</td>
<td><0,4</td>
</tr>
<tr>
<td>Mais, Maisprodukte</td>
<td>2009</td>
<td>12</td>
<td><0,5</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>7</td>
<td><0,2</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>11</td>
<td><0,2</td>
</tr>
<tr>
<td>Heu, Cobs</td>
<td>2009</td>
<td>2</td>
<td><0,4</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>1</td>
<td><0,5</td>
</tr>
<tr>
<td>Maniok, Tapioka</td>
<td>2009</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>1</td>
<td><0,1</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Ölkuchen, Ölschrote</td>
<td>2009</td>
<td>46</td>
<td><0,3</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>45</td>
<td><0,3</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>37</td>
<td><0,3</td>
</tr>
<tr>
<td>Sonnenblumen</td>
<td>2009</td>
<td>3</td>
<td><0,2</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>4</td>
<td><0,3</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>1</td>
<td><0,1</td>
</tr>
<tr>
<td>Sojabohnen</td>
<td>2009</td>
<td>9</td>
<td><0,4</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>6</td>
<td><0,4</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>8</td>
<td><0,4</td>
</tr>
<tr>
<td>Kraftfuttermischung</td>
<td>2009</td>
<td>1</td>
<td><0,1</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3</td>
<td><0,2</td>
</tr>
<tr>
<td>Mühlennachprodukte</td>
<td>2010</td>
<td>4</td>
<td><0,2</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Citrustrester</td>
<td>2009</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>1</td>
<td><0,2</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>1</td>
<td>0,6</td>
</tr>
</tbody>
</table>

a Messwerte lagen nicht vor

Tabelle 2.3.1-7 Radioaktive Kontamination von Pflanzen (Indikatoren)
(Radioactive contamination of plants (indicators))

<table>
<thead>
<tr>
<th>Pflanzenindikator</th>
<th>Jahr</th>
<th>N</th>
<th>Aktivität in Bq/kg TM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cs-137</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mittelwert</td>
</tr>
<tr>
<td>Blätter</td>
<td>2009</td>
<td>107</td>
<td><8,8</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>108</td>
<td><10,9</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>106</td>
<td><11,8</td>
</tr>
</tbody>
</table>
Teil B

II - Künstliche Umweltradioaktivität

2.3.2 Boden und Bewuchs in der Umgebung der Anlagen nach Atomgesetz

(Soil and vegetation from the surroundings of facilities according to the Atomic Energy Act)

In der Umgebung kerntechnischer Anlagen ist die Situation in Bezug auf Radioaktivität im Boden nach wie vor durch die zurückliegenden Depositionen nach den Kernwaffenversuchen der sechziger Jahre und nach dem Tschernobylunfall im Jahre 1986 geprägt, wobei die aktuellen Aktivitätskonzentrationen auf einem sehr niedrigen Niveau liegen. Die Ergebnisse der Überwachung nach der Richtlinie zur Emissions- und Immissionsüberwachung kerntechnischer Anlagen sind für Boden und Bewuchs in den Tabellen 2.3.2-1 und 2.3.2-2 zusammengefasst. Die vorliegenden Messwerte lassen im Vergleich mit anderen Orten in der Bundesrepublik keine Erhöhung der Radioaktivität erkennen.

Tabelle 2.3.2-1 Radioaktivität des Bodens in der näheren Umgebung der Anlagen nach Atomgesetz

(Radioactivity of the soil in the vicinity of facilities according to the Atomic Energy Act)

<table>
<thead>
<tr>
<th>LAND / Kerntechnische Anlage</th>
<th>Nuklid / Messverfahren</th>
<th>Aktivität in Bq/kg TM</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mittelwert</td>
<td>Mittelwert</td>
<td>Mittelwert (Bereich)</td>
</tr>
<tr>
<td>BADEN-WÜRTTEMBERG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FZ Karlsruhe</td>
<td>Cs-137</td>
<td>9</td>
<td>12,8</td>
<td>12,4</td>
<td>12,0</td>
</tr>
<tr>
<td></td>
<td>Pu-238</td>
<td>8</td>
<td><0,69</td>
<td><0,95</td>
<td><1,1</td>
</tr>
<tr>
<td></td>
<td>Pu-(239+240)</td>
<td>8</td>
<td><0,44</td>
<td><0,58</td>
<td><0,7</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>3</td>
<td>0,8</td>
<td>0,3</td>
<td>1,2</td>
</tr>
<tr>
<td>KWO Obrigheim</td>
<td>Cs-137</td>
<td>4</td>
<td>5,9</td>
<td>6,1</td>
<td>5,3</td>
</tr>
<tr>
<td>GKN Neckarwestheim</td>
<td>Cs-137</td>
<td>4</td>
<td>6,2</td>
<td>7,4</td>
<td>7,8</td>
</tr>
<tr>
<td>KKP Philippsburg</td>
<td>Cs-137</td>
<td>6</td>
<td>11,1</td>
<td>11,1</td>
<td>11,5</td>
</tr>
<tr>
<td>KKW Beznau/Leibstadt (Schweiz)</td>
<td>Cs-137</td>
<td>6</td>
<td>15,4</td>
<td>16,3</td>
<td>15,3</td>
</tr>
<tr>
<td>KKW Fessenheim (Frankreich)</td>
<td>Cs-137</td>
<td>2</td>
<td>11,0</td>
<td>17,7</td>
<td>14,1</td>
</tr>
<tr>
<td>BAYERN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRB Gundremmingen</td>
<td>Cs-137</td>
<td>10</td>
<td>38,5</td>
<td>33,8</td>
<td>36,7</td>
</tr>
<tr>
<td>KKI Isar</td>
<td>Cs-137</td>
<td>12</td>
<td>51,3</td>
<td>37,6</td>
<td>47,5</td>
</tr>
</tbody>
</table>

* Der Wert ist nicht repräsentativ
** Mittelwert ohne den höchsten Wert bei Nadeln: <15,8 in 2009; <20,2 in 2010; <14,2 in 2011
** Der Wert ist nicht repräsentativ
<table>
<thead>
<tr>
<th>LAND / Kerntechnische Anlage</th>
<th>Nuklid / Messverfahren</th>
<th>Aktivität in Bq/kg TM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>KKG Grafenrheinfeld</td>
<td>Cs-137</td>
<td>10</td>
</tr>
<tr>
<td>Forschungsreaktor München</td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td>Framatome ANP Erlangen KWU</td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pu-238</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pu-(239+240)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Am-241</td>
<td>4</td>
</tr>
<tr>
<td>Framatome ANP Karlstein KWU</td>
<td>Cs-137</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Pu-238</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Pu-(239+240)</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>a</td>
</tr>
<tr>
<td>SBWK Karlstein</td>
<td>Gesamt-α</td>
<td>a</td>
</tr>
<tr>
<td>BERLIN</td>
<td>Forschungsreaktor BERII</td>
<td>Cs-137</td>
</tr>
<tr>
<td>BRANDENBURG</td>
<td>KKR Rheinsberg</td>
<td>Cs-137</td>
</tr>
<tr>
<td>HESSEN</td>
<td>KWB Biblis</td>
<td>Cs-137</td>
</tr>
<tr>
<td>MECKLENBURG-VORPOMMERN</td>
<td>KGR Greifswald</td>
<td>Cs-137</td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Zwischenlager Nord</td>
<td>Cs-137</td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>12</td>
</tr>
<tr>
<td>NIEDERSACHSEN</td>
<td>KKS Stade</td>
<td>Cs-137</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>KKU Unterweser</td>
<td>Cs-137</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>KWG Grohnde</td>
<td>Cs-137</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>KKE Emsland</td>
<td>Cs-137</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Zwischenlager Gorleben</td>
<td>Cs-137</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>LAND / Kerntechnische Anlage</td>
<td>Nuklid / Messverfahren</td>
<td>Aktivität in Bq/kg TM</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2009 N Mittelwert</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Bereich)</td>
</tr>
<tr>
<td></td>
<td>Pu-238 Pu-(239+240)</td>
<td>2 b<0,10; <0,12</td>
</tr>
<tr>
<td>FMRB Braunschweig</td>
<td>Cs-137 Gesamt-α</td>
<td>a</td>
</tr>
<tr>
<td>Schacht Konrad II c</td>
<td>Cs-137</td>
<td>a</td>
</tr>
<tr>
<td>Advanced Nuclear Fuels Lingen</td>
<td>Cs-137</td>
<td>a</td>
</tr>
<tr>
<td>Schachtanlage Asse</td>
<td>Cs-137</td>
<td>4 8,2</td>
</tr>
<tr>
<td>NORDRHEIN-WESTFALEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FZ Jülich</td>
<td>Cs-137 Sr-90</td>
<td>8 9,6</td>
</tr>
<tr>
<td>KKW Würgassen</td>
<td>Cs-137</td>
<td>18 12,6</td>
</tr>
<tr>
<td>THTR Uentrop</td>
<td>Cs-137 Sr-90</td>
<td>6 18,2</td>
</tr>
<tr>
<td>Zwischenlager Ahaus</td>
<td>Cs-137 Sr-90</td>
<td>5 8,5</td>
</tr>
<tr>
<td>UAG Gronau</td>
<td>U-238</td>
<td>10 <0,2</td>
</tr>
<tr>
<td>RHEINLAND-PFALZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KMK Mülheim-Kärlich</td>
<td>Cs-137</td>
<td>4 9,2 (2,8 - 13,0)</td>
</tr>
<tr>
<td>KKW Cattenom (Frankreich)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SACHSEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VKTA Dresden-Rossendorf</td>
<td>Cs-137 Sr-90</td>
<td>10 4,7</td>
</tr>
<tr>
<td>SACHSEN-ANHALT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endlager Morsleben</td>
<td>Cs-137 Sr-90 Gesamt-β</td>
<td>2 3,8</td>
</tr>
<tr>
<td>SCHLESWIG-HOLSTEIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKSS Geesthacht</td>
<td>Cs-137 Sr-90</td>
<td>6 6,7</td>
</tr>
<tr>
<td>KKB Brunsbüttel</td>
<td>Cs-137</td>
<td>6 21,7</td>
</tr>
</tbody>
</table>
a Messwerte lagen nicht vor
b Mittelwertberechnung nicht sinnvoll
c Der Planfeststellungsbeschluss für das Endlagerprojekt Konrad liegt vor. Das Messprogramm nach REI beginnt zwei Jahre vor Inbetriebnahme

Tabelle 2.3.2-2 Radioaktivität des Bewuchses in der näheren Umgebung der Anlagen nach Atomgesetz
(Radioactivity of vegetation in the vicinity of facilities according to the Atomic Energy Act)

<table>
<thead>
<tr>
<th>LAND / Kerntechnische Anlage</th>
<th>Nuklid / Messverfahren</th>
<th>Aktivität in Bq/kg TM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N Mittelwert</td>
</tr>
<tr>
<td>KKK Krümmel</td>
<td>Sr-90</td>
<td>1 3,4</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>8 5,4</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>6 0,6</td>
</tr>
<tr>
<td>KBR Brokdorf</td>
<td>Cs-137</td>
<td>13 13,0</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>5 1,9</td>
</tr>
</tbody>
</table>

Tabelle 2.3.2-2 Radioaktivität des Bewuchses in der näheren Umgebung der Anlagen nach Atomgesetz
(Radioactivity of vegetation in the vicinity of facilities according to the Atomic Energy Act)

<table>
<thead>
<tr>
<th>LAND / Kerntechnische Anlage</th>
<th>Nuklid / Messverfahren</th>
<th>Aktivität in Bq/kg FM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N Mittelwert</td>
</tr>
<tr>
<td>BADEN-WÜRTTEMBERG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FZ Karlsruhe</td>
<td>Cs-137</td>
<td>10 <0,18</td>
</tr>
<tr>
<td></td>
<td>Pu-238</td>
<td>4 <0,05</td>
</tr>
<tr>
<td></td>
<td>Pu-(239+240)</td>
<td>4 <0,02</td>
</tr>
<tr>
<td>KWO Obrigheim</td>
<td>Cs-137</td>
<td>4 <0,41</td>
</tr>
<tr>
<td>GKN Neckarwestheim</td>
<td>Cs-137</td>
<td>4 <0,32</td>
</tr>
<tr>
<td>KKP Philippsburg</td>
<td>Cs-137</td>
<td>6 <0,36</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>KKW Beznau/Leibstadt (Schweiz)</td>
<td>Cs-137</td>
<td>6 0,75</td>
</tr>
<tr>
<td>KKW Fessenheim (Frankreich)</td>
<td>Cs-137</td>
<td>2 0,12</td>
</tr>
</tbody>
</table>

BAYERN

<table>
<thead>
<tr>
<th>LAND / Kerntechnische Anlage</th>
<th>Nuklid / Messverfahren</th>
<th>Aktivität in Bq/kg FM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N Mittelwert</td>
</tr>
<tr>
<td>KRB Gundremmingen</td>
<td>Cs-137</td>
<td>10 <0,40</td>
</tr>
<tr>
<td>KKI Isar</td>
<td>Cs-137</td>
<td>12 0,44</td>
</tr>
<tr>
<td>KKG Grafenrheinfeld</td>
<td>Cs-137</td>
<td>10 <0,17</td>
</tr>
<tr>
<td>Forschungsreaktor München</td>
<td>Cs-137</td>
<td>4 0,71</td>
</tr>
<tr>
<td>Framatome ANP Erlangen KWU</td>
<td>Cs-137</td>
<td>4 <1,22</td>
</tr>
<tr>
<td></td>
<td>Pu-238</td>
<td>4 <0,02</td>
</tr>
<tr>
<td></td>
<td>Pu-(239+240)</td>
<td>4 <0,02</td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>4 <0,06</td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>4 <0,08</td>
</tr>
<tr>
<td></td>
<td>Am-241</td>
<td>4 <0,02</td>
</tr>
<tr>
<td>Framatome ANP Karlstein</td>
<td>Cs-137</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Pu-238</td>
<td>a</td>
</tr>
<tr>
<td>LAND / Kerntechnische Anlage</td>
<td>Nuklid / Messverfahren</td>
<td>Aktivität in Bq/kg FM</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N Mittelwert</td>
</tr>
<tr>
<td>SBWK Karlstein</td>
<td>Pu-(239+240) a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>U-235 a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>U-238 a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Am-241 a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Gesamt-α a</td>
<td>a</td>
</tr>
<tr>
<td>BERLIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forschungsreaktor BERII</td>
<td>Cs-137 4 a</td>
<td>1,1</td>
</tr>
<tr>
<td></td>
<td>Sr-90 a</td>
<td>a</td>
</tr>
<tr>
<td>BRANDENBURG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKR Rheinsberg</td>
<td>Cs-137 8</td>
<td>2,13</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0,83</td>
</tr>
<tr>
<td>HESSEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KWB Biblis</td>
<td>Cs-137 6</td>
<td><0,13</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0,11</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0,11</td>
</tr>
<tr>
<td>MECKLENBURG-VORPOMMERN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KGR Greifswald</td>
<td>Cs-137 8</td>
<td><0,39</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0,19</td>
</tr>
<tr>
<td>Zwischenlager Nord</td>
<td>Cs-137 12</td>
<td><0,20</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0,16</td>
</tr>
<tr>
<td>NIEDERSACHSEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKS Stade</td>
<td>Cs-137 6</td>
<td><0,11</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0,16</td>
</tr>
<tr>
<td>KKV Unterweser</td>
<td>Cs-137 12</td>
<td><0,19</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0,19</td>
</tr>
<tr>
<td>KWG Grohnde</td>
<td>Cs-137 8</td>
<td><0,12</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0,18</td>
</tr>
<tr>
<td>Zwischenlager Grohnde</td>
<td>Cs-137 1</td>
<td>0,18</td>
</tr>
<tr>
<td>KKE Emsland</td>
<td>Cs-137 10</td>
<td><0,24</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0,29</td>
</tr>
<tr>
<td>Zwischenlager Lingen</td>
<td>Cs-137 a</td>
<td>a</td>
</tr>
<tr>
<td>Zwischenlager Gorleben</td>
<td>Cs-137 20</td>
<td>3,96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,15</td>
</tr>
<tr>
<td>Schacht Konrad II c</td>
<td>Cs-137 a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Sr-90 a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Gesamt-α a</td>
<td>a</td>
</tr>
<tr>
<td>Advanced Nuclear Fuels Lingen</td>
<td>Cs-137 a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Pu-238 d</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Pu-(239+240) d</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>U-234 d</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>U-235 d</td>
<td>1</td>
</tr>
</tbody>
</table>
Die Tabelle zeigt Messwerte für verschiedene Lagen und Anlagen in verschiedenen Landesregionen. Die Messwerte wurden in Bq/kg FM (Bemessungskörpermasse) angegeben und dann mit dem Faktor 0,2 in Bq/kg Feuchtmasse umgerechnet. Nachweisgrenzen wurden nicht umgerechnet.

<table>
<thead>
<tr>
<th>LAND / Kerntechnische Anlage</th>
<th>Nuklid / Messverfahren</th>
<th>Aktivität in Bq/kg FM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Schachtanlage Asse</td>
<td>U-238d</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td>NORDRHEIN-WESTFALEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FZ Jülich</td>
<td>Cs-137</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>KWW Würgassen</td>
<td>Cs-137</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>THTR Uentrop</td>
<td>Cs-137</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>Zwischenlager Ahaus</td>
<td>Cs-137</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>10</td>
</tr>
<tr>
<td>UAG Gronau</td>
<td>U-238</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Uran</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Fluor (mg/kg TM)</td>
<td>12</td>
</tr>
<tr>
<td>RHEINLAND-PFALZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KMK Mülheim-Kärlich</td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td>KKW Cattenom (Frankreich)</td>
<td>Cs-137</td>
<td>6</td>
</tr>
<tr>
<td>SACHSEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VKTA Rossendorf</td>
<td>Cs-137</td>
<td>10</td>
</tr>
<tr>
<td>SACHSEN-ANHALT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endlager Morsleben</td>
<td>Cs-137</td>
<td>2</td>
</tr>
<tr>
<td>Gesamt-β</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>SCHLESWIG-HOLSTEIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKSS Geesthacht</td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td>KKB Brunsbüttel</td>
<td>Cs-137</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>KKK Krümmel</td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
</tr>
<tr>
<td>KBR Brokdorf</td>
<td>Cs-137</td>
<td>10</td>
</tr>
</tbody>
</table>

a Messwerte lagen nicht vor
b Mittelwertberechnung nicht sinnvoll; Angabe der Einzelwerte
c Der Planfeststellungsbeschluss für das Endlagerprojekt Konrad liegt vor. Das Messprogramm nach REI beginnt zwei Jahre vor Inbetriebnahme
d Bq/kg Feuchtmasse (FM)
* In Bq/kg TM angegebene Messwerte wurden mit dem Faktor 0,2 in Bq/kg FM umgerechnet. Nachweigrenzen wurden nicht umgerechnet
2.4 Lebensmittel, Grund- und Trinkwasser
(Foodstuff, groundwater, and drinking water)

2.4.1 Grundwasser und Trinkwasser
(Groundwater and drinking water)

Bezüglich allgemeiner Aspekte der Radioaktivitätsüberwachung von Grund- und Trinkwasser wird auf Teil A - II - 2.4 verwiesen.

Grundwasser
Die Überwachung von Grundwasser wurde an 47 Probenahmestellen vorgenommen. Die Aktivitätskonzentrationen für Cs-137 liegen ausschließlich unterhalb der bei den Messungen ermittelten Nachweisgrenzen (NWG) von 0,97 mBq/l bis 49 mBq/l, die im Wesentlichen vom Volumen des zur Messung aufbereiteten Wassers abhängen. Der Median sämtlicher Werte beträgt <6,5 mBq/l (2010: <6,7 mBq/l).

In 23 % der gemessenen Proben konnte Sr-90 mit Aktivitätskonzentrationen von 0,3 mBq/l bis 25 mBq/l (2010: 0,70 bis 17 mBq/l) nachgewiesen werden. Der Median aller Werte liegt bei <2,3 mBq/l (2010: <3,1 mBq/l).

In den auf H-3 untersuchten Grundwasserproben wurden ebenfalls ausschließlich Messwerte unterhalb der Nachweisgrenzen zwischen 1,1 Bq/l und 10 Bq/l (55 Proben) ermittelt.

Trinkwasser
Die Überwachung von Roh- und Reinwassern wurde an 81 bzw. 83 Probenahmestellen vorgenommen.

In der Tabelle 2.4.1-1 wird zwischen Rohwasser (Grund- oder Oberflächenwasser als Zulauf der Wasserwerke) und Reinwasser (wird von den Wasserwerken als Trinkwasser in das Netz eingespeist) unterschieden. Für die weiteren Betrachtungen werden die Reinwasserwerte benutzt.

Für Cs-137 liegen 99 % aller Messwerte unterhalb der bei den Messungen erreichten Nachweisgrenzen von 0,098 mBq/l bis 53 mBq/l, die tatsächlich gemessenen Werte liegen bei 1,3 und 4,4 mBq/l (2010: 5,8 mBq/l). Der Median aller mitgeteilten Werte liegt bei <6,2 mBq/l (2010: <7,0 mBq/l).

In 56 % der untersuchten Proben konnte Sr-90 nachgewiesen werden. Die Aktivitätskonzentrationen liegen zwischen 0,047 mBq/l und 12 mBq/l (2010: 0,046 und 12 mBq/l), der Median sämtlicher Werte liegt bei <2,8 mBq/l (2010: <3,0 mBq/l). Diese Messwerte zeigen den aus dem Fallout der Kernwaffenversuche in den 60er Jahren herrührenden Einfluss auf Oberflächenwässer, oberflächennahe Grundwässer und damit auch auf Trinkwässer.

Im Rahmen des Routinemessprogramms für Grundwasser und Trinkwasser wurden auch alpha-spektrometrische Messungen von Uran- und Plutoniumisotopen durchgeführt. Die Messwerte für die Uranisotope liegen in dem für das Gebiet der Bundesrepublik Deutschland bekannten Schwankungsbereich (Normalbereich) von bis zu etwa 90 mBq/l. in der Wasserversorgungsanlage Friedland (Mecklenburg-Vorpommern) wurden noch etwas höhere Maximalwerte gefunden, U-234: 290 mBq/l, U-238: 170 mBq/l. Es handelt sich um geogenes Uran, das durch den Eintrag an Nitrat in den Boden mobilisiert wird. Dieser Effekt wurde in den letzten Jahren intensiv untersucht und ist auch an anderer Stelle in Mecklenburg-Vorpommern zu beobachten. Plutoniumisotope konnten nicht nachgewiesen werden.

Die Strahlenexposition der Bevölkerung durch künstliche radioaktive Stoffe auf dem Wege über das Trinkwasser ist auf Grund der vorliegenden Daten gegenüber der natürlichen Strahlenexposition sehr klein. Legt man die Maximalwerte für Cs-137 von 4,4 mBq/l und für Sr-90 von 12 mBq/l zu Grunde, ergeben sich bei einem angenommenen jährlichen Trinkwasserverzehr von 700 Liter (für die Referenzperson gemäß StrlSchV Anlage VII Teil B) für den Erwachsenen Ingestionsdosen von 0,040 bzw. 0,24 µSv/a. Für den Säugling (0 bis 1 Jahr) errechnen sich bei einem angenommenen jährlichen Trinkwasserverzehr von 340 Liter Ingestionsdosen von 0,031 bzw. 0,094 µSv/a pro Jahr.
Teil B - II - Künstliche Umweltradioaktivität

Tabelle 2.4.1-1 Allgemeine Überwachung von Grundwasser und Trinkwasser in Deutschland

(General monitoring of groundwater and drinking water in Germany)

<table>
<thead>
<tr>
<th>Nuklid</th>
<th>2011</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anzahl gesamt</td>
<td>Anzahl <NWG</td>
</tr>
<tr>
<td>Grundwasser (mBq/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>94</td>
<td>49</td>
</tr>
<tr>
<td>Cs-137</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>Sr-90</td>
<td>44</td>
<td>34</td>
</tr>
<tr>
<td>H-3</td>
<td>63</td>
<td>53</td>
</tr>
<tr>
<td>Trinkwasser (mBq/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rohwasser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>105</td>
<td>68</td>
</tr>
<tr>
<td>Cs-137</td>
<td>110</td>
<td>105</td>
</tr>
<tr>
<td>Sr-90</td>
<td>52</td>
<td>27</td>
</tr>
<tr>
<td>H-3</td>
<td>63</td>
<td>53</td>
</tr>
<tr>
<td>Reinwasser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>239</td>
<td>171</td>
</tr>
<tr>
<td>Cs-137</td>
<td>239</td>
<td>237</td>
</tr>
<tr>
<td>Sr-90</td>
<td>72</td>
<td>32</td>
</tr>
<tr>
<td>H-3</td>
<td>79</td>
<td>68</td>
</tr>
</tbody>
</table>

a Liegen mehr als 50 % der gemessenen Werte unterhalb der Nachweigrenze, werden nur der Minimalwert-, der Maximalwert und der Median angegeben. Der arithmetische Mittelwert wurde aus den Messwerten ohne Berücksichtigung der Nachweigrenze errechnet.

2.4.2 Grundwasser und Trinkwasser in der Umgebung von Anlagen nach Atomgesetz

(Groundwater and drinking water from the surroundings of facilities according to the Atomic Energy Act)

Grundwasser

Im Rahmen der Umgebungüberwachung kerntechnischer Anlagen wurden der Leitstelle Messwerte von 99 Grundwassermessstellen mitgeteilt.

Für Cs-137 liegt (von 170 untersuchten Wasserproben) ein Messwert über den angegebenen Nachweigrenzen von 5,3 mBq/l bis 49 mBq/l. Der Messwert liegt bei 18 mBq/l, der Median aller angegebenen Werte liegt bei <24 mBq/l (2010: <21 mBq/l).

Die Werte für die Sr-90-Aktivitätskonzentrationen liegen alle unter den Nachweigrenzen von 3,4 mBq/l bis 10 mBq/l. Der Median liegt bei 4,5 mBq/l (2010: 3,6 mBq/l).

Die Gesamt-Alpha-Aktivitätskonzentrationen liegen zwischen 19 mBq/l und 200 mBq/l (2010: 9 bis 83 mBq/l), mit einem Median sämtlicher Werte von <36 mBq/l (2010: <47 mBq/l).

In 11 % der untersuchten Wasserproben wurde H-3 im Konzentrationsbereich von 1,6 Bq/l bis 17 Bq/l nachgewiesen (2010: 1,6 Bq/l bis 21 Bq/l), der Median aller Werte liegt bei <5,5 Bq/l (2010: <7,1 Bq/l). Einige Werte liegen damit teilweise deutlich über den derzeitigen Aktivitätskonzentrationen im Niederschlag in der Größenordnung zwischen 1 Bq/l und 2 Bq/l.

Trinkwasser

Im Jahr 2011 wurden im Rahmen der Umgebungüberwachung der Anlagen nach Atomgesetz Messwerte von 19 Rohwasser- und 31 Reinwasser-Entnahmestellen beprobt.

In der Tabelle 2.4.2-1 wird zwischen Rohwasser (Grund- oder Oberflächenwasser als Zulauf der Wasserwerke) und Reinwasser (wird von den Wasserwerken als Trinkwasser in das Netz eingespeist) unterschieden. Für die weiteren Betrachtungen werden die Reinwasserwerte benutzt.

Für Cs-137 wurden im Reinwasser (und auch im Rohwasser) keine Messwerte oberhalb der angegebenen Nachweisgrenzen von 0,64 mBq/l bis 57 mBq/l (2010: ebenfalls keine Messwerte oberhalb der Nachweisgrenzen) ermittelt. Der Median aller Cs-137-Werte lag bei <8,6 mBq/l (2010: <9 mBq/l).

Die Aktivitätskonzentration für Sr-90 (von 18 Proben ein Messwert über der Nachweisgrenze) lag bei 3 mBq/l bis 57 mBq/l, mit einem Median aller Werte von <2,2 mBq/l. In 2 von 120 gemessenen Proben wurde H-3 in Konzentrationen bei 20 mBq/l nachgewiesen, der Median aller Werte lag bei <3,5 Bq/l (2010: <8 Bq/l). Werte über den derzeitigen Aktivitätskonzentrationen im Niederschlag zwischen 1 und 2 Bq/l sind auf den Eintrag von Oberflächenwasser (z. B. als Uferfiltrat) zurückzuführen, das durch H-3-Emissionen kerntechnischer Anlagen geringfügig belastet ist. Alle H-3-Werte oberhalb 10 mBq/l stammen aus Einzelwasserversorgungen in der Nähe eines Altrheinarms, der in der Fließrichtung von Grund- und Oberflächenwasser des Forschungszentrums Karlsruhe liegt. Das Trinkwasser aus öffentlichen Wasserversorgungen in den Ortschaften beim Forschungszentrum wies lediglich H-3-Konzentrationen von <10 mBq/l auf. Selbst unter der Annahme, dass der gesamte Trinkwasserbedarf mit Wasser aus den Einzelwasserversorgungen gedeckt würde, ergäbe sich nur eine unwesentliche Erhöhung gegenüber der natürlichen Strahlenexposition für die betroffenen Personen.

Die Strahlenexposition der Bevölkerung durch künstliche radioaktive Stoffe auf dem Wege über das Trinkwasser ist auf Grund der vorliegenden Daten gegenüber der natürlichen Strahlenexposition sehr gering.

Tabelle 2.4.2-1 Umgebungüberwachung von kerntechnischen Anlagen in Deutschland

(Surveillance of the surroundings of nuclear facilities in Germany - groundwater and drinking water)

<table>
<thead>
<tr>
<th>Nuklid</th>
<th>2011</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anzahl gesamt a</td>
<td>Anzahl <NWG</td>
</tr>
<tr>
<td>Grundwasser (mBq/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>161</td>
<td>102</td>
</tr>
<tr>
<td>Co-60</td>
<td>248</td>
<td>240</td>
</tr>
<tr>
<td>Cs-137</td>
<td>170</td>
<td>169</td>
</tr>
<tr>
<td>H-3</td>
<td>270</td>
<td>241</td>
</tr>
<tr>
<td>Sr-90</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>R-Beta</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>G-Alpha</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>Trinkwasser (mBq/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>55</td>
<td>41</td>
</tr>
<tr>
<td>Co-60</td>
<td>53</td>
<td>35</td>
</tr>
<tr>
<td>Cs-137</td>
<td>53</td>
<td>55</td>
</tr>
<tr>
<td>H-3</td>
<td>61</td>
<td>57</td>
</tr>
<tr>
<td>Sr-90</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>G-Alpha</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Reinwasser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>108</td>
<td>74</td>
</tr>
<tr>
<td>Co-60</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>Cs-137</td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>H-3</td>
<td>122</td>
<td>120</td>
</tr>
<tr>
<td>Sr-90</td>
<td>18</td>
<td>17</td>
</tr>
</tbody>
</table>

a Gemäß REI-Messprogramm ist bei der γ-Spektrometrie die Einhaltung der Nachweisgrenze nur für das Radionuklid Co-60 vorgeschrieben, d. h. für andere γ-strahlende Radionuklide müssen die Nachweisgrenzen von der Messstelle nicht angegeben werden. Da nicht alle Messstellen die Nachweisgrenzen für Cs-137 und K-40 mitteilen, kann für diese Nuklide die Anzahl der gemeldeten Werte kleiner als bei Co-60 sein.

b Liegen mehr als 50 % der gemessenen Werte unterhalb der Nachweisgrenze, werden nur der Minimalwert- und der Maximalwert angegeben. Der arithmetische Mittelwert wurde aus den Messwerten ohne Berücksichtigung der Nachweisgrenzen errechnet.
2.4.3 Milch und Milchprodukte

(Milk and milk products)

Die Messwerte, die für Milch und Milchprodukten ermittelt wurden, können in diesem Bericht wegen dessen begrenzten Umfangs nur in komprimierter Form wiedergegeben werden. In Tabelle 2.4.3-1 sind für die Radionuklide Sr-90 und Cs-137 die Anzahl der Messwerte N, die Mittelwerte und die Bereiche der Einzelwerte für Rohmilchproben aufgeführt.

Tabelle 2.4.3-2 gibt für das gesamte Bundesgebiet einen Überblick über die Anzahl der Messwerte N und die Bereiche der Einzelwerte für wichtige Radionuklide in einigen Milchprodukten.

Tabelle 2.4.3-1 Radioaktive Kontamination der Rohmilch

(Radioactive contamination of the raw milk)

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Jahr</th>
<th>Sr-90 (Bq/l)</th>
<th>Cs-137 (Bq/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
<td>N</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>2009</td>
<td>21 <0,06</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>8 <0,06</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>22 0,06 (0,01 - 0,11)</td>
<td>77</td>
</tr>
<tr>
<td>Bayern</td>
<td>2009</td>
<td>33 <0,05</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>24 <0,04</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>30 <0,04 (<0,01 - 0,06)</td>
<td>214</td>
</tr>
</tbody>
</table>

Abbildung 2.4.3-1 Jahresmittelwerte der Sr-90- und Cs-137-Aktivitäten der Rohmilch in der Bundesrepublik Deutschland

(Annual mean values of Sr-90 and Cs-137 activities of raw milk in the Federal Republic of Germany)
<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Jahr</th>
<th>Sr-90 (Bq/l)</th>
<th>Cs-137 (Bq/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
</tr>
<tr>
<td>Berlin</td>
<td>2009</td>
<td>12</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>12</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>12</td>
<td>0,02 (0,01 - 0,03)</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>2009</td>
<td>18</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>17</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>16</td>
<td>0,02 (0,01 - 0,03)</td>
</tr>
<tr>
<td>Bremen</td>
<td>2009</td>
<td>12</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>12</td>
<td><0,02</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>12</td>
<td><0,12 (0,01 - 0,91)</td>
</tr>
<tr>
<td>Hamburg</td>
<td>2009</td>
<td>12</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>6</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>12</td>
<td>0,01 (0,01 - 0,02)</td>
</tr>
<tr>
<td>Hessen</td>
<td>2009</td>
<td>18</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>15</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>21</td>
<td>0,03 (0,01 - 0,05)</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>2009</td>
<td>12</td>
<td><0,02</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>12</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>12</td>
<td><0,02 (< 0,01 - 0,07)</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>2009</td>
<td>46</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>29</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>65</td>
<td><0,05 (0,02 - <1,00)</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>2009</td>
<td>18</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>13</td>
<td><0,03</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>23</td>
<td>0,03 (0,02 - 0,11)</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>2009</td>
<td>20</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>11</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>22</td>
<td>0,02 (0,01 - 0,03)</td>
</tr>
<tr>
<td>Saarland</td>
<td>2009</td>
<td>12</td>
<td><0,04</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>12</td>
<td><0,05</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>10</td>
<td><0,08 (< 0,02 - 0,20)</td>
</tr>
<tr>
<td>Sachsen</td>
<td>2009</td>
<td>12</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>12</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>12</td>
<td>0,02 (0,02 - 0,03)</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>2009</td>
<td>12</td>
<td><0,02</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>12</td>
<td><0,02</td>
</tr>
</tbody>
</table>
Teil B - II - Künstliche Umweltradioaktivität - 197 -

Tabelle 2.4.3-2 Bereiche der radioaktiven Kontamination von Milch und Milchprodukten im Jahr 2011 (Areas of radioactive contamination of milk and milk products in the year 2011)

<table>
<thead>
<tr>
<th>Produkt / Produktgruppe</th>
<th>Bundesland</th>
<th>Jahr</th>
<th>Sr-90 (Bq/l)</th>
<th>Cs-137 (Bq/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>max. Wert</td>
<td>min. Wert</td>
</tr>
<tr>
<td>Rohmilch</td>
<td>Schleswig-Holstein</td>
<td>2011</td>
<td>< 0,02 (< 0,02 - 0,35)</td>
<td>< 0,39 (< 0,07 - 5,18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2009</td>
<td>0,03</td>
<td>< 0,13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2010</td>
<td>0,04</td>
<td>< 0,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2011</td>
<td>0,03 (0,02 - 0,05)</td>
<td>< 0,13 (< 0,06 - 0,22)</td>
</tr>
<tr>
<td></td>
<td>Thüringen</td>
<td>2009</td>
<td>0,01</td>
<td>< 0,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2010</td>
<td>0,01</td>
<td>< 0,09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2011</td>
<td>< 0,01 (0,01 - 0,02)</td>
<td>< 0,09 (< 0,06 - < 0,12)</td>
</tr>
<tr>
<td></td>
<td>Bundesrepublik (gesamt)</td>
<td>2009</td>
<td>< 0,03</td>
<td>< 0,19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2010</td>
<td>< 0,03</td>
<td>< 0,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2011</td>
<td>< 0,04 (< 0,01 - < 1,00)</td>
<td>< 0,16 (< 0,02 - 5,18)</td>
</tr>
</tbody>
</table>

2.4.4 Milch in der Umgebung von Anlagen nach Atomgesetz (Milk from the surroundings of facilities according to the Atomic Energy Act)

Tabelle 2.4.4-1 Radioaktive Kontamination der Milch aus unmittelbarer Nähe kerntechnischer Anlagen (Radioactive contamination of milk from the close vicinity of nuclear power plants)

<table>
<thead>
<tr>
<th>LAND/Kerntechnische Anlage</th>
<th>Nuklid / Messverfahren</th>
<th>Aktivität in Bq/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2010</td>
<td>2011</td>
</tr>
<tr>
<td></td>
<td>N Mittelwert (Bereich)</td>
<td>N Mittelwert (Bereich)</td>
</tr>
</tbody>
</table>

BADEN-WÜRTTEMBERG

FZ Karlsruhe
Cs-137
Sr-90
l-131 (nur Bereich)

KWO Obrigheim
Cs-137
Sr-90
<table>
<thead>
<tr>
<th>LAND/ Kerntechnische Anlage</th>
<th>Nuklid / Mess-verfahren</th>
<th>Aktivität in Bq/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N Mittelwert (Bereich)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2010</td>
</tr>
<tr>
<td>GKN Neckarwestheim</td>
<td>Cs-137</td>
<td>4 < 0,03</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4 < 0,02</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>10 < 0,003 < 0,009</td>
</tr>
<tr>
<td>KKP Philippsburg</td>
<td>Cs-137</td>
<td>4 < 0,07</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4 < 0,02</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>11 < 0,005 < 0,008</td>
</tr>
<tr>
<td>KKW Beznau/Leibstadt</td>
<td>Cs-137</td>
<td>8 < 0,11</td>
</tr>
<tr>
<td>(Schweiz)</td>
<td>Sr-90</td>
<td>5 < 0,03</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>12 < 0,004 < 0,008</td>
</tr>
<tr>
<td>KKW Fessenheim</td>
<td>Cs-137</td>
<td>5 < 0,03</td>
</tr>
<tr>
<td>(Frankreich)</td>
<td>Sr-90</td>
<td>4 < 0,02</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>8 < 0,005 < 0,011</td>
</tr>
<tr>
<td>BAYERN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRB Gundremmingen</td>
<td>Cs-137</td>
<td>6 < 0,02</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>6 < 0,01</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>18 < 0,003 < 0,007</td>
</tr>
<tr>
<td>KKI Isar</td>
<td>Cs-137</td>
<td>4 < 0,05</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4 < 0,01</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>12 < 0,004 < 0,008</td>
</tr>
<tr>
<td>KKG Grafenrheinfeld</td>
<td>Cs-137</td>
<td>6 < 0,18</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>6 < 0,02</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>18 < 0,004 < 0,008</td>
</tr>
<tr>
<td>FRM II</td>
<td>Cs-137</td>
<td>2 < 0,08</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2 < 0,02</td>
</tr>
<tr>
<td>BRANDENBURG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKR Rheinsberg</td>
<td>Cs-137</td>
<td>4 < 0,09</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4 < 0,03</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>4 < 0,08 - < 0,10</td>
</tr>
<tr>
<td>HESSEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KWB Biblis</td>
<td>Cs-137</td>
<td>8 < 0,09</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>8 < 0,01</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>24 < 0,004 < 0,008</td>
</tr>
<tr>
<td>MECKLENBURG-VORPOMMERN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KGR Greifswald</td>
<td>Cs-137</td>
<td>4 0,13</td>
</tr>
<tr>
<td>LAND/ Kerntechnische Anlage</td>
<td>Nuklid / Messverfahren</td>
<td>Aktivität in Bq/l</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N Mittelwert (Bereich)</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4 0,02</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td></td>
</tr>
</tbody>
</table>

NIEDERSACHSEN

KKS Stade	Cs-137	a	a
Sr-90	a	a	
I-131 (nur Bereich)	a	a	

KKU Unterweser	Cs-137	4	< 0,12
Sr-90	4	0,03	
I-131 (nur Bereich)	12	< 0,002 - < 0,012	

KWG Grohnde	Cs-137	4	< 0,07
Sr-90	4	0,03	
I-131 (nur Bereich)	12	< 0,005 - < 0,011	

KKE Emsland	Cs-137	4	< 0,06
Sr-90	4	0,03	
I-131 (nur Bereich)	12	< 0,004 - < 0,017	

Zwischenlager Gorleben	Cs-137	24	0,27
Sr-90	12	0,03	
I-129 (µBq/l)	a	a	

Schacht Konrad II b	Cs-137	a	a
Sr-90	a	a	
I-131 (nur Bereich)	a	a	

| Forschungsbergwerk Asse | Cs-137 | 1 | < 0,11 |

NORDRHEIN-WESTFALEN

FZ Jülich	Cs-137	4	< 0,05
Sr-90	4	0,03	
I-131 (nur Bereich)	32	< 0,005 - < 0,010	

| KWW Würgassen | Cs-137 | a | a |
| Sr-90 | a | a |

| THTR Uentrop | Cs-137 | a | a |
| Sr-90 | a | a |

| UAG Gronau | Uran (Bq/l) | 12 | < 0,23 |
| Fluor (mg/l) | 12 | < 0,42 |

RHEINLAND-PFALZ

| KMK Mülheim-Kärlich | Cs-137 | 2 | < 0,07 |

| 2011 | 1 | < 0,09 |
2.4.5 Fische und Produkte des Meeres und der Binnengewässer

Im Folgenden werden Messergebnisse über Radionuklidkonzentrationen in Fischen, Krusten- und Schalentieren der Binnengewässer und der Meere für das Jahr 2011 vorgestellt und diskutiert. Bei der Auswertung der Daten wird im Allgemeinen nicht zwischen Fischarten unterschieden. Die Aktivitätsangaben in Bq/kg beziehen sich, wo es nicht ausdrücklich angeführt wird, bei Fischen, Krusten- und Schalentieren auf die Feuchtmasse (FM) des jeweiligen Fleisches.

<table>
<thead>
<tr>
<th>LAND/ Kerntechnische Anlage</th>
<th>Nuklid / Messverfahren</th>
<th>Aktivität in Bq/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2010</td>
<td>2011</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
</tr>
<tr>
<td>KKW Cattenom</td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SACHSEN</td>
<td>Cs-137</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SACHSEN-ANHALT</td>
<td>Cs-137</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
</tr>
<tr>
<td>SCHLESWIG-HOLSTEIN</td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zwischenlager Brokdorf</td>
<td>Cs-137</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>I-131 (nur Bereich)</td>
<td>5</td>
</tr>
</tbody>
</table>

a Messwerte liegen nicht vor

b Der Planfeststellungsbeschluss für das Endlagerprojekt Konrad liegt vor. Das Messprogramm nach REI beginnt zwei Jahre vor Inbetriebnahme

2.4.5 Fische und Produkte des Meeres und der Binnengewässer

schätzer verwendet. Die hier angegebenen Gesamtanzahlen \(N \) von Messwerten umfassen auch die nicht nachgewiesenen \((nn) \) unterhalb der Nachweisgrenze (NWG) liegenden Werte. Ermittelte statistische Kennzahlen sind neben den Anzahlen \(N \) und \(nn \) der Medianwert, minimaler und maximaler Wert.

Tabelle 2.4.5-1 Cs-137-Aktivität in Süßwasserfischen

(Cs-137 activity in freshwater fish)

Messungen der Bundesländer

<table>
<thead>
<tr>
<th>Gewässer</th>
<th>Region</th>
<th>Cs-137-Aktivität in Bq/kg FM</th>
<th>2011</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>nn</td>
<td>min. Wert</td>
</tr>
<tr>
<td>Binnenseen</td>
<td>Süddeutschland</td>
<td>53</td>
<td>5</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>Mitteldeutschland</td>
<td>6</td>
<td>3</td>
<td>< 0,10</td>
</tr>
<tr>
<td></td>
<td>Norddeutschland</td>
<td>27</td>
<td>1</td>
<td>0,11</td>
</tr>
<tr>
<td>Fischteiche</td>
<td>Süddeutschland</td>
<td>12</td>
<td>2</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>Mitteldeutschland</td>
<td>24</td>
<td>7</td>
<td>0,09</td>
</tr>
<tr>
<td></td>
<td>Norddeutschland</td>
<td>11</td>
<td>7</td>
<td>0,13</td>
</tr>
<tr>
<td>Fließgewässer</td>
<td>Süddeutschland</td>
<td>5</td>
<td>1</td>
<td>< 0,14</td>
</tr>
<tr>
<td></td>
<td>Mitteldeutschland</td>
<td>24</td>
<td>16</td>
<td>< 0,10</td>
</tr>
<tr>
<td></td>
<td>Norddeutschland</td>
<td>6</td>
<td>2</td>
<td>< 0,13</td>
</tr>
<tr>
<td>nicht spezifizierte Gewässer</td>
<td>Süddeutschland</td>
<td>1</td>
<td>0</td>
<td>1,28</td>
</tr>
<tr>
<td></td>
<td>Mitteldeutschland</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norddeutschland</td>
<td>10</td>
<td>4</td>
<td>0,05</td>
</tr>
</tbody>
</table>

In Fischen aus den Fischteichen Norddeutschlands wurden seit 1990 gelegentlich höhere Cs-137-Mittelwerte als in Süddeutschland beobachtet (Abbildung 2.4.5-2), was vermutlich darauf zurückzuführen war, dass auch aus Seen genommene Proben den Fischteichen zugeordnet wurden. Die ab 1994 in genügender Anzahl vorliegenden Cs-137-Werte von Proben aus Fischteichen und Fließgewässern Mitteldeutschlands unterscheiden sich nicht von den in Abbildung 2.4.5-2 und 2.4.5-3 dargestellten Verläufen Nord- und Süddeutschlands.

Für Forellen und Karpfen, die in den Binnengewässern die bedeutsamsten wirtschaftlich genutzten Fischarten sind, wurden die mittleren Cs-137-Aktivitäten (zusammengefasst aus allen Gewässern, Messungen aller Bundesländer) in Tabelle 2.4.5-2 zusammengestellt. Der Vergleich der Cs-137-Werte ergibt, dass bis 1999 (vgl. Abbildung 2.4.5-4) Forellen weniger Cäsium enthielten als Karpfen, der Unterschied jedoch seitdem nicht mehr signifikant ist.

Tabelle 2.4.5-2 Cs-137-Aktivität in Forellen und Karpfen

(Cs-137 activity in trout and carp)

Messungen der Bundesländer (aus Binnenseen, Fischteichen und Fließgewässern)

<table>
<thead>
<tr>
<th>Fisch</th>
<th>Cs-137-Aktivität in Bq/kg FM</th>
<th>2011</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>nn</td>
<td>min. Wert</td>
</tr>
<tr>
<td>Forellen</td>
<td>30</td>
<td>11</td>
<td>< 0,10</td>
</tr>
<tr>
<td>Karpfen</td>
<td>31</td>
<td>8</td>
<td>0,05</td>
</tr>
</tbody>
</table>
Abbildung 2.4.5-1
Jahresmittelwerte der Cs-137-Aktivität in Fischen aus Binnenseen in Bq/kg FM
(Annual mean values for Cs-137 activity in fish from lakes in Bq/kg WW)

Abbildung 2.4.5-2
Jahresmittelwerte der Cs-137-Aktivität in Fischen aus Fischteichen in Bq/kg FM
(Annual mean values for Cs-137 activity in fish from fish farms in Bq/kg WW)

Abbildung 2.4.5-3
Jahresmittelwerte der Cs-137-Aktivität in Fischen aus Fließgewässern in Bq/kg FM
(Annual mean values for Cs-137 activity in fish from rivers in Bq/kg WW)
In Tabelle 2.4.5-3 sind die mittleren Cs-137-Aktivitätswerte für Fische aus der Nord- und der Ostsee zusammengestellt. In Fischen aus der Nordsee, die vor der Reaktorkatastrophe von Tschernobyl im Jahr 1986 bereits durch Cs-137 aus europäischen Wiederaufarbeitungsanlagen höhere Aktivitäten aufwiesen, blieben die Messwerte im Jahr 2011 bis auf eine Probe unter 1 Bq/kg. Der Median liegt bei etwa 0,14 Bq/kg. Der Maximalwert von 8,3 Bq/kg (Kabeljau) ist wahrscheinlich eher der Ostsee bzw. dem Übergangsbereich zwischen Nord- und Ostsee zuzuordnen, bzw. der Fisch aus der Ostsee hat zu der Nordsee gewandert. Diese Vermutung liegt nahe, weil die Aktivitätskonzentrationen von Cs-137 in der Ostsee noch immer wesentlich höher sind als in der Nordsee (Tabelle 2.4.5-3). Das liegt daran, dass in Fischen aus der Nordsee der Eintrag von Cs-137 aus dem Reaktorunglück von Tschernobyl, bedingt durch den höheren Wasseraustausch, seit Mitte der 1990er Jahre nicht mehr nachweisbar ist (siehe Abbildung 2.4.5-5), während er praktisch vollständig die ermittelten Cs-137-Aktivität in Fischen aus der Ostsee dominiert. Die in Abbildung 2.4.5-5 festzustellende Variation der Jahresmittelwerte ist im Wesentlichen darauf zurückzuführen, dass der Anteil der Fischproben aus der östlichen Ostsee, in denen eine höhere Cs-137-Aktivität nachgewiesen wurde, zwischen den einzelnen Jahren stark schwankt.

In Proben von Garnelen- und Miesmuschelfleisch, die an der Nordseeküste entnommen und deren Messwerte von den Landesmessstellen übermittelt wurden, konnte im Jahr 2011 kein Cs-137 nachgewiesen werden, weil sämtliche Einzelwerte unterhalb der Nachweisgrenze lagen (vgl. Tabelle 2.4.5-3). Eine Abnahme der Cs-137 Aktivitäten in Fleisch der Krusten- und Schalentiere wird bereits seit Jahren beobachtet, und ist wahrscheinlich auf einen ähnlichen Konzentrationsverlauf im Meerwasser der Nordsee zurück zu führen (siehe Kapitel 2.2.1).

Die im Jahr 2011 in Proben aus Importen ermittelten Jahresmedianwerte für Cs-137 (Tabelle 2.4.5-4) lagen bei etwa 0,04 Bq/kg (Süßwasserfisch), 0,09 Bq/kg (Seefisch) und 0,08 Bq/kg (Fischereierzeugnisse); für Krusten- und Schalentiere wurde, ähnlich denen aus der Nordsee, in 15 Proben kein signifikanter Wert gefunden.
Tabelle 2.4.5-3
Cs-137-Aktivität in Fischen und Krusten- und Schalentieren aus der Nordsee und der Ostsee
(Cs-137 activity in fish and crustaceans from the North Sea and the Baltic Sea)
Messungen der Bundesländer und der Leitstelle

<table>
<thead>
<tr>
<th>Gewässer</th>
<th>Probenart</th>
<th>Cs-137-Aktivität in Bq/kg FM</th>
<th>2011</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nd</td>
<td>min. Wert</td>
<td>max. Wert</td>
<td>Medianwert</td>
</tr>
<tr>
<td>Nordsee</td>
<td>Fische</td>
<td>30</td>
<td>13</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>Garnelen</td>
<td>12</td>
<td>12</td>
<td>< 0,11</td>
</tr>
<tr>
<td></td>
<td>Miesmuscheln</td>
<td>13</td>
<td>13</td>
<td>< 0,10</td>
</tr>
<tr>
<td>Ostsee</td>
<td>Fische</td>
<td>44</td>
<td>3</td>
<td>< 0,11</td>
</tr>
</tbody>
</table>

Tabelle 2.4.5-4
Cs-137-Aktivität in Importproben von Fisch, Krusten- u. Schalentieren sowie Fischereierzeugnissen
(Cs-137 activity in samples of imported fish, crustaceans and fishery products)

<table>
<thead>
<tr>
<th>Probenart</th>
<th>Cs-137-Aktivität in Bq/kg FM</th>
<th>2011</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nd</td>
<td>min. Wert</td>
<td>max. Wert</td>
</tr>
<tr>
<td>Süßwasserfisch</td>
<td>28</td>
<td>19</td>
<td>< 0,10</td>
</tr>
<tr>
<td>Seefisch</td>
<td>110</td>
<td>63</td>
<td>0,04</td>
</tr>
<tr>
<td>Krusten- u. Schalentiere</td>
<td>15</td>
<td>15</td>
<td>< 0,10</td>
</tr>
<tr>
<td>Fischereierzeugnisse</td>
<td>32</td>
<td>25</td>
<td>< 0,10</td>
</tr>
</tbody>
</table>

Routineprogramm der Leitstelle

Tabelle 2.4.5-6
Sr-90-Aktivität in Fischen, Krusten- und Schalentieren
(Sr-90 activity in fish and crustaceans)
Messungen der Bundesländer

<table>
<thead>
<tr>
<th>Probenart</th>
<th>Gewässer</th>
<th>Sr-90-Aktivität in Bq/kg FM</th>
<th>2011</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nd</td>
<td>min. Wert</td>
<td>max. Wert</td>
<td>Medianwert</td>
</tr>
<tr>
<td>Fisch</td>
<td>14</td>
<td>0,01</td>
<td>0,20</td>
<td>0,031</td>
</tr>
<tr>
<td>Fischteiche</td>
<td>8</td>
<td>2</td>
<td>0,0050</td>
<td>0,083</td>
</tr>
<tr>
<td>Fließgewässer</td>
<td>6</td>
<td>5</td>
<td>< 0,0066</td>
<td>0,020</td>
</tr>
<tr>
<td>Garnelen</td>
<td>Nordsee</td>
<td>10</td>
<td>4</td>
<td>0,020</td>
</tr>
<tr>
<td>Miesmuscheln</td>
<td>Nordsee</td>
<td>11</td>
<td>6</td>
<td>0,020</td>
</tr>
</tbody>
</table>
Tabelle 2.4.5-7 Radionuklid-Aktivitäten von Fischen aus verschiedenen Meeresgebieten inkl. Nachtrag zu früheren Jahren
(Radionuclide activities fish from different marine areas incl. supplement to earlier years)
Ergebnisse von "Walther-Herwig-III"-Fahrten in den Jahren 2007 bis 2011; Messungen der Leitstelle-vTI

<table>
<thead>
<tr>
<th>Meer / Probe</th>
<th>Radionuklid</th>
<th>Jahr</th>
<th>N</th>
<th>nn</th>
<th>Aktivitätskonzentration (Bq/kg FM)</th>
<th>min. Wert</th>
<th>max. Wert</th>
<th>Medianwert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Barentssee (71,5°N - 79,5°N; 8,5°E - 25,5°E)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fischfleisch</td>
<td>Sr-90</td>
<td>2010</td>
<td>10</td>
<td>8</td>
<td>0,00033</td>
<td>< 0,00073</td>
<td>< 0,0007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>2010</td>
<td>23</td>
<td>0</td>
<td>0,056</td>
<td>0,38</td>
<td>0,20</td>
<td></td>
</tr>
<tr>
<td>südlich Grönland</td>
<td>Cs-137</td>
<td>2011</td>
<td>4</td>
<td>0</td>
<td>0,19</td>
<td>0,26</td>
<td>0,21</td>
<td></td>
</tr>
<tr>
<td>Nordsee</td>
<td>Cs-137</td>
<td>2011</td>
<td>4</td>
<td>0</td>
<td>0,095</td>
<td>0,25</td>
<td>0,13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2008</td>
<td>10</td>
<td>5</td>
<td>0,00043</td>
<td>< 0,00024</td>
<td>0,00044</td>
<td></td>
</tr>
<tr>
<td>Gesamtfisch</td>
<td>Cs-137</td>
<td>2011</td>
<td>16</td>
<td>0</td>
<td>0,072</td>
<td>0,35</td>
<td>0,17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2010</td>
<td>1</td>
<td>0</td>
<td>0,0024</td>
<td>0,0024</td>
<td>0,0024</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2009</td>
<td>4</td>
<td>0</td>
<td>0,0014</td>
<td>0,0098</td>
<td>0,0076</td>
<td></td>
</tr>
<tr>
<td>Ostsee (südliche und westliche)</td>
<td>Cs-137</td>
<td>2011</td>
<td>46</td>
<td>0</td>
<td>0,62</td>
<td>8,7</td>
<td>5,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2010</td>
<td>47</td>
<td>0</td>
<td>0,75</td>
<td>10</td>
<td>5,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2010</td>
<td>17</td>
<td>3</td>
<td>< 0,00082</td>
<td>0,021</td>
<td>0,0015</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2009</td>
<td>7</td>
<td>0</td>
<td>0,0010</td>
<td>0,025</td>
<td>0,0029</td>
<td></td>
</tr>
<tr>
<td>Gesamtfisch</td>
<td>Cs-137</td>
<td>2011</td>
<td>15</td>
<td>0</td>
<td>0,79</td>
<td>4,4</td>
<td>3,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2010</td>
<td>20</td>
<td>0</td>
<td>0,77</td>
<td>5,6</td>
<td>3,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2010</td>
<td>8</td>
<td>0</td>
<td>0,0078</td>
<td>0,047</td>
<td>0,016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2009</td>
<td>18</td>
<td>0</td>
<td>0,0069</td>
<td>0,221</td>
<td>0,034</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pu-(239+240)</td>
<td>2010</td>
<td>3</td>
<td>0</td>
<td>0,000070</td>
<td>0,0003</td>
<td>0,00012</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2007</td>
<td>4</td>
<td>0</td>
<td>0,00023</td>
<td>0,0011</td>
<td>0,00069</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pu-238</td>
<td>2010</td>
<td>3</td>
<td>2</td>
<td>0,000039</td>
<td>< 0,000051</td>
<td>< 0,000047</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2007</td>
<td>4</td>
<td>2</td>
<td>0,000082</td>
<td>< 0,00029</td>
<td>0,000084</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Am-241</td>
<td>2007</td>
<td>5</td>
<td>1</td>
<td>< 0,00012</td>
<td>0,00028</td>
<td>0,00018</td>
<td></td>
</tr>
</tbody>
</table>

Literatur

2.4.6 Fische und Wasserpflanzen in der Umgebung von Anlagen nach Atomgesetz
(Fish and aquatic plants from the surroundings of facilities according to the Atomic Energy Act)

Die im Messprogramm für das außer Betrieb befindliche Kernkraftwerk Rheinsberg erhaltenen höheren Cs-137-Werte im Fisch sind darauf zurückzuführen, dass die Proben nicht aus einem Fließgewässer, sondern aus Seen (Stechlinsee

Bei den wenigen in Tabelle 2.4.6-1 mit aufgenommenen Messdaten von Wasserpflanzen, die als Indikatoren für die im Wasser vorhandenen künstlichen Radionuklide dienen, insbesondere aus genehmigten Ableitungen kerntechnischer und klinischer Anlagen (z. B. I-131), sind wie in den vorherigen Jahren keine Besonderheiten festzustellen.

Tabelle 2.4.6-1 Aktivität von Fischen und Wasserpflanzen

Activity in fish and aquatic plants - within the framework of ambient surveillance for facilities according to the Atomic Energy Act

(N: Anzahl der Messungen; nn: Anzahl der Werte <NWG)

<table>
<thead>
<tr>
<th>Gewässer</th>
<th>Anlage</th>
<th>Radio- nuklid</th>
<th>2011</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>nn</td>
<td>min. Wert</td>
</tr>
<tr>
<td>Donau</td>
<td>KRB Gundremingen</td>
<td>Cs-137</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Elbe</td>
<td>GKSS Geesthacht</td>
<td>Cs-137</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>KKK Krümmel</td>
<td>Cs-137</td>
<td>4</td>
<td>0</td>
<td>0,20</td>
</tr>
<tr>
<td>PKA Gorleben</td>
<td>Cs-137</td>
<td>4</td>
<td>0</td>
<td>0,22</td>
</tr>
<tr>
<td>KKS Stade</td>
<td>Cs-137</td>
<td>4</td>
<td>0</td>
<td>0,16</td>
</tr>
<tr>
<td>KBR Brokdorf</td>
<td>Sr-90</td>
<td>6</td>
<td>6</td>
<td>< 0,0057</td>
</tr>
<tr>
<td>Ems</td>
<td>KKE Emsland</td>
<td>Cs-137</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Greifswalder Bodden</td>
<td>KGR Greifswald</td>
<td>Cs-137</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Havel (Griebnitzsee)</td>
<td>HMI Berlin</td>
<td>Cs-137</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sacrower See</td>
<td></td>
<td>Cs-137</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Isar</td>
<td>KKI 1/2 Isar</td>
<td>Cs-137</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>FRM II Garching</td>
<td>Cs-137</td>
<td>1</td>
<td>0</td>
<td>0,08</td>
</tr>
<tr>
<td>Main</td>
<td>KKG Grafenrheinfeld</td>
<td>Cs-137</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>VA Kahl</td>
<td>Cs-137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mosel</td>
<td>Cattenom</td>
<td>Sr-90</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(Frankreich)</td>
<td>Cs-137</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Neckar</td>
<td>GKN Neckarwestheim</td>
<td>Cs-137</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>KWO Obrigheim</td>
<td>Cs-137</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Rhein</td>
<td>KKW Bezau/Leibstadt (Schweiz)</td>
<td>Cs-137</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>KWB Biblis</td>
<td>Sr-90</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>KKW Fessenheim (Frankreich)</td>
<td>Cs-137</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>KKP Philippensburg</td>
<td>Cs-137</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FZ Karlsruhe</td>
<td>Cs-137</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FZ Jülich</td>
<td>Cs-137</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KKR Rheinsberg</td>
<td>Cs-137</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ellbogensee</td>
<td>Cs-137</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
2.4.7 Einzellebensmittel, Gesamtnahrung, Säuglings- und Kleinkindernahrung

(Individual foodstuffs, whole diet, baby and infant foods)

Das vor und nach dem Tschernobylunfall deponierte Cs-137 in Nahrungsmitteln führt auch in diesem Jahr zu Kontaminationen, die auf einem sehr niedrigen Niveau liegen. Im Vergleich zu den Vorjahren vermindert sich die Aktivitätskonzentration von Jahr zu Jahr nur noch äußerst geringfügig. Wegen der kürzeren Halbwertszeit war Cs-134 nicht mehr nachweisbar. Auf einem sehr niedrigen Niveau befindet sich ebenfalls die Sr-90-Aktivitätskonzentration.

Eine Ausnahme bilden die meisten Wildfleischarten (Tabelle 2.4.7-8), Speisepilze (Tabelle 2.4.7-11) mit Ausnahme von Kulturpilzen, Wildbeeren (Tabelle 2.4.7-12) und Blütenhonig (Tabelle 2.4.7-13). Für diese Umweltbereiche liegt die Aktivitätskonzentration des Cs-137 erheblich höher als in anderen Lebensmitteln.

Die Messwerte für Einzellebensmittel, Gesamtnahrung, Säuglings- und Kleinkindernahrung können in diesem Bericht wegen dessen begrenzten Umfangs nur in komprimierter Form wiedergegeben werden (Tabellen 2.4.7-15 und 2.4.7-16).

In den Tabellen sind für die Radionuklide Sr-90 und Cs-137 die Anzahl der Messwerte N, die Mittelwerte und die Bereiche der Einzelwerte aufgeführt. Bei den Messwerten fehlen in der Regel ergänzende Angaben, so dass bei der Mittelwertbildung keine Richtung durchgeführt werden konnte. Darüber hinaus überschätzen die Mittelwerte, die mit dem Zeichen “<” gekennzeichnet sind, die Realität, weil in der Berechnung zahlreiche Werte von Nachweisgrenzen einge- gangen sind, die über den realen Werten lagen. Aus diesen Gründen beinhaltet der gebildete Mittelwert einige Unsi- cherheiten, die bei der Interpretation der Jahresmittelwerte berücksichtigt werden müssen.

Tabelle 2.4.7-1 Weizen, Inland

(Wheat, domestic production)

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Jahr</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Sr-90 (Bq/kg FM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
<td>N</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>2010</td>
<td>< 0,14 (< 0,06 - < 0,20)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>< 0,13 (< 0,03 - < 0,20)</td>
<td>3</td>
</tr>
<tr>
<td>Bayern</td>
<td>2010</td>
<td>< 0,15 (< 0,06 - < 0,29)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>< 0,16 (< 0,08 - < 0,26)</td>
<td>9</td>
</tr>
<tr>
<td>Berlin</td>
<td>2010</td>
<td>< 0,09</td>
<td>1</td>
</tr>
<tr>
<td>Bundesland</td>
<td>Jahr</td>
<td>Cs-137 (Bq/kg FM)</td>
<td>Sr-90 (Bq/kg FM)</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
<td>N</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>2010</td>
<td>24</td>
<td>< 0,12 (< 0,05 - < 0,16)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>17</td>
<td>< 0,10 (< 0,05 - < 0,18)</td>
</tr>
<tr>
<td>Bremen</td>
<td>2010</td>
<td>3</td>
<td>< 0,08 (< 0,04 - < 0,10)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>2</td>
<td>< 0,13 (< 0,10 - < 0,16)</td>
</tr>
<tr>
<td>Hamburg</td>
<td>2010</td>
<td>3</td>
<td>< 0,07 (< 0,05 - < 0,07)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>2</td>
<td>< 0,10 (< 0,07 - < 0,14)</td>
</tr>
<tr>
<td>Hessen</td>
<td>2010</td>
<td>16</td>
<td>< 0,09 (< 0,06 - < 0,14)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>18</td>
<td>< 0,10 (< 0,06 - < 0,14)</td>
</tr>
<tr>
<td>Mecklenburg-</td>
<td>2010</td>
<td>35</td>
<td>< 0,12 (< 0,08 - < 0,17)</td>
</tr>
<tr>
<td>Vorpommern</td>
<td>2011</td>
<td>36</td>
<td>< 0,11 (< 0,08 - < 0,14)</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>2010</td>
<td>41</td>
<td>< 0,18 (< 0,07 - 0,38)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>37</td>
<td>< 0,17 (< 0,09 - < 0,60)</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>2010</td>
<td>27</td>
<td>< 0,12 (< 0,06 - < 0,29)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>26</td>
<td>< 0,11 (< 0,04 - < 0,19)</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>2010</td>
<td>18</td>
<td>< 0,10 (< 0,04 - < 0,14)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>19</td>
<td>< 0,08 (< 0,04 - < 0,12)</td>
</tr>
<tr>
<td>Saarland</td>
<td>2010</td>
<td>2</td>
<td>< 0,20 (< 0,20 - < 0,20)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>2</td>
<td>< 0,20 (< 0,20 - < 0,20)</td>
</tr>
<tr>
<td>Sachsen</td>
<td>2010</td>
<td>27</td>
<td>< 0,10 (< 0,08 - < 0,14)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>30</td>
<td>< 0,10 (< 0,08 - < 0,18)</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>2010</td>
<td>31</td>
<td>< 0,13 (< 0,07 - 0,37)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>31</td>
<td>< 0,13 (< 0,08 - 0,39)</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>2010</td>
<td>34</td>
<td>< 0,13 (< 0,09 - < 0,18)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>38</td>
<td>< 0,14 (< 0,06 - < 0,19)</td>
</tr>
<tr>
<td>Thüringen</td>
<td>2010</td>
<td>34</td>
<td>< 0,11 (< 0,08 - < 0,15)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>34</td>
<td>< 0,11 (< 0,08 - < 0,13)</td>
</tr>
<tr>
<td>Bundesrepublik (gesamt)</td>
<td>2010</td>
<td>373</td>
<td>< 0,13 (< 0,04 - 0,38)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>368</td>
<td>< 0,13 (< 0,03 - 0,60)</td>
</tr>
</tbody>
</table>

- Messung / Angabe nicht erforderlich bzw. nicht vorhanden
Tabelle 2.4.7-2 Weizen, Einfuhr
(*Wheat, import*)

<table>
<thead>
<tr>
<th>Importe</th>
<th>Jahr</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Sr-90 (Bq/kg FM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
</tr>
<tr>
<td>Dänemark</td>
<td>2011</td>
<td>2</td>
<td>< 0,20 (< 0,20 - < 0,20)</td>
</tr>
<tr>
<td>Frankreich</td>
<td>2010</td>
<td>1</td>
<td>< 0,20</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>1</td>
<td>< 0,20</td>
</tr>
<tr>
<td>Kanada</td>
<td>2010</td>
<td>1</td>
<td>< 0,10</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>1</td>
<td>< 0,10</td>
</tr>
<tr>
<td>Polen</td>
<td>2010</td>
<td>1</td>
<td>< 0,13</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>2</td>
<td>< 0,09 (< 0,06 - < 0,12)</td>
</tr>
<tr>
<td>Slowakei</td>
<td>2011</td>
<td>1</td>
<td>< 0,11</td>
</tr>
<tr>
<td>Tschechische Republik</td>
<td>2010</td>
<td>7</td>
<td>< 0,08 (< 0,06 - < 0,11)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3</td>
<td>< 0,09 (< 0,07 - < 0,10)</td>
</tr>
<tr>
<td>Türkei</td>
<td>2010</td>
<td>2</td>
<td>< 0,15 (< 0,10 - < 0,20)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>1</td>
<td>< 0,04</td>
</tr>
</tbody>
</table>

Tabelle 2.4.7-3 Sonstige Getreide, Inland und Einfuhr
(*Other cereals, domestic production and import*)

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Jahr</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Sr-90 (Bq/kg FM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
</tr>
<tr>
<td>Buchweizen</td>
<td>2010</td>
<td>1</td>
<td>< 0,13</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>2</td>
<td>< 0,10 (< 0,09 - < 0,04)</td>
</tr>
<tr>
<td>Gerste</td>
<td>2010</td>
<td>112</td>
<td>< 0,17 (< 0,01 - < 2,28)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>97</td>
<td>< 0,14 (< 0,05 - 0,47)</td>
</tr>
<tr>
<td>Hafer</td>
<td>2010</td>
<td>17</td>
<td>< 0,24 (< 0,09 - 1,07)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>19</td>
<td>< 0,25 (< 0,11 - 1,58)</td>
</tr>
<tr>
<td>Hirse</td>
<td>2010</td>
<td>3</td>
<td>< 0,12 (< 0,11 - < 0,13)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>7</td>
<td>< 0,15 (< 0,09 - 0,27)</td>
</tr>
<tr>
<td>Mais</td>
<td>2010</td>
<td>1</td>
<td>< 0,05</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3</td>
<td>< 0,11 (0,08 - < 0,14)</td>
</tr>
<tr>
<td>Reis</td>
<td>2010</td>
<td>13</td>
<td>< 0,10 (< 0,02 - < 0,25)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>7</td>
<td>< 0,16 (< 0,07 - 0,35)</td>
</tr>
<tr>
<td>Roggen</td>
<td>2010</td>
<td>156</td>
<td>< 0,18 (< 0,01 - 2,20)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>153</td>
<td>< 0,16 (< 0,04 - 1,70)</td>
</tr>
<tr>
<td>Triticalen</td>
<td>2010</td>
<td>7</td>
<td>< 0,11 (< 0,06 - < 0,16)</td>
</tr>
</tbody>
</table>
Tabelle 2.4.7-4 Kalbfleisch, Inland
(Veal, domestic production)

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Jahr</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Sr-90 (Bq/kg FM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>2010</td>
<td>5</td>
<td>< 0,20 (< 0,16 - 0,23)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>6</td>
<td>< 0,33 (< 0,14 - 1,03)</td>
</tr>
<tr>
<td>Bayern</td>
<td>2010</td>
<td>8</td>
<td>< 0,47 (< 0,12 - 0,82)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>9</td>
<td>< 0,29 (< 0,11 - 0,61)</td>
</tr>
<tr>
<td>Berlin</td>
<td>2010</td>
<td>1</td>
<td>0,64</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Brandenburg</td>
<td>2010</td>
<td>4</td>
<td>9,68 (0,20 - 25,80)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>4</td>
<td>6,22 (0,20 - 20,10)</td>
</tr>
<tr>
<td>Bremen</td>
<td>2010</td>
<td>3</td>
<td>0,46 (0,44 - 0,50)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3</td>
<td>0,40 (0,26 - 0,49)</td>
</tr>
<tr>
<td>Hamburg</td>
<td>2010</td>
<td>3</td>
<td>0,63 (0,53 - 0,78)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3</td>
<td>0,66 (0,29 - 1,38)</td>
</tr>
<tr>
<td>Hessen</td>
<td>2010</td>
<td>4</td>
<td>< 0,10 (< 0,08 - < 0,12)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3</td>
<td>< 0,14 (< 0,09 - 0,19)</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommmern</td>
<td>2010</td>
<td>4</td>
<td>1,08 (0,24 - 2,89)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>2</td>
<td>0,96 (0,21 - 1,71)</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>2010</td>
<td>12</td>
<td>< 1,22 (< 0,10 - 6,10)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>13</td>
<td>< 1,36 (< 0,10 - 10,00)</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>2010</td>
<td>15</td>
<td>< 0,35 (< 0,06 - 0,59)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>16</td>
<td>< 0,23 (< 0,04 - 0,58)</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>2010</td>
<td>1</td>
<td>< 0,07</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>1</td>
<td>0,11</td>
</tr>
<tr>
<td>Saarland</td>
<td>2010</td>
<td>2</td>
<td>< 0,20 (< 0,20 - < 0,20)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>2</td>
<td>< 0,20 (< 0,20 - < 0,20)</td>
</tr>
<tr>
<td>Sachsen</td>
<td>2010</td>
<td>3</td>
<td>< 0,15 (< 0,12 - 0,21)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3</td>
<td>< 0,22 (0,14 - 0,37)</td>
</tr>
</tbody>
</table>

- Messung / Angabe nicht erforderlich bzw. nicht vorhanden

Produkt Jahr Cs-137 (Bq/kg FM) Sr-90 (Bq/kg FM) N Mittelwert (Bereich) N Mittelwert (Bereich)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Sr-90 (Bq/kg FM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
</tr>
<tr>
<td>2011</td>
<td>15</td>
<td>< 0,13 (0,08 - < 0,23)</td>
</tr>
</tbody>
</table>
Tabelle 2.4.7-5 Rindfleisch, Inland

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Jahr</th>
<th>N</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Mittelwert (Bereich)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sachsen-Anhalt</td>
<td>2010</td>
<td>3</td>
<td>0,41</td>
<td>(0,31 - 0,52)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3</td>
<td>0,45</td>
<td>(0,38 - 0,60)</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>2010</td>
<td>3</td>
<td>< 0,40</td>
<td>(< 0,17 - 0,60)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3</td>
<td>< 0,39</td>
<td>(< 0,20 - 0,55)</td>
</tr>
<tr>
<td>Thüringen</td>
<td>2010</td>
<td>2</td>
<td>< 0,10</td>
<td>(< 0,09 - < 0,12)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3</td>
<td>< 0,13</td>
<td>(< 0,10 - 0,17)</td>
</tr>
<tr>
<td>Bundesrepublik (gesamt)</td>
<td>2010</td>
<td>73</td>
<td>< 1,03</td>
<td>(< 0,06 - 25,80)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>74</td>
<td>< 0,82</td>
<td>(< 0,04 - 20,10)</td>
</tr>
</tbody>
</table>

Tabelle 2.4.7-5 Rindfleisch, Inland

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Jahr</th>
<th>N</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Mittelwert (Bereich)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>2010</td>
<td>45</td>
<td>< 0,32</td>
<td>(< 0,09 - 3,86)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>50</td>
<td>< 0,31</td>
<td>(< 0,10 - 3,96)</td>
</tr>
<tr>
<td>Bayern</td>
<td>2010</td>
<td>87</td>
<td>< 0,44</td>
<td>(< 0,08 - 6,57)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>92</td>
<td>< 0,62</td>
<td>(< 0,07 - 7,79)</td>
</tr>
<tr>
<td>Berlin</td>
<td>2010</td>
<td>6</td>
<td>0,99</td>
<td>(0,38 - 3,11)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>6</td>
<td>< 0,79</td>
<td>(0,14 - 1,50)</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>2010</td>
<td>13</td>
<td>< 8,73</td>
<td>(< 0,09 - 95,0)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>11</td>
<td>< 1,65</td>
<td>(< 0,10 - 7,20)</td>
</tr>
<tr>
<td>Bremen</td>
<td>2010</td>
<td>6</td>
<td>0,53</td>
<td>(0,07 - 1,03)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>6</td>
<td>< 0,33</td>
<td>(< 0,09 - 0,91)</td>
</tr>
<tr>
<td>Hamburg</td>
<td>2010</td>
<td>6</td>
<td>< 1,22</td>
<td>(< 0,08 - 3,29)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>6</td>
<td>0,79</td>
<td>(0,28 - 1,79)</td>
</tr>
<tr>
<td>Hessen</td>
<td>2010</td>
<td>12</td>
<td>< 0,18</td>
<td>(0,06 - 0,44)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>12</td>
<td>< 0,15</td>
<td>(0,05 - 0,36)</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>2010</td>
<td>15</td>
<td>< 2,20</td>
<td>(< 0,08 - 10,70)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>13</td>
<td>3,29</td>
<td>(0,07 - 14,60)</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>2010</td>
<td>50</td>
<td>< 0,71</td>
<td>(< 0,10 - 7,30)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>49</td>
<td>< 0,71</td>
<td>(< 0,10 - 4,87)</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>2010</td>
<td>50</td>
<td>< 0,19</td>
<td>(< 0,06 - 1,21)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>54</td>
<td>< 0,26</td>
<td>(< 0,06 - 3,88)</td>
</tr>
<tr>
<td>Bundesland</td>
<td>Jahr</td>
<td>Cs-137 (Bq/kg FM)</td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td>-------------------</td>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>2010</td>
<td>10</td>
<td>< 0,1</td>
<td>(< 0,07 - 0,18)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>13</td>
<td>< 0,12</td>
<td>(< 0,07 - 0,26)</td>
</tr>
<tr>
<td>Saarland</td>
<td>2010</td>
<td>6</td>
<td>< 0,20</td>
<td>(< 0,20 - < 0,20)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>6</td>
<td>< 0,20</td>
<td>(< 0,20 - < 0,20)</td>
</tr>
<tr>
<td>Sachsen</td>
<td>2010</td>
<td>11</td>
<td>< 0,17</td>
<td>(< 0,07 - 0,62)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>11</td>
<td>< 0,36</td>
<td>(< 0,08 - 1,44)</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>2010</td>
<td>12</td>
<td>< 1,50</td>
<td>(< 0,11 - 4,01)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>10</td>
<td>< 0,37</td>
<td>(< 0,10 - 1,98)</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>2010</td>
<td>26</td>
<td>< 0,58</td>
<td>(< 0,10 - 2,90)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>26</td>
<td>< 0,45</td>
<td>(< 0,12 - 2,67)</td>
</tr>
<tr>
<td>Thüringen</td>
<td>2010</td>
<td>10</td>
<td>< 0,11</td>
<td>(< 0,07 - 0,19)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>10</td>
<td>< 0,11</td>
<td>(< 0,08 - 0,18)</td>
</tr>
<tr>
<td>Bundesrepublik</td>
<td>2010</td>
<td>365</td>
<td>< 0,83</td>
<td>(< 0,06 - 95,00)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>375</td>
<td>< 0,58</td>
<td>(< 0,05 - 14,60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2.4.7-6 Schweinefleisch, Inland
(Pork, domestic production)
<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Jahr</th>
<th>N</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Mittelwert (Bereich)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niedersachsen</td>
<td>2010</td>
<td>70</td>
<td>< 0,29</td>
<td>(< 0,06 - 4,70)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>71</td>
<td>< 0,17</td>
<td>(< 0,08 - 0,29)</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>2010</td>
<td>94</td>
<td>< 0,21</td>
<td>(< 0,04 - 2,60)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>100</td>
<td>< 0,13</td>
<td>(< 0,01 - 1,07)</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>2010</td>
<td>11</td>
<td>< 0,11</td>
<td>(< 0,07 - 0,23)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>13</td>
<td>< 0,10</td>
<td>(< 0,07 - 0,29)</td>
</tr>
<tr>
<td>Saarland</td>
<td>2010</td>
<td>6</td>
<td>< 0,20</td>
<td>(< 0,20 - < 0,20)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>6</td>
<td>< 0,18</td>
<td>(0,08 - < 0,20)</td>
</tr>
<tr>
<td>Sachsen</td>
<td>2010</td>
<td>11</td>
<td>< 0,18</td>
<td>(0,09 - 0,78)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>11</td>
<td>< 0,12</td>
<td>(0,08 - 0,18)</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>2010</td>
<td>24</td>
<td>< 0,12</td>
<td>(< 0,06 - 0,38)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>24</td>
<td>< 0,12</td>
<td>(< 0,07 - 0,40)</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>2010</td>
<td>12</td>
<td>< 0,17</td>
<td>(< 0,10 - 0,40)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>12</td>
<td>< 0,14</td>
<td>(< 0,11 - < 0,20)</td>
</tr>
<tr>
<td>Thüringen</td>
<td>2010</td>
<td>14</td>
<td>< 0,14</td>
<td>(< 0,07 - 0,53)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>14</td>
<td>< 0,13</td>
<td>(< 0,08 - 0,48)</td>
</tr>
<tr>
<td>Bundesrepublik</td>
<td>2010</td>
<td>371</td>
<td>< 0,20</td>
<td>(0,04 - 4,70)</td>
</tr>
<tr>
<td>(gesamt)</td>
<td>2011</td>
<td>383</td>
<td>< 0,24</td>
<td>(< 0,01 - 19,50)</td>
</tr>
</tbody>
</table>

Tabelle 2.4.7-7 Sonstiges Fleisch, Inland und Einfuhr
(Other meat, domestic production and import)
Tabelle 2.4.7-8 Wild, Inland und Einfuhr
Game, domestic production and import

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Jahr</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Sr-90 (Bq/kg FM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
<td>Mittelwert (Bereich)</td>
</tr>
<tr>
<td>Federwild</td>
<td>2010</td>
<td>2</td>
<td>< 0,29 (< 0,11 - 0,46)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>4</td>
<td>< 0,11 (< 0,07 - 0,20)</td>
</tr>
<tr>
<td>Haarwildfleisch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damwild</td>
<td>2010</td>
<td>16</td>
<td>< 3,44 (< 0,09 - 25,7)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>20</td>
<td>< 5,10 (< 0,11 - 28,7)</td>
</tr>
<tr>
<td>Hirsch</td>
<td>2010</td>
<td>18</td>
<td>< 10,2 (< 0,10 - 92,7)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>36</td>
<td>< 26,61 (< 0,08 - 277,9)</td>
</tr>
<tr>
<td>Reh</td>
<td>2010</td>
<td>124</td>
<td>< 16,9 (< 0,11 - 176)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>181</td>
<td>< 25,91 (< 0,07 - 1353)</td>
</tr>
<tr>
<td>Wildschwein</td>
<td>2010</td>
<td>96</td>
<td>< 58,7 (< 0,05 - 2264)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>168</td>
<td>< 422,3 (< 0,08 - 10 200)</td>
</tr>
<tr>
<td>Sonstiges Wildfleisch</td>
<td>2011</td>
<td>6</td>
<td>< 6,58 (< 0,11 - 25,00)</td>
</tr>
</tbody>
</table>

Tabelle 2.4.7-9 Kartoffeln, Inland
Potatoes, domestic production

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Jahr</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Sr-90 (Bq/kg FM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
<td>Mittelwert (Bereich)</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>2010</td>
<td>14</td>
<td>< 0,17 (< 0,05 - 0,39)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>4</td>
<td>< 0,08 (< 0,05 - 0,16)</td>
</tr>
<tr>
<td>Bayern</td>
<td>2010</td>
<td>24</td>
<td>< 0,44 (< 0,09 - 5,18)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>32</td>
<td>< 0,22 (< 0,08 - 2,14)</td>
</tr>
<tr>
<td>Berlin</td>
<td>2010</td>
<td>2</td>
<td>< 0,15 (< 0,15 - 0,16)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>2</td>
<td>< 0,15 (< 0,12 - 0,18)</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>2010</td>
<td>6</td>
<td>< 0,15 (< 0,11 - 0,30)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>7</td>
<td>< 0,13 (< 0,09 - 0,16)</td>
</tr>
<tr>
<td>Bremen</td>
<td>2010</td>
<td>2</td>
<td>< 0,13 (< 0,12 - 0,14)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>2</td>
<td>< 0,15 (< 0,10 - 0,20)</td>
</tr>
<tr>
<td>Hamburg</td>
<td>2010</td>
<td>2</td>
<td>< 0,08 (< 0,07 - 0,09)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>2</td>
<td>< 0,10 (< 0,08 - 0,12)</td>
</tr>
<tr>
<td>Hessen</td>
<td>2010</td>
<td>5</td>
<td>< 0,14 (< 0,09 - 0,18)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>5</td>
<td>< 0,09 (< 0,07 - 0,13)</td>
</tr>
<tr>
<td>Mecklenburg-</td>
<td>2010</td>
<td>11</td>
<td>< 0,08 (< 0,06 - 0,09)</td>
</tr>
<tr>
<td>Vorpommern</td>
<td>2011</td>
<td>12</td>
<td>< 0,08 (< 0,05 - 0,16)</td>
</tr>
<tr>
<td>Bundesland</td>
<td>Jahr</td>
<td>Cs-137 (Bq/kg FM)</td>
<td>Sr-90 (Bq/kg FM)</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
<td>N</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>79</td>
<td>< 0,18 (< 0,08 - 0,60)</td>
<td>8</td>
</tr>
<tr>
<td>2011</td>
<td>63</td>
<td>< 0,16 (< 0,01 - 0,91)</td>
<td>7</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>23</td>
<td>< 0,24 (< 0,03 - < 1,71)</td>
<td>5</td>
</tr>
<tr>
<td>2011</td>
<td>20</td>
<td>< 0,13 (< 0,06 - < 0,23)</td>
<td>5</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>2010</td>
<td>6</td>
<td>< 0,07 (< 0,03 - < 0,10)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>12</td>
<td>< 0,08 (< 0,03 - < 0,12)</td>
</tr>
<tr>
<td>Saarland</td>
<td>2010</td>
<td>2</td>
<td>< 0,20 (< 0,20 - < 0,20)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>2</td>
<td>< 0,20 (< 0,20 - < 0,20)</td>
</tr>
<tr>
<td>Sachsen</td>
<td>2010</td>
<td>6</td>
<td>< 0,11 (< 0,07 - 0,21)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>6</td>
<td>< 0,10 (< 0,08 - < 0,13)</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>2010</td>
<td>8</td>
<td>< 0,13 (< 0,11 - < 0,15)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>9</td>
<td>< 0,14 (< 0,11 - < 0,19)</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>2010</td>
<td>6</td>
<td>< 0,15 (< 0,13 - < 0,18)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>5</td>
<td>< 0,13 (< 0,10 - < 0,14)</td>
</tr>
<tr>
<td>Thüringen</td>
<td>2010</td>
<td>3</td>
<td>< 0,09 (< 0,08 - < 0,09)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3</td>
<td>< 0,10 (< 0,10 - < 0,11)</td>
</tr>
<tr>
<td>Bundesrepublik</td>
<td>2010</td>
<td>199</td>
<td>< 0,20 (< 0,03 - 5,18)</td>
</tr>
<tr>
<td>(gesamt)</td>
<td>2011</td>
<td>186</td>
<td>< 0,14 (< 0,01 - 2,14)</td>
</tr>
</tbody>
</table>

- Messung / Angabe nicht erforderlich bzw. nicht vorhanden

Tabelle 2.4.7-10 Gemüse (frisch), Inland und Einfuhr
(Fresh vegetables, domestic production and import)

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Jahr</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Sr-90 (Bq/kg FM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
<td>N</td>
</tr>
<tr>
<td>Blattgemüse</td>
<td>2010</td>
<td>741</td>
<td>< 0,16 (< 0,002 - 2,90)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>652</td>
<td>< 0,14 (< 0,01 - 1,00)</td>
</tr>
<tr>
<td>Fruchtgemüse</td>
<td>2010</td>
<td>219</td>
<td>< 0,14 (< 0,03 - 2,0)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>207</td>
<td>< 0,13 (< 0,02 - 1,12)</td>
</tr>
<tr>
<td>Sprossgemüse</td>
<td>2010</td>
<td>229</td>
<td>< 0,13 (< 0,03 - 0,30)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>252</td>
<td>< 0,13 (< 0,02 - 0,33)</td>
</tr>
<tr>
<td>Wurzelgemüse</td>
<td>2010</td>
<td>173</td>
<td>< 0,14 (< 0,02 - 0,55)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>186</td>
<td>< 0,14 (< 0,01 - 0,38)</td>
</tr>
</tbody>
</table>
Tabelle 2.4.7-11 Speisepilze, Inland und Einfuhr
(Mushrooms, domestic production and import)

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Jahr</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Sr-90 (Bq/kg FM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulturpilze</td>
<td>2010</td>
<td>3 N</td>
<td>Mittelwert (Bereich)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 0,17 (< 0,08 - < 0,24)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>6 N</td>
<td>Mittelwert (Bereich)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 0,15 (< 0,08 - < 0,20)</td>
<td></td>
</tr>
<tr>
<td>Wild-Blätterpilze</td>
<td>2010</td>
<td>24</td>
<td>< 27,6 (< 0,003 - 267)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>45</td>
<td>< 31 (< 0,11 - 191)</td>
</tr>
<tr>
<td>Wild-Leisten- u. Trompetenpilze</td>
<td>2010</td>
<td>47</td>
<td>< 71,3 (0,73 - 321)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>29</td>
<td>43,9 (0,25 - 387)</td>
</tr>
<tr>
<td>Wild-Röhrenpilze</td>
<td>2010</td>
<td>160</td>
<td>< 125 (< 0,14 - 1046)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>132</td>
<td>132,5 (0,33 - 1360)</td>
</tr>
<tr>
<td>Sonstige Wildpilze</td>
<td>2010</td>
<td>11</td>
<td>< 14,1 (< 0,15 - 82,5)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>16</td>
<td>< 99,9 (0,17 - 1147)</td>
</tr>
<tr>
<td>Wildpilzmischungen</td>
<td>2010</td>
<td>12</td>
<td>128 (8,81 - 332)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>8</td>
<td>< 28,4 (< 0,07 - 104)</td>
</tr>
</tbody>
</table>

Tabelle 2.4.7-12 Obst und Rhabarber, Inland und Einfuhr
(Fruit and rhubarb, domestic production and import)

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Jahr</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Sr-90 (Bq/kg FM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
<td>N</td>
</tr>
<tr>
<td>Beerenobst</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brombeere/Himbeere</td>
<td>2010</td>
<td>15</td>
<td>< 0,14 (< 0,06 - < 0,24)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>< 0,12 (< 0,01 - < 0,22)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>131</td>
<td>< 0,14 (< 0,01 - < 1,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97</td>
<td>< 0,12 (< 0,01 - < 0,20)</td>
</tr>
<tr>
<td>Erdbeeren</td>
<td>2010</td>
<td>28</td>
<td>< 0,13 (< 0,05 - < 0,26)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>20</td>
<td>< 0,12 (< 0,07 - < 0,20)</td>
</tr>
<tr>
<td>Johannisbeere</td>
<td>2010</td>
<td>7</td>
<td>< 0,11 (< 0,05 - < 0,20)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3</td>
<td>< 0,11 (< 0,08 - < 0,16)</td>
</tr>
<tr>
<td>Stachelbeere</td>
<td>2010</td>
<td>7</td>
<td>< 0,11 (< 0,05 - < 0,20)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3</td>
<td>< 0,11 (< 0,08 - < 0,16)</td>
</tr>
<tr>
<td>Tafelweintrauben</td>
<td>2010</td>
<td>20</td>
<td>< 0,09 (< 0,06 - < 0,20)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>16</td>
<td>< 0,10 (< 0,07 - < 0,20)</td>
</tr>
<tr>
<td>Wald- u. Wildbeeren</td>
<td>2010</td>
<td>16</td>
<td>< 0,73 (< 0,45 - 84,8)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>19</td>
<td>< 7,79 (84,8)</td>
</tr>
<tr>
<td>Kernobst</td>
<td>2010</td>
<td>205</td>
<td>< 0,13 (< 0,02 - 0,35)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>213</td>
<td>< 0,13 (< 0,02 - 0,35)</td>
</tr>
</tbody>
</table>
Tabelle 2.4.7-13 Sonstige Lebensmittel, Inland und Einfuhr

(Other foodstuffs, domestic production and import)

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Jahr</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Sr-90 (Bq/kg FM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
<td>Mittelwert (Bereich)</td>
</tr>
<tr>
<td>Rhabarber</td>
<td>2010</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>< 0,09 (<0,04 - < 0,17)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>< 0,12 (<0,05 - < 0,20)</td>
<td>2 0,19 (0,04 - 0,34)</td>
</tr>
<tr>
<td>Steinobst</td>
<td>2010</td>
<td>112</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>< 0,13 (<0,03 - < 0,30)</td>
<td>11 0,03 (0,01 - 0,06)</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>< 0,12 (<0,01 - < 0,26)</td>
<td>11 < 0,04 (0,01 - 0,12)</td>
</tr>
<tr>
<td>Zitrusfrüchte</td>
<td>2010</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>< 0,12 (<0,06 - < 0,26)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>< 0,12 (<0,07 - < 0,15)</td>
<td>-</td>
</tr>
<tr>
<td>Sonstige Obstarten</td>
<td>2010</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>< 0,14 (<0,08 - < 0,20)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>< 0,15 (<0,09 - < 0,22)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>< 0,12 (<0,05 - < 0,20)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>< 0,15 (<0,09 - < 0,22)</td>
<td>-</td>
</tr>
</tbody>
</table>

- Messung / Angabe nicht erforderlich bzw. nicht vorhanden

Tabelle 2.4.7-14 Arithmetische Jahresmittelwerte der spezifischen Aktivitäten von Sr-90 und Cs-137 in ausgewählten Lebensmitteln, Inland

(Arithmetic annual mean values of the specific activities of Sr-90 and Cs-137 in selected foodstuffs - domestic production)

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Jahr</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Sr-90 (Bq/kg FM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
<td>Mittelwert (Bereich)</td>
</tr>
<tr>
<td>Bier</td>
<td>2011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>< 0,19 (<0,12 - < 0,30)</td>
<td>-</td>
</tr>
<tr>
<td>Gewürze</td>
<td>2010</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>< 0,93</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>< 0,13</td>
<td>-</td>
</tr>
<tr>
<td>Honig</td>
<td>2010</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>< 8,15 (<8,15 - 89,1)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>< 9,84 (<9,84 - 113,00)</td>
<td>-</td>
</tr>
<tr>
<td>Schalenobst (Nüsse)</td>
<td>2010</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>< 0,39 (<0,09 - 1,59)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>< 0,15 (<0,13 - < 0,17)</td>
<td>-</td>
</tr>
<tr>
<td>Ölsamen</td>
<td>2011</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>8,93</td>
<td>-</td>
</tr>
<tr>
<td>Sojasoße (Japan)</td>
<td>2011</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>< 0,15 (<0,14 - < 0,16)</td>
<td>-</td>
</tr>
<tr>
<td>Tee</td>
<td>2010</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3,60</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>< 47,53 (<2,55 - 92,50)*</td>
<td>-</td>
</tr>
</tbody>
</table>

- Messung / Angabe nicht erforderlich bzw. nicht vorhanden

* Bei dem Maximalwert handelt es sich um eine Importprobe aus Japan
<table>
<thead>
<tr>
<th>Jahr</th>
<th>Sr-90 (Bq/kg FM)</th>
<th>Cs-137 (Bq/kg FM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weizen Kartoffeln Kernobst</td>
<td>Rindfleisch Schweinefleisch Kalbfleisch Weizen Kartoffeln Kernobst</td>
</tr>
<tr>
<td>1963</td>
<td>5,6 0,22 0,67</td>
<td>18 13 31 18 4,1 7,0</td>
</tr>
<tr>
<td>1964</td>
<td>7,0 0,22 0,30</td>
<td>36 27 39 21 2,0 5,2</td>
</tr>
<tr>
<td>1965</td>
<td>3,3 0,33 0,26</td>
<td>18 19 23 9,2 0,85 2,3</td>
</tr>
<tr>
<td>1966</td>
<td>2,0 0,30 0,22</td>
<td>8,9 11 13 5,2 0,59 1,7</td>
</tr>
<tr>
<td>1967</td>
<td>1,5 0,26 0,11</td>
<td>6,7 5,2 7,4 3,0 0,37 1,7</td>
</tr>
<tr>
<td>1968</td>
<td>0,85 0,16 0,11</td>
<td>4,8 3,3 7,8 2,1 0,59 0,59</td>
</tr>
<tr>
<td>1969</td>
<td>0,92 0,19 0,06</td>
<td>4,1 3,1 4,8 1,8 0,59 0,59</td>
</tr>
<tr>
<td>1970</td>
<td>1,0 0,14 0,07</td>
<td>3,7 2,8 5,2 1,4 0,89 0,48</td>
</tr>
<tr>
<td>1971</td>
<td>1,1 0,13 0,07</td>
<td>2,9 2,7 3,6 3,5 0,81 0,52</td>
</tr>
<tr>
<td>1972</td>
<td>1,0 0,13 0,07</td>
<td>2,9 2,2 3,3 2,0 0,89 0,37</td>
</tr>
<tr>
<td>1973</td>
<td>0,63 0,20 0,07</td>
<td>2,2 1,0 2,8 0,41 2,0 0,35</td>
</tr>
<tr>
<td>1974</td>
<td>1,8 0,09 0,04</td>
<td>2,4 1,0 1,8 1,1 0,85 0,41</td>
</tr>
<tr>
<td>1975</td>
<td>0,56 0,09 0,05</td>
<td>1,8 1,7 1,7 1,6 0,85 0,25</td>
</tr>
<tr>
<td>1976</td>
<td>0,44 0,11 0,04</td>
<td>0,81 0,70 1,3 0,30 1,0 0,37</td>
</tr>
<tr>
<td>1977</td>
<td>0,70 0,06 0,05</td>
<td>0,74 0,70 0,69 0,81 0,15 0,18</td>
</tr>
<tr>
<td>1978</td>
<td>0,67 0,06 0,06</td>
<td>1,3 1,2 1,7 0,96 0,15 0,14</td>
</tr>
<tr>
<td>1979</td>
<td>0,41 0,08 0,04</td>
<td>0,85 0,96 0,92 0,37 0,15 0,21</td>
</tr>
<tr>
<td>1980</td>
<td>0,39 0,08 0,04</td>
<td>0,70 0,67 1,1 0,26 0,55 0,12</td>
</tr>
<tr>
<td>1981</td>
<td>0,47 0,19 0,06</td>
<td>0,87 0,72 1,2 0,61 0,14 0,15</td>
</tr>
<tr>
<td>1982</td>
<td>0,32 0,12 0,04</td>
<td>1,2 0,81 1,1 0,19 0,40 0,18</td>
</tr>
<tr>
<td>1983</td>
<td>0,31 0,15 0,07</td>
<td>0,39 0,63 0,85 0,10 0,10 0,09</td>
</tr>
<tr>
<td>1984</td>
<td>0,31 0,07 0,10</td>
<td>1,2 0,32 0,43 0,06 0,05 0,07</td>
</tr>
<tr>
<td>1985</td>
<td>0,28 0,15 0,04</td>
<td>0,49 0,31 0,30 0,14 0,09 0,09</td>
</tr>
<tr>
<td>1986</td>
<td>0,23 0,12 0,13</td>
<td>50 19 41 7,1 2,9 12</td>
</tr>
<tr>
<td>1987</td>
<td>0,24 0,19 0,06</td>
<td>20 11 36 2,0 1,3 4,9</td>
</tr>
<tr>
<td>1988</td>
<td>0,54 0,20 0,06</td>
<td>7,4 3,9 10 0,91 1,2 1,4</td>
</tr>
<tr>
<td>1989</td>
<td>0,29 0,10 0,08</td>
<td>3,6 1,0 3,3 0,30 0,36 0,45</td>
</tr>
<tr>
<td>1990</td>
<td>0,24 0,08 0,05</td>
<td>1,6 0,70 1,9 0,23 0,23 0,25</td>
</tr>
<tr>
<td>1991</td>
<td>0,19 0,09 0,06</td>
<td>1,9 0,78 1,8 0,19 0,24 0,23</td>
</tr>
<tr>
<td>1992</td>
<td>0,19 0,07 0,05</td>
<td>1,8 0,84 1,4 0,16 0,27 0,18</td>
</tr>
<tr>
<td>1993</td>
<td>0,25 0,18 0,04</td>
<td>1,1 0,42 0,87 0,22 0,21 0,19</td>
</tr>
<tr>
<td>1994</td>
<td>0,21 0,08 0,03</td>
<td>0,88 0,29 0,99 0,14 0,31 0,17</td>
</tr>
<tr>
<td>1995</td>
<td>0,20 0,08 0,03</td>
<td>1,2 0,28 1,3 0,11 0,16 0,14*</td>
</tr>
<tr>
<td>1996</td>
<td>0,19 0,07 0,03</td>
<td>1,1 0,33 1,3 0,11 0,17 0,13*</td>
</tr>
<tr>
<td>1997</td>
<td>0,16 0,068 0,031</td>
<td>1,2 0,29 1,0 0,13 0,15 0,13*</td>
</tr>
<tr>
<td>1998</td>
<td>< 0,18 < 0,06 < 0,03</td>
<td>< 1,05 < 0,25 < 1,08 < 0,13 < 0,16 < 0,14*</td>
</tr>
<tr>
<td>1999</td>
<td>< 0,20 < 0,04 < 0,07</td>
<td>< 1,05 < 0,22 < 0,96 < 0,12 < 0,14 < 0,12*</td>
</tr>
<tr>
<td>2000</td>
<td>< 0,16 < 0,05 < 0,03</td>
<td>< 0,85 < 0,24 < 1,18 < 0,14 < 0,16 < 0,14*</td>
</tr>
<tr>
<td>2001</td>
<td>< 0,20 < 0,04 < 0,04</td>
<td>< 0,81 < 0,25 < 0,66 < 0,13 < 0,15 < 0,13*</td>
</tr>
<tr>
<td>2002</td>
<td>< 0,19 < 0,04 < 0,03</td>
<td>< 0,77 < 0,23 < 1,51 < 0,16 < 0,16 < 0,13*</td>
</tr>
<tr>
<td>2003</td>
<td>0,21 < 0,04 < 0,02</td>
<td>< 0,81 < 0,20 < 0,78 < 0,14 < 0,16 < 0,13*</td>
</tr>
<tr>
<td>2004</td>
<td>< 0,17 < 0,04 < 0,02</td>
<td>< 1,06 < 0,23 < 0,78 < 0,14 < 0,16 < 0,13*</td>
</tr>
<tr>
<td>2005</td>
<td>0,18 < 0,06 < 0,03</td>
<td>< 1,26 < 0,19 < 0,66 < 0,14 < 0,16 < 0,16*</td>
</tr>
<tr>
<td>2006</td>
<td>0,16 < 0,05 < 0,02</td>
<td>< 1,13 < 0,21 < 0,14 < 0,15 < 0,20 < 0,13*</td>
</tr>
<tr>
<td>2007</td>
<td>0,16 < 0,05 < 0,02</td>
<td>< 0,65 < 0,16 < 1,11 < 0,13 < 0,17 < 0,13*</td>
</tr>
<tr>
<td>2008</td>
<td>0,15 < 0,02 < 0,02</td>
<td>< 0,64 < 0,19 < 1,07 < 0,14 < 0,14 < 0,12*</td>
</tr>
</tbody>
</table>
Gesamtnahrung

Die Beprobung der Gesamtnahrung (siehe Tabelle 2.4.7-15) dient der Abschätzung der ingestionsbedingten Strahlenbelastung gesunder Erwachsener in der Bundesrepublik Deutschland. Dazu werden verzehrfertige Menüs der Gemeinschaftsverpflegung aus Kantinen, Heimen, Krankenhäusern und Restaurants vermessen. Daraus resultiert eine Mitteleinschätzung der Verzehrsmenge und der Zusammensetzung.

Die mittlere tägliche Cs-137-Aktivitätszufuhr einer Person über die Nahrung kann für 2011 mit 0,23 Bq/(d • p) (d = Tag; p = Person) nach oben abgeschätzt werden und zeigt somit kaum eine Veränderung zum Vorjahr. Da in diese Mittelung ein hoher Prozentsatz von Messwerten unterhalb der Nachweisgrenzen eingeht, wird der Wert der Aktivitätszufuhr überschätzt, was bei einer Interpretation des Wertes berücksichtigt werden muss. Für Sr-90, mit einer mittleren Aktivitätszufuhr von 0,08 Bq/(d • p), gilt die gleiche Betrachtungsweise wie für Cs-137, allerdings muss hier noch berücksichtigt werden, dass die Messwerte nahe oder unterhalb der Nachweisgrenzen der angewendeten Analyseverfahren liegen, was zu einer zusätzlichen Unsicherheit führt.

Die mittlere jährliche ingestionsbedingte Aktivitätszufuhr lässt sich somit wie folgt abschätzen:

- **Sr-90**: 29 Bq/(a • p) [Vorjahr: 29 Bq/(a • p)]
- **Cs-137**: 84 Bq/(a • p) [Vorjahr: 91 Bq/(a • p)]

Tabelle 2.4.7-15 Aktivitätszufuhr von Cs-137 und Sr-90 mit der Gesamtnahrung

(Entnahme des Cs-137 und Sr-90 Aktivitätszufusses mit der gesamten Ernährung)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Sr-90 (Bq/kg FM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>< 0,16</td>
<td>< 0,02 *</td>
</tr>
<tr>
<td>2010</td>
<td>< 0,16</td>
<td>< 0,02 *</td>
</tr>
<tr>
<td>2011</td>
<td>< 0,14</td>
<td>< 0,02 *</td>
</tr>
</tbody>
</table>

* Inland und Einfuhr
 - Angabe nicht erforderlich

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Weizen</th>
<th>Kartoffeln</th>
<th>Rindfleisch</th>
<th>Schweinefleisch</th>
<th>Kalbfleisch</th>
<th>Weizen</th>
<th>Kartoffeln</th>
<th>Kernobst</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>< 0,16</td>
<td>< 0,05</td>
<td>< 0,02 *</td>
<td>< 0,50</td>
<td>< 0,22</td>
<td>< 0,78</td>
<td>< 0,14</td>
<td>< 0,16</td>
</tr>
<tr>
<td>2010</td>
<td>< 0,16</td>
<td>< 0,10</td>
<td>< 0,02 *</td>
<td>< 0,83</td>
<td>< 0,20</td>
<td>1,03</td>
<td>< 0,13</td>
<td>< 0,20</td>
</tr>
<tr>
<td>2011</td>
<td>< 0,14</td>
<td>< 0,13</td>
<td>< 0,02 *</td>
<td>< 0,58</td>
<td>< 0,24</td>
<td>0,82</td>
<td>< 0,13</td>
<td>< 0,14</td>
</tr>
</tbody>
</table>

* Mai 2010: 56 < 0,18 (< 0,02 - < 0,51) 5 < 0,05 (< 0,02 - 0,09)
 * Mai 2011: 63 < 0,17 (< 0,03 - < 0,48) 7 < 0,07 (< 0,03 - 0,12)
 * Juni 2010: 57 < 0,22 (< 0,05 - 1,60) 4 0,13 (< 0,05 - 0,16)
 * Juni 2011: 53 < 0,25 (< 0,02 - 2,32) 3 0,15 (< 0,05 - 0,30)
 * Juli 2010: 65 < 0,20 (< 0,01 - 0,87) 18 < 0,06 (< 0,02 - 0,18)
 * Juli 2011: 58 < 0,21 (< 0,03 - 1,00) 19 < 0,08 (< 0,02 - 0,19)
 * August 2010: 60 < 0,20 (< 0,04 - 0,72) 6 < 0,06 (< 0,02 - 0,10)
<table>
<thead>
<tr>
<th>Monat</th>
<th>Jahr</th>
<th>Aktivitätszufuhr Cs-137 in Bq/(d • p)</th>
<th>Aktivitätszufuhr Sr-90 in Bq/(d • p)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(d = Tag und p = Person)</td>
<td>(d = Tag und p = Person)</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Bq/kg FM)</td>
<td>Mittelwert (Bereich)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(d = Tag und p = Person)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Bq/kg FM)</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>2010</td>
<td>52 < 0,17 (0,03 - < 0,43)</td>
<td>2 0,07 (0,07 - 0,07)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56 < 0,23 (< 0,02 - 2,60)</td>
<td>6 0,06 (0,02 - 0,11)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>61 < 0,20 (< 0,01 - 0,90)</td>
<td>17 < 0,10 (0,01 - 0,49)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61 < 0,26 (< 0,01 - 3,15)</td>
<td>15 0,07 (0,01 - 0,14)</td>
</tr>
<tr>
<td>Oktober</td>
<td>2010</td>
<td>56 < 0,24 (0,04 - 2,00)</td>
<td>7 < 0,15 (0,02 - 0,27)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>57 < 0,26 (< 0,05 - 3,30)</td>
<td>6 < 0,07 (0,02 - 0,12)</td>
</tr>
<tr>
<td>November</td>
<td>2010</td>
<td>56 < 0,27 (< 0,06 - 3,40)</td>
<td>2 0,10 (0,08 - 0,13)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>56 < 0,18 (< 0,02 - 0,54)</td>
<td>3 0,06 (0,02 - 0,09)</td>
</tr>
<tr>
<td>Dezember</td>
<td>2010</td>
<td>58 < 0,27 (< 0,06 - 3,40)</td>
<td>2 0,10 (0,08 - 0,13)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>56 < 0,18 (< 0,02 - 0,54)</td>
<td>3 0,06 (0,02 - 0,09)</td>
</tr>
<tr>
<td>Jahr (gesamt)</td>
<td>2010</td>
<td>711 < 0,23 (< 0,01 - 4,80)</td>
<td>103 < 0,08 (0,01 - 0,49)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>705 < 0,23 (< 0,01 - 16,60)</td>
<td>109 < 0,08 (0,01 - 0,39)</td>
</tr>
</tbody>
</table>

Tabelle 2.4.7-16 Säuglings- und Kleinkindernahrung

(Baby and infant food)
Die Aktivitätskonzentrationen in Pflanzen in der Umgebung Anlagen nach Atomgesetz liegen auf einem sehr niedrigen Niveau. Sie spiegeln damit die Situation bei den Böden wider, die nach wie vor durch die Depositionen nach den Kernwaffensversuchen und dem Unfall in Tschernobyl geprägt ist. Die Ergebnisse der Überwachung nach der Richtlinie zur Emissions- und Immissionsüberwachung kerntechnischer Anlagen sind für Gemüse und Getreide in den Tabellen 2.4.8-1 und 2.4.8-2, für Obst in Tabelle 2.4.8-3 und für Kartoffeln in Tabelle 2.4.8-4 zusammengefasst. Die vorliegenden Messwerte lassen im Vergleich mit anderen Orten in der Bundesrepublik keine Erhöhung der Radioaktivität erkennen.

Tabelle 2.4.8-1

Radioaktivität der pflanzlichen Nahrungsmittel in der näheren Umgebung von Anlagen nach Atomgesetz: Gemüse

<table>
<thead>
<tr>
<th>LAND / Kerntechnische Anlage</th>
<th>активность в Bq/kg FM</th>
<th>Cs-137 (Bq/kg FM)</th>
<th>Sr-90 (Bq/kg FM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mittelwert (Bereich)</td>
<td>N</td>
</tr>
<tr>
<td>BADEN-WÜRTTEMBERG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FZ Karlsruhe</td>
<td>Cs-137</td>
<td>14</td>
<td>< 0,05</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
<td>0,08</td>
</tr>
<tr>
<td>KWO Obrigheim</td>
<td>Cs-137</td>
<td>9</td>
<td>< 0,07</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>7</td>
<td>0,12</td>
</tr>
<tr>
<td>GKN Neckarwestheim</td>
<td>Cs-137</td>
<td>9</td>
<td>< 0,06</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>8</td>
<td>0,10</td>
</tr>
<tr>
<td>KKP Philippensburg</td>
<td>Cs-137</td>
<td>1</td>
<td>< 0,3</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
<td>0,05</td>
</tr>
<tr>
<td>KKW Beznau/Leibstadt (Schweiz)</td>
<td>Cs-137</td>
<td>14</td>
<td>< 0,06</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>6</td>
<td>0,09</td>
</tr>
<tr>
<td>KKW Fessenheim (Frankreich)</td>
<td>Cs-137</td>
<td>4</td>
<td>< 0,04</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
<td>0,13</td>
</tr>
<tr>
<td>LAND / Kerntechnische Anlage</td>
<td>Nuklid / Messverfahren</td>
<td>Aktivität in Bq/kg FM</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2009</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mittelwert</td>
<td>N</td>
</tr>
<tr>
<td>BAYERN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRB Gundremmingen</td>
<td>Cs-137</td>
<td>1</td>
<td>< 0,03</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
<td>0,11</td>
</tr>
<tr>
<td>KKI Isar</td>
<td>Cs-137</td>
<td>1</td>
<td>< 0,02</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
<td>0,09</td>
</tr>
<tr>
<td>KKG Grafenrheinfeld</td>
<td>Cs-137</td>
<td>3</td>
<td>< 0,06</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>3</td>
<td>< 0,07</td>
</tr>
<tr>
<td>Forschungsreaktor München</td>
<td>Cs-137</td>
<td>1</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
<td>0,09</td>
</tr>
<tr>
<td>BERLIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forschungsreaktor BERII</td>
<td>Cs-137</td>
<td>13</td>
<td><0,19</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
<td>0,12</td>
</tr>
<tr>
<td>BRANDENBURG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKR Rheinsberg</td>
<td>Cs-137</td>
<td>17</td>
<td><0,14</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>17</td>
<td>0,23</td>
</tr>
<tr>
<td>HESSEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KWB Biblis</td>
<td>Cs-137</td>
<td>9</td>
<td><0,05</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>9</td>
<td>0,03</td>
</tr>
<tr>
<td>MECKLENBURG-VORPOMMERN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KGR Greifswald</td>
<td>Cs-137</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>NIEDERSACHSEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKS Stade</td>
<td>Cs-137</td>
<td>4</td>
<td><0,10</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>KKU Unterweser</td>
<td>Cs-137</td>
<td>7</td>
<td><0,9</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>7</td>
<td><0,05</td>
</tr>
<tr>
<td>KWG Grohnde</td>
<td>Cs-137</td>
<td>4</td>
<td><0,09</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>0,10</td>
</tr>
<tr>
<td>KKE Emsland</td>
<td>Cs-137</td>
<td>6</td>
<td><0,11</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>6</td>
<td>0,09</td>
</tr>
<tr>
<td>LAND / Kerntechnische Anlage</td>
<td>Nuklid / Messverfahren</td>
<td>Aktivität in Bq/kg FM</td>
<td>2009</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>Schacht Konrad II b</td>
<td>Cs-137</td>
<td>3</td>
<td>< 0,07</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Schachtanlage Asse</td>
<td>Cs-137</td>
<td>3</td>
<td>< 0,07</td>
</tr>
<tr>
<td>NORDRHEIN-WESTFALEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FZ Jülich</td>
<td>Cs-137</td>
<td>4</td>
<td>< 0,13</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td>UAG Gronau</td>
<td>U-238 (Bq/kg TM)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluor (mg/kg TM)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uran (mg/kg TM)</td>
<td>4</td>
</tr>
<tr>
<td>RHEINLAND-PFALZ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KMK Mülheim-Kärlich</td>
<td>Cs-137</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>SACHSEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VKTA Rossendorf</td>
<td>Cs-137</td>
<td>1</td>
<td>< 0,13</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
<td>0,16</td>
</tr>
<tr>
<td>SACHSEN-ANHALT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endlager Morsleben</td>
<td>Cs-137</td>
<td>3</td>
<td>< 0,16</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
<td>< 0,04</td>
</tr>
<tr>
<td>SCHLESWIG-HOLSTEIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKSS Geesthacht</td>
<td>Cs-137</td>
<td>1</td>
<td>< 0,10</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
<td>0,13</td>
</tr>
<tr>
<td>KKB Brunsbüttel</td>
<td>Cs-137</td>
<td>1</td>
<td>< 0,05</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
<td>0,10</td>
</tr>
<tr>
<td>KKK Krümmel</td>
<td>Cs-137</td>
<td>1</td>
<td>< 0,08</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
<td>0,10</td>
</tr>
</tbody>
</table>

a Messwerte lagen nicht vor
b Der Planfeststellungsbeschluss für das Endlagerprojekt Konrad liegt vor. Das Messprogramm nach REI beginnt zwei Jahre vor Inbetriebnahme.
<table>
<thead>
<tr>
<th>LAND / Kerntechnische Anlage</th>
<th>Nuklid / Messverfahren</th>
<th>Aktivität in Bq/kg FM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>BADEN-WÜRTTEMBERG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FZ Karlsruhe</td>
<td>Cs-137</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
</tr>
<tr>
<td>KWO Obrigheim</td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
</tr>
<tr>
<td>GKN Neckarwestheim</td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
</tr>
<tr>
<td>KKP Philippsburg</td>
<td>Cs-137</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
</tr>
<tr>
<td>KKW Beznau/Leibstadt</td>
<td>Cs-137</td>
<td>5</td>
</tr>
<tr>
<td>(Schweiz)</td>
<td>Sr-90</td>
<td>2</td>
</tr>
<tr>
<td>KKW Fessenheim</td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td>(Frankreich)</td>
<td>Sr-90</td>
<td>1</td>
</tr>
<tr>
<td>BAYERN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRB Gundremmingen</td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
</tr>
<tr>
<td>KKI Isar</td>
<td>Cs-137</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>5</td>
</tr>
<tr>
<td>KKG Grafenrheinfeld</td>
<td>Cs-137</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
</tr>
<tr>
<td>Forschungsreaktor München</td>
<td>Cs-137</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
</tr>
<tr>
<td>BERLIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forschungsreaktor BERII</td>
<td>Cs-137</td>
<td>a</td>
</tr>
<tr>
<td>HESSEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KWB Biblis</td>
<td>Cs-137</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
</tr>
<tr>
<td>MECKLENBURG-VORPOMMERN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KGR Greifswald</td>
<td>Cs-137</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>5</td>
</tr>
<tr>
<td>LAND / Kerntechnische Anlage</td>
<td>Nuklid / Messverfahren</td>
<td>Aktivität in Bq/kg FM</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>

NIEDERSACHSEN

KKS Stade	Cs-137	a	a	a		
KKS Stade	Sr-90	a	a	a		
KKU Unterweser	Cs-137	a	a	a		
KKU Unterweser	Sr-90	a	a	a		
KWG Grohnde	Cs-137	2	<0,14	2	<0,08	a
KWG Grohnde	Sr-90	2	0,14	2	0,16	a
KKE Emsland	Cs-137	1	0,17	a	a	
KKE Emsland	Sr-90	1	0,21	a	a	
Schacht Konrad II	Cs-137	a	a	a		
Schacht Konrad II	Sr-90	a	a	a		
Schachtanlage Asse II	Cs-137	2	<0,16	a		
Schachtanlage Asse II	Sr-90	2	0,07	a		

NORDRHEIN-WESTFALEN

Zwischenlager Ahaus	Cs-137	a	a	a		
Zwischenlager Ahaus	Sr-90	a	a	a		
FZ Jülich	Cs-137	a	a	a		
FZ Jülich	Sr-90	a	a	a		
UAG Gronau	Fluor (mg/kg TM)	20	<1,5	21	<1,6	a
UAG Gronau	Uran (Bq/kg TM)	21	<0,23	21	<0,23	a
UAG Gronau	U-238 (Bq/kg TM)	5	<0,3	6	<0,2	a

RHEINLAND-PFALZ

KMK Mülheim-Kärlich	Cs-137	a	a	a	
KMK Mülheim-Kärlich	Sr-90	a	a	a	
KKW Cattenom (Frankreich)	Cs-137	2	<0,06	1	<0,03
KKW Cattenom (Frankreich)	Sr-90	2	0,04	1	<0,06

SACHSEN

| VKTA Rossendorf | Cs-137 | a | a | a |
| VKTA Rossendorf | Sr-90 | a | a | a |

SACHSEN-ANHALT

| Endlager Morsleben | Cs-137 | 3 | <0,15 | 4 | <0,18 | 4 | <0,14 (<0,11 - <0,16) |
Teil B

a Messwerte lagen nicht vor

Der Planfeststellungsbeschluss für das Endlagerprojekt Konrad liegt vor. Das Messprogramm nach REI beginnt zwei Jahre vor Inbetriebnahme

Tabelle 2.4.8-3 Radioaktivität der pflanzlichen Nahrungsmittel in der näheren Umgebung von Anlagen nach Atomgesetz: Obst
(Radioactivity of foodstuffs of vegetable origin in the vicinity of facilities according to the Atomic Energy Act: fruit)

<table>
<thead>
<tr>
<th>LAND / Kerntechnische Anlage</th>
<th>Nuklid / Messverfahren</th>
<th>Aktivität in Bq/kg FM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------</td>
<td>------</td>
</tr>
<tr>
<td>SCHLESWIG-HOLSTEIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKSS Geesthacht</td>
<td>Cs-137</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
</tr>
<tr>
<td>KKB Brunsbüttel</td>
<td>Cs-137</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
</tr>
<tr>
<td>KKK Krümmel</td>
<td>Cs-137</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAND / Kerntechnische Anlage</th>
<th>Nuklid / Messverfahren</th>
<th>Aktivität in Bq/kg FM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------</td>
<td>------</td>
</tr>
<tr>
<td>BADEN-WÜRTTEMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FZ Karlsruhe</td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>KWO Obrigheim</td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
</tr>
<tr>
<td>GKN Neckarwestheim</td>
<td>Cs-137</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
</tr>
<tr>
<td>KKP Philippsburg</td>
<td>Cs-137</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
</tr>
<tr>
<td>KKW Beznau/Leibstadt</td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td>(Schweiz)</td>
<td>Sr-90</td>
<td>4</td>
</tr>
<tr>
<td>KKW Fessenheim</td>
<td>Cs-137</td>
<td>2</td>
</tr>
<tr>
<td>(Frankreich)</td>
<td>Sr-90</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAND / Kerntechnische Anlage</th>
<th>Nuklid / Messverfahren</th>
<th>Aktivität in Bq/kg FM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------</td>
<td>------</td>
</tr>
<tr>
<td>BAYERN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRB Gundremmingen</td>
<td>Cs-137</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
</tr>
<tr>
<td>KKI Isar</td>
<td>Cs-137</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>LAND / Kerntechnische Anlage</td>
<td>Nuklid / Messverfahren</td>
<td>Aktivität in Bq/kg FM</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>KKG Grafenrheinfeld</td>
<td>Cs-137</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
</tr>
<tr>
<td>BERLIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forschungsreaktor BERII</td>
<td>Cs-137</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
</tr>
<tr>
<td>BRANDENBURG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKR Rheinsberg</td>
<td>Cs-137</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>HESSEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KWB Biblis</td>
<td>Cs-137</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECKLENBURG-VORPOMMERN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KGR Greifswald</td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIEDERSACHSEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKS Stade</td>
<td>Cs-137</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>KKU Unterweser</td>
<td>Cs-137</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>KWG Grohnde</td>
<td>Cs-137</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
</tr>
<tr>
<td>KKE Emsland</td>
<td>Cs-137</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>Schacht Konrad II C</td>
<td>Cs-137</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>Schachtanlage Asse II</td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
</tr>
<tr>
<td>NORDRHEIN-WESTFALEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FZ Jülich</td>
<td>Cs-137</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>UAG Gronau</td>
<td>Fluor (mg/kg TM)</td>
<td>2</td>
</tr>
</tbody>
</table>
Tabelle 2.4.8-4 Radioaktivität der pflanzlichen Nahrungsmittel in der näheren Umgebung von Anlagen nach Atomgesetz: Kartoffeln
(Radioactivity of food stuffs of vegetable origin in the vicinity of facilities according to the Atomic Energy Act: potatoes)

<table>
<thead>
<tr>
<th>LAND / Kerntechnische Anlage</th>
<th>Nuklid / Messverfahren</th>
<th>Aktivität in Bq/kg FM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>BADEN-WÜRTTEMBERG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FZ Karlsruhe</td>
<td>Cs-137</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>3</td>
</tr>
<tr>
<td>KWO Obrigheim</td>
<td>Cs-137</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
</tr>
<tr>
<td>GKN Neckarwestheim</td>
<td>Cs-137</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
</tr>
<tr>
<td>KKP Philippsburg</td>
<td>Cs-137</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
</tbody>
</table>

Anmerkungen:
- a Messwerte lagen nicht vor
- b Mittelwertbildung nicht sinnvoll
- c Der Planfeststellungsbeschluss für das Endlagerprojekt Konrad liegt vor. Das Messprogramm nach REI beginnt zwei Jahre vor Inbetriebnahme
<table>
<thead>
<tr>
<th>LAND / Kerntechnische Anlage</th>
<th>Nuklid / Mess- verfahren</th>
<th>Aktivität in Bq/kg FM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mittelwert</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Bereich)</td>
</tr>
<tr>
<td>KKW Beznau/Leibstadt (Schweiz)</td>
<td>Cs-137</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
</tr>
<tr>
<td>KKW Fessenheim (Frankreich)</td>
<td>Cs-137</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>3</td>
</tr>
<tr>
<td>KKW Cattenom (Frankreich)</td>
<td>Cs-137</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
</tr>
<tr>
<td>BAYERN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRB Gundremmingen</td>
<td>Cs-137</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>KKG Grafenrheinfeld</td>
<td>Cs-137</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
</tr>
<tr>
<td>BERLIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forshungsreaktor BERII</td>
<td>Cs-137</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
</tr>
<tr>
<td>BRANDENBURG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKR Rheinsberg</td>
<td>Cs-137</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>HESSEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KWB Biblis</td>
<td>Cs-137</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>11</td>
</tr>
<tr>
<td>MECKLENBURG-VORPOMMERN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KGR Greifswald</td>
<td>Cs-137</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>NIEDERSACHSEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KKS Stade</td>
<td>Cs-137</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>a</td>
</tr>
<tr>
<td>KKU Unterweser</td>
<td>Cs-137</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
</tr>
<tr>
<td>KWG Grohnde</td>
<td>Cs-137</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
</tr>
<tr>
<td>KKE Emsland</td>
<td>Cs-137</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>1</td>
</tr>
<tr>
<td>LAND / Kerntechnische Anlage</td>
<td>Nuklid / Messverfahren</td>
<td>Aktivität in Bq/kg FM</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2009 Mittelwert</td>
</tr>
<tr>
<td>Schachtanlage Asse II</td>
<td>Cs-137</td>
<td>< 0,13</td>
</tr>
<tr>
<td>NORDRHEIN-WESTFALEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FZ Jülich</td>
<td>Cs-137</td>
<td>< 0,1</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>RHEINLAND-PFALZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KMK Mülheim-Kärlich</td>
<td>Cs-137</td>
<td>< 0,03</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
</tr>
</tbody>
</table>

a Messwerte lagen nicht vor
2.5 Bedarfsgegenstände, Arzneimittel und deren Ausgangsstoffe
(Consumer goods, pharmaceutical products and their raw materials)

In der Leitstelle wurden zusätzlich auch stichprobenartig verschiedene Nüsse und Kerne als Gewürze untersucht; die Ergebnisse sind in Tabelle 2.5-5 zusammengefasst.

Tabelle 2.5-1 Ermittelte Werte der spezifischen Aktivitäten von Cs-137 und K-40 in ausgewählten Arzneimittelpflanzen für das Jahr 2011
(Measured values of Cs-137 and K-40 specific activities in selected medicinal plants for the year 2011)

<table>
<thead>
<tr>
<th>Artikel</th>
<th>Ursprungsland</th>
<th>K-40 in Bq/kg TM</th>
<th>Cs-137 in Bq/kg TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitterkleeblätter, geschnitten</td>
<td>Polen</td>
<td>961 ± 22</td>
<td>81 ± 2,2</td>
</tr>
<tr>
<td>Gänsefingerkraut, geschnitten</td>
<td>Polen</td>
<td>793 ± 21</td>
<td>30 ± 1,1</td>
</tr>
<tr>
<td>Island-Moos, geschnitten</td>
<td>Serbien</td>
<td>58 ± 3,6</td>
<td>27 ± 0,1</td>
</tr>
</tbody>
</table>

Tabelle 2.5-2 Jahresmittelwerte der spezifischen Aktivitäten von Cs-137 und K-40 in Island-Moos für die Jahre 1998 bis 2011 mit Angabe des jeweiligen Herkunftslandes
(Annual mean value of Cs-137 and K-40 specific activities in Iceland moss for the years 1998 - 2011 and indication of their country of origin)

<table>
<thead>
<tr>
<th>Probenjahr</th>
<th>Ursprungsland</th>
<th>K-40 in Bq/kg TM</th>
<th>Cs-137 in Bq/kg TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>Polen</td>
<td>69 ± 5,6</td>
<td>239 ± 3,3</td>
</tr>
<tr>
<td>2000</td>
<td>Ungarn</td>
<td>71,5 ± 5,9</td>
<td>376 ± 4,7</td>
</tr>
<tr>
<td>2001</td>
<td>Bosnien-Herzegowina</td>
<td>66 ± 3,5</td>
<td>87 ± 1,2</td>
</tr>
<tr>
<td>2002</td>
<td>Polen</td>
<td>86 ± 6,2</td>
<td>360 ± 4,6</td>
</tr>
<tr>
<td>2003</td>
<td>Bosnien-Herzegowina</td>
<td>74 ± 4,3</td>
<td>101 ± 1,5</td>
</tr>
<tr>
<td>2004</td>
<td>Rumänien</td>
<td>87 ± 7,3</td>
<td>456 ± 17,7</td>
</tr>
<tr>
<td>2005</td>
<td>Rumänien</td>
<td>107 ± 3,4</td>
<td>203 ± 7,1</td>
</tr>
<tr>
<td>2006</td>
<td>Bosnien-Herzegowina</td>
<td>63 ± 4,8</td>
<td>31 ± 1,0</td>
</tr>
<tr>
<td>2007</td>
<td>Bosnien-Herzegowina</td>
<td>57 ± 7,0</td>
<td>23 ± 0,8</td>
</tr>
<tr>
<td>2009</td>
<td>Kroatien</td>
<td>66 ± 2,3</td>
<td>26 ± 0,7</td>
</tr>
<tr>
<td>2011</td>
<td>Serbien</td>
<td>58 ± 3,6</td>
<td>27 ± 0,1</td>
</tr>
</tbody>
</table>

Tabelle 2.5-3 Jahresmittelwerte der spezifischen Aktivitäten von Cs-137 und K-40 in Bitterkleeblättern für die Jahre 1998 bis 2011 mit Angabe des jeweiligen Herkunftslandes
(Annual mean value of Cs-137 and K-40 specific activities in buckbean leaves for the years 1998 - 2011 and indication of their country of origin)

<table>
<thead>
<tr>
<th>Probenjahr</th>
<th>Ursprungsland</th>
<th>K-40 in Bq/kg TM</th>
<th>Cs-137 in Bq/kg TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>Rumänien</td>
<td>712 ± 44</td>
<td>42 ± 1,6</td>
</tr>
<tr>
<td>2005</td>
<td>Polen</td>
<td>925 ± 24</td>
<td>550 ± 15</td>
</tr>
</tbody>
</table>
2.6 Abwasser und Klärschlamm
(Waste water and sewage sludge)

Bezüglich allgemeiner Aspekte zur Radioaktivitätsüberwachung von Abwasser und Klärschlamm wird auf Teil A - II - 2.6 verwiesen.

Dem Bericht für das Jahr 2011 liegen die Messergebnisse aus 91 Abwasserreinigungsanlagen zu Grunde. Die Messwerte für Abwässer beziehen sich auf gereinigte kommunale Abwässer (Klarwässer) aus den Abläufen der Kläranlagen und die Messwerte für Klärschlämme auf konditionierte oder stabilisierte Schlämme in der Form, in der sie die Kläranlagen verlassen, z. B. auf teilentwässerte Schlämme oder Faulschlämme.

Das hauptsächlich in der Nuklearmedizin eingesetzte Radionuklid I-131 (Halbwertszeit: 8 Tage) wurde nur in einem Teil der Abwasser- und Klärschlammproben nachgewiesen (Medianwert für Klärschlamm: 33 Bq/kg TM; Maximalwert: 500 Bq/kg TM, Vorjahr 39 bzw. 1700 Bq/kg TM), in Einzelfällen auch das sehr kurzlebige Technetium-99m (Tc-99m; Maximalwert Klärschlamm: 480 Bq/kg TM) sowie Thallium-201 (Tl-201; Maximalwert: 40 Bq/kg TM), Thallium-202 (Tl-202; Maximalwert: 4,0 Bq/kg TM) und Indium-111 (In-111; Maximalwert: 5,9 Bq/kg TM). Im Klärschlamm der Kläranlage Stade wurde wie in den Vorjahren in einem Fall in geringer Konzentration Co-60 festgestellt (2,0 Bq/kg TM), in der Kläranlage Kaiserslautern sehr geringe Spuren von Plutonium-239 (0,03 Bq/kg TM). Dieser Wert liegt im zu erwar-
tenden Bereich und ist eine Folge der allgemeinwerten Kontamination der Erdoberfläche durch den Fallout in der Zeit der atmosphärischen Kernwaffenversuche von 1945 bis etwa 1975. Anzumerken ist in diesem Zusammenhang, dass die nach dem Routinemessprogramm geforderte Nachweisgrenze 0,1 Bq/kg TM beträgt.

Die Aktivitätskonzentration von Cs-137 in Abwässern lagen zu 99 % unterhalb der bei den Messungen erreichten Nachweisgrenzen. Als Nachweisgrenze dieses Radionuklids im Abwasser werden im Messprogramm für den Normalbetrieb (Routinemessprogramm) 0,1 Bq/l gefordert. Die für Cs-137 ermittelten Messwerte lagen im Jahr 2011 zwischen 0,019 und 0,12 Bq/l, bei einem Median von < 0,024 Bq/l (2010: zwischen 0,002 und 0,18 Bq/l). Die Messwerte für Sr-90 oberhalb der erreichten Nachweisgrenzen (54 % der Messwerte) lagen zwischen 0,00058 und 0,061 Bq/l, bei einem Median von < 0,0044 Bq/l.

Zur radiologischen Beurteilung der Klärschlammkontamination ist vorrangig die landwirtschaftliche Nutzung der Klärschlämme zu betrachten. Wird z. B. Klärschlamm mit einer spezifischen Aktivität von etwa 43 Bq/kg TM (Jahresmittelwert der Kläranlage Tannheim) in einer Menge von 0,5 kg auf einer Fläche von einem Quadratmeter innerhalb von drei Jahren (gemäß Klärschlammverordnung) ausgebracht, entspricht dies einer mittleren jährlichen Aktivitätszufuhr von etwa 7 Bq/m² Cs-137. Dies bedeutet bei einer für das Einzugsgebiet einer entsprechenden Kläranlage typischen Flächenbelastung von zurzeit ca. 20 000 Bq/m² Cs-137 eine jährliche Aktivitätszufuhr in den Boden von weniger als 0,04 %. Hierbei ist aber anzumerken, dass eine solche Aufstockung des Cs-137-Inventars durch den radioaktiven Zerfall von 2,3 % pro Jahr des bereits im Boden befindlichen Inventars in der Höhe um ein Vielfaches kompensiert wird.
Abbildung 2.6-1 Cs-137 im Klärschlam in Bq/kg TM (Jahresmittelwerte in den Bundesländern)
(Cs-137 in sewage sludge in Bq/kg dry weight, annual mean values in the Federal states)
Tabelle 2.6-1 General surveillance of waste water and sewage sludge in the year 2011 - minimal, maximum, and mean values

<table>
<thead>
<tr>
<th>Land</th>
<th>Nuklid</th>
<th>Anzahl</th>
<th>Anzahl <NWG</th>
<th>Minimal-wert</th>
<th>Minimal-wert</th>
<th>Maximal-wert</th>
<th>Maximal-wert</th>
<th>Mittel-/ Einzelwert</th>
<th>Median</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gesamt</td>
<td></td>
<td>2011</td>
<td>2010</td>
<td>2011</td>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abwasser aus Kläranlagen, Ablauf (Bq/l)</td>
<td></td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>K-40</td>
<td>20</td>
<td>3</td>
<td>2,1</td>
<td>2,1</td>
<td>11</td>
<td>11</td>
<td>7</td>
<td>6,8</td>
<td><0,75</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>20</td>
<td>20</td>
<td><0,081</td>
<td><0,081</td>
<td><0,087</td>
<td><0,087</td>
<td></td>
<td><0,089</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>20</td>
<td>13</td>
<td><0,12</td>
<td><0,12</td>
<td><0,087</td>
<td><0,087</td>
<td></td>
<td><0,12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>4</td>
<td></td>
<td><0,1</td>
<td></td>
<td></td>
<td>0,1</td>
<td><0,055</td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>4</td>
<td>4</td>
<td></td>
<td><0,1</td>
<td></td>
<td></td>
<td>0,1</td>
<td><0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>4</td>
<td>4</td>
<td></td>
<td><0,1</td>
<td></td>
<td></td>
<td>0,1</td>
<td><0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>4</td>
<td>4</td>
<td></td>
<td><0,1</td>
<td></td>
<td></td>
<td>0,1</td>
<td><0,1</td>
<td></td>
</tr>
<tr>
<td>Hamburg</td>
<td>K-40</td>
<td>4</td>
<td>4</td>
<td></td>
<td><1,2</td>
<td></td>
<td></td>
<td></td>
<td><1,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>4</td>
<td>4</td>
<td></td>
<td><0,045</td>
<td></td>
<td></td>
<td></td>
<td><0,045</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>4</td>
<td>1</td>
<td>0,14</td>
<td><0,046</td>
<td>0,4</td>
<td>0,4</td>
<td></td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,064</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>0</td>
<td>0,00058</td>
<td>0,00058</td>
<td>0,001</td>
<td>0,001</td>
<td></td>
<td><0,0073</td>
<td>0,0012</td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>1</td>
<td>1</td>
<td><0,00016</td>
<td><0,00016</td>
<td><0,00018</td>
<td><0,00018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>1</td>
<td>1</td>
<td><0,00012</td>
<td><0,00009</td>
<td><0,00016</td>
<td><0,00016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>1</td>
<td>1</td>
<td><0,00016</td>
<td><0,00013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>K-40</td>
<td>48</td>
<td>17</td>
<td>0,42</td>
<td>0,66</td>
<td>1</td>
<td>1</td>
<td></td>
<td><0,65</td>
<td>0,68</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>48</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,024</td>
<td><0,026</td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>48</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,08</td>
<td><0,08</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>48</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,021</td>
<td><0,021</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>6</td>
<td>5</td>
<td>0,011</td>
<td>0,0076</td>
<td>0,011</td>
<td>0,011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>4</td>
<td>2</td>
<td>0,001</td>
<td>0,00056</td>
<td>0,0033</td>
<td>0,0033</td>
<td></td>
<td><0,0051</td>
<td><0,0056</td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,0008</td>
<td><0,0009</td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>4</td>
<td>2</td>
<td>0,00094</td>
<td>0,0031</td>
<td>0,00094</td>
<td>0,00094</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bremen</td>
<td>K-40</td>
<td>8</td>
<td>4</td>
<td>0,84</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
<td></td>
<td><0,95</td>
<td>0,84</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,05</td>
<td><0,052</td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,24</td>
<td><0,23</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,055</td>
<td><0,065</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>3</td>
<td>0,0082</td>
<td>0,0082</td>
<td>0,0082</td>
<td>0,0082</td>
<td></td>
<td><0,0072</td>
<td><0,0079</td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>0,0021</td>
<td>0,0036</td>
<td>0,0036</td>
<td>0,0036</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>4</td>
<td>2</td>
<td>0,00033</td>
<td>0,00038</td>
<td>0,00033</td>
<td>0,00033</td>
<td></td>
<td><0,00098</td>
<td><0,00066</td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>0,0029</td>
<td>0,0035</td>
<td>0,0029</td>
<td>0,0035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>K-40</td>
<td>40</td>
<td>29</td>
<td>0,5</td>
<td>1,1</td>
<td>2,6</td>
<td>2,6</td>
<td></td>
<td><1,1</td>
<td><1,2</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,049</td>
<td><0,053</td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>40</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,13</td>
<td><0,16</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>40</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,044</td>
<td><0,053</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>1</td>
<td>0,0038</td>
<td>0,0042</td>
<td>0,0061</td>
<td>0,0061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>4</td>
<td>1</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td></td>
<td><0,031</td>
<td><0,0033</td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,0027</td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>4</td>
<td>1</td>
<td>0,0055</td>
<td>0,0075</td>
<td>0,0055</td>
<td>0,0075</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hessen</td>
<td>K-40</td>
<td>20</td>
<td>19</td>
<td>0,67</td>
<td><0,75</td>
<td>0,67</td>
<td>0,67</td>
<td></td>
<td><0,98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,03</td>
<td><0,039</td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>20</td>
<td>17</td>
<td>0,074</td>
<td><0,1</td>
<td>0,38</td>
<td>0,38</td>
<td></td>
<td><0,15</td>
<td><0,15</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>20</td>
<td>20</td>
<td></td>
<td><0,037</td>
<td><0,037</td>
<td><0,037</td>
<td></td>
<td></td>
<td><0,037</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>3</td>
<td>0,01</td>
<td></td>
<td>0,01</td>
<td>0,01</td>
<td></td>
<td></td>
<td><0,039</td>
</tr>
<tr>
<td>Land</td>
<td>Nuklid</td>
<td>2011</td>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anzahl Gesamt</td>
<td>Anzahl <NWG</td>
<td>Minimalwert</td>
<td>Maximalwert</td>
<td>Mittel-/Einzelwert</td>
<td>Median</td>
<td>Median</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>K-40</td>
<td>20</td>
<td>10</td>
<td>0,49</td>
<td>3</td>
<td>1,4</td>
<td>0,72</td>
<td>0,83</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>20</td>
<td>20</td>
<td></td>
<td><0,019</td>
<td>>0,027</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>20</td>
<td>4</td>
<td>0,26</td>
<td>0,18</td>
<td>0,084</td>
<td>0,054</td>
<td>0,062</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>20</td>
<td>20</td>
<td></td>
<td><0,02</td>
<td><0,025</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>1</td>
<td>0,0019</td>
<td>0,0024</td>
<td>0,0022</td>
<td>0,0021</td>
<td>0,0018</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>0,0017</td>
<td>0,02</td>
<td>0,014</td>
<td>0,017</td>
<td>0,012</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>4</td>
<td>4</td>
<td></td>
<td><0,0057</td>
<td><0,028</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>0,0018</td>
<td>0,019</td>
<td>0,013</td>
<td>0,015</td>
<td>0,011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>K-40</td>
<td>73</td>
<td>7</td>
<td>0,21</td>
<td>0,79</td>
<td>0,45</td>
<td>0,46</td>
<td>0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>73</td>
<td>73</td>
<td></td>
<td><0,015</td>
<td><0,018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>44</td>
<td>38</td>
<td>0,33</td>
<td>0,32</td>
<td></td>
<td>0,066</td>
<td>0,039</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>73</td>
<td>73</td>
<td></td>
<td><0,013</td>
<td><0,016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>4</td>
<td></td>
<td><0,003</td>
<td><0,002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>0,0027</td>
<td>0,014</td>
<td>0,006</td>
<td>0,0038</td>
<td>0,0012</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>4</td>
<td>4</td>
<td></td>
<td><0,00051</td>
<td><0,00034</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>0,0019</td>
<td>0,0084</td>
<td>0,0043</td>
<td>0,0034</td>
<td>0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayern</td>
<td>K-40</td>
<td>33</td>
<td>32</td>
<td>2</td>
<td>2</td>
<td><1,5</td>
<td><1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>33</td>
<td>33</td>
<td></td>
<td><0,091</td>
<td><0,092</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>33</td>
<td>27</td>
<td>0,23</td>
<td>0,35</td>
<td></td>
<td>0,26</td>
<td><0,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>33</td>
<td>33</td>
<td></td>
<td><0,089</td>
<td><0,09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>2</td>
<td>0,0032</td>
<td>0,004</td>
<td>0,0036</td>
<td><0,0094</td>
<td>0,0038</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>0,0053</td>
<td>0,019</td>
<td>0,011</td>
<td>0,01</td>
<td>0,013</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>4</td>
<td>2</td>
<td>0,00037</td>
<td>0,00071</td>
<td>0,00054</td>
<td>0,0044</td>
<td>0,0011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>0,0052</td>
<td>0,013</td>
<td>0,0094</td>
<td>0,0099</td>
<td>0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saarland</td>
<td>K-40</td>
<td>8</td>
<td>0</td>
<td>0,45</td>
<td>1,1</td>
<td>0,76</td>
<td>0,76</td>
<td>0,71</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>8</td>
<td>8</td>
<td></td>
<td><0,0075</td>
<td><0,0097</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>8</td>
<td>8</td>
<td></td>
<td><0,0075</td>
<td><0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>0</td>
<td>0,003</td>
<td>0,016</td>
<td>0,008</td>
<td>0,0066</td>
<td>0,0035</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>0,0015</td>
<td>0,0044</td>
<td>0,0027</td>
<td>0,0025</td>
<td>0,0029</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>4</td>
<td>4</td>
<td></td>
<td><0,0002</td>
<td><0,00021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>0,00092</td>
<td>0,0033</td>
<td>0,002</td>
<td>0,0018</td>
<td>0,0018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berlin</td>
<td>K-40</td>
<td>4</td>
<td>0</td>
<td>0,81</td>
<td>0,86</td>
<td>0,84</td>
<td>0,85</td>
<td>0,81</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>4</td>
<td>4</td>
<td></td>
<td><0,0016</td>
<td><0,0013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>4</td>
<td>4</td>
<td></td>
<td><0,019</td>
<td><0,017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>4</td>
<td>3</td>
<td>0,0019</td>
<td>0,0019</td>
<td></td>
<td><0,0019</td>
<td><0,0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>0</td>
<td>0,002</td>
<td>0,0041</td>
<td>0,0028</td>
<td>0,0026</td>
<td>0,0025</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>0,0023</td>
<td>0,0051</td>
<td>0,0036</td>
<td>0,0036</td>
<td>0,0031</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>4</td>
<td>0</td>
<td>0,000096</td>
<td>0,00036</td>
<td>0,0002</td>
<td>0,00017</td>
<td>0,00018</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>0,0022</td>
<td>0,0053</td>
<td>0,0034</td>
<td>0,003</td>
<td>0,0031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandenburg</td>
<td>K-40</td>
<td>32</td>
<td>7</td>
<td>0,6</td>
<td>5</td>
<td>1,4</td>
<td>0,83</td>
<td>0,83</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>32</td>
<td>32</td>
<td></td>
<td><0,021</td>
<td><0,017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>32</td>
<td>18</td>
<td>0,03</td>
<td>0,73</td>
<td></td>
<td><0,056</td>
<td><0,068</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>32</td>
<td>29</td>
<td>0,002</td>
<td>0,0029</td>
<td></td>
<td><0,02</td>
<td><0,017</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>12</td>
<td>0</td>
<td>0,002</td>
<td>0,01</td>
<td>0,004</td>
<td>0,0036</td>
<td>0,0028</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>12</td>
<td>1</td>
<td>0,0007</td>
<td>0,008</td>
<td>0,0029</td>
<td>0,002</td>
<td>0,0013</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>12</td>
<td>6</td>
<td>0,000076</td>
<td>0,0006</td>
<td>0,00027</td>
<td><0,00022</td>
<td><0,0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>12</td>
<td>1</td>
<td>0,004</td>
<td>0,008</td>
<td>0,0025</td>
<td>0,0015</td>
<td><0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>K-40</td>
<td>20</td>
<td>0</td>
<td>0,2</td>
<td>1,1</td>
<td>0,66</td>
<td>0,64</td>
<td>0,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>20</td>
<td>20</td>
<td></td>
<td><0,011</td>
<td><0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>20</td>
<td>6</td>
<td>0,016</td>
<td>1,3</td>
<td>0,25</td>
<td>0,12</td>
<td>0,073</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>20</td>
<td>20</td>
<td></td>
<td><0,0078</td>
<td><0,0075</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>0</td>
<td>0,0026</td>
<td>0,023</td>
<td>0,0095</td>
<td>0,0061</td>
<td><0,0032</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>4</td>
<td>2</td>
<td>0,0084</td>
<td>0,01</td>
<td>0,0092</td>
<td>0,0084</td>
<td><0,017</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>4</td>
<td>4</td>
<td></td>
<td><0,00032</td>
<td><0,00055</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>4</td>
<td>2</td>
<td>0,0077</td>
<td>0,015</td>
<td>0,011</td>
<td>0,0077</td>
<td><0,013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Klärschlamm (Bq/kg TM)

Deutschland

<table>
<thead>
<tr>
<th>Land</th>
<th>Nuklid</th>
<th>Anzahl Gesamt</th>
<th>Anzahl <NWG</th>
<th>Minimalwert</th>
<th>Maximalwert</th>
<th>Mittel-/Median</th>
<th>Median</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sachsen</td>
<td>K-40</td>
<td>20</td>
<td>7</td>
<td>0,51</td>
<td>1,7</td>
<td>0,8</td>
<td>0,77</td>
<td>0,76</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>20</td>
<td>20</td>
<td><1,1</td>
<td><0,065</td>
<td><0,068</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>18</td>
<td>6</td>
<td>0,094</td>
<td>0,38</td>
<td>0,17</td>
<td><0,03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>20</td>
<td>20</td>
<td><1,1</td>
<td><0,065</td>
<td><0,068</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>3</td>
<td>0,008</td>
<td>0,008</td>
<td>0,013</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>0,0036</td>
<td>0,021</td>
<td>0,014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>4</td>
<td>4</td>
<td>0,0029</td>
<td>0,019</td>
<td><0,019</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>0,0088</td>
<td>0,029</td>
<td>0,012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>K-40</td>
<td>20</td>
<td>3</td>
<td>0,31</td>
<td>1,8</td>
<td>0,77</td>
<td>0,7</td>
<td>0,53</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>20</td>
<td>20</td>
<td><1,1</td>
<td><0,069</td>
<td><0,063</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>20</td>
<td>5</td>
<td>0,015</td>
<td>0,41</td>
<td>0,098</td>
<td>0,041</td>
<td>0,049</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>20</td>
<td>20</td>
<td><1,1</td>
<td><0,069</td>
<td><0,063</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>4</td>
<td><0,013</td>
<td><0,014</td>
<td><0,013</td>
<td>0,02</td>
<td>0,016</td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>0,0082</td>
<td>0,029</td>
<td>0,019</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>6</td>
<td>1</td>
<td>0,0013</td>
<td>0,029</td>
<td>0,015</td>
<td><0,015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>0,0068</td>
<td>0,037</td>
<td>0,017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thüringen</td>
<td>K-40</td>
<td>20</td>
<td>12</td>
<td>0,92</td>
<td>2,5</td>
<td>1,1</td>
<td><1,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>20</td>
<td>20</td>
<td><1,1</td>
<td><0,069</td>
<td><0,063</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>20</td>
<td>15</td>
<td>0,16</td>
<td>0,96</td>
<td>0,072</td>
<td><0,072</td>
<td><0,069</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>20</td>
<td>20</td>
<td><1,1</td>
<td><0,069</td>
<td><0,063</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>4</td>
<td><0,013</td>
<td><0,014</td>
<td><0,013</td>
<td>0,02</td>
<td>0,016</td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>0,021</td>
<td>0,075</td>
<td>0,047</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>4</td>
<td>2</td>
<td>0,0015</td>
<td>0,0038</td>
<td>0,0027</td>
<td><0,02</td>
<td><0,008</td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>0,012</td>
<td>0,044</td>
<td>0,027</td>
<td><0,02</td>
<td><0,02</td>
</tr>
<tr>
<td>Bundesrepublik Deutschland</td>
<td>K-40</td>
<td>390</td>
<td>154</td>
<td>0,2</td>
<td>11</td>
<td>1,2</td>
<td><0,75</td>
<td><0,79</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>390</td>
<td>390</td>
<td><1,1</td>
<td><0,069</td>
<td><0,063</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>351</td>
<td>195</td>
<td>0,015</td>
<td>2,4</td>
<td>0,98</td>
<td><0,099</td>
<td><0,099</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>390</td>
<td>385</td>
<td>0,0019</td>
<td>0,12</td>
<td><0,024</td>
<td><0,028</td>
<td><0,028</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>74</td>
<td>34</td>
<td>0,00058</td>
<td>0,061</td>
<td>0,0077</td>
<td><0,0048</td>
<td><0,0044</td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>65</td>
<td>11</td>
<td>0,0007</td>
<td>0,075</td>
<td>0,011</td>
<td>0,0051</td>
<td>0,0051</td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>67</td>
<td>46</td>
<td>0,000076</td>
<td>0,028</td>
<td>0,00062</td>
<td><0,001</td>
<td><0,0062</td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>66</td>
<td>11</td>
<td>0,0004</td>
<td>0,037</td>
<td>0,0015</td>
<td><0,008</td>
<td><0,008</td>
</tr>
</tbody>
</table>

Klärschlamm (Bq/kg TM)

<table>
<thead>
<tr>
<th>Land</th>
<th>Nuklid</th>
<th>Anzahl Gesamt</th>
<th>Anzahl <NWG</th>
<th>Minimalwert</th>
<th>Maximalwert</th>
<th>Mittel-/Median</th>
<th>Median</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schleswig-Holstein</td>
<td>K-40</td>
<td>20</td>
<td>0</td>
<td>56</td>
<td>150</td>
<td>91</td>
<td>1,25</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>20</td>
<td>20</td>
<td><1,1</td>
<td><0,065</td>
<td><0,068</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>20</td>
<td>1</td>
<td>0,84</td>
<td>130</td>
<td>41</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Cs-134</td>
<td>20</td>
<td>20</td>
<td><1,1</td>
<td><0,065</td>
<td><0,068</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>20</td>
<td>3</td>
<td>0,65</td>
<td>4,8</td>
<td>1,8</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>0</td>
<td>2,9</td>
<td>3,9</td>
<td>3,3</td>
<td>3,1</td>
<td>3,1</td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>4</td>
<td>4</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>12</td>
<td>15</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Hamburg</td>
<td>K-40</td>
<td>8</td>
<td>0</td>
<td>91</td>
<td>540</td>
<td>290</td>
<td>270</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>8</td>
<td>8</td>
<td><1,1</td>
<td><1,2</td>
<td><1,1</td>
<td><1,1</td>
<td><1,1</td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>8</td>
<td>8</td>
<td>14</td>
<td>59</td>
<td>34</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Cs-134</td>
<td>8</td>
<td>8</td>
<td><1,1</td>
<td><1,1</td>
<td><1,1</td>
<td><1,1</td>
<td><1,1</td>
</tr>
<tr>
<td></td>
<td>Cs-137</td>
<td>8</td>
<td>2</td>
<td>0,79</td>
<td>3,3</td>
<td>2</td>
<td>2,2</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td>Sr-90</td>
<td>4</td>
<td>0</td>
<td>0,94</td>
<td>1,4</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
</tr>
<tr>
<td></td>
<td>U-234</td>
<td>3</td>
<td>0</td>
<td>15</td>
<td>19</td>
<td>17</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>U-235</td>
<td>3</td>
<td>0</td>
<td>0,71</td>
<td>3,6</td>
<td>1,7</td>
<td>0,76</td>
<td>0,74</td>
</tr>
<tr>
<td></td>
<td>U-238</td>
<td>3</td>
<td>0</td>
<td>14</td>
<td>17</td>
<td>15</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Land</td>
<td>Nuklid</td>
<td>2011</td>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anzahl Gesamt</td>
<td>Anzahl <NWG</td>
<td>Minimalwert</td>
<td>Maximalwert</td>
<td>Mittel-/Einzelmittel</td>
<td>Median</td>
<td>Median</td>
<td></td>
</tr>
<tr>
<td>Niedersachsen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>40</td>
<td>0</td>
<td>41</td>
<td>1000</td>
<td>240</td>
<td>94</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>40</td>
<td>39</td>
<td>2</td>
<td>2</td>
<td><1,1</td>
<td><0,39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-131</td>
<td>40</td>
<td>0</td>
<td>3,9</td>
<td>1500</td>
<td>180</td>
<td>62</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Cs-134</td>
<td>40</td>
<td>0</td>
<td><0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>40</td>
<td>7</td>
<td>0,84</td>
<td>8,9</td>
<td>2,6</td>
<td>1,7</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>4</td>
<td>1</td>
<td>2,1</td>
<td>2,3</td>
<td>2,2</td>
<td>2,1</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>13</td>
<td>32</td>
<td>23</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>4</td>
<td>1</td>
<td>0,25</td>
<td>1,2</td>
<td>0,72</td>
<td>0,48</td>
<td>0,93</td>
<td></td>
</tr>
<tr>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>12</td>
<td>26</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bremen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>8</td>
<td>0</td>
<td>200</td>
<td>430</td>
<td>320</td>
<td>320</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>160</td>
<td>73</td>
<td>56</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>I-131</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>160</td>
<td>73</td>
<td>56</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Cs-134</td>
<td>8</td>
<td>8</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>8</td>
<td>5</td>
<td>2,4</td>
<td>3,3</td>
<td>2,8</td>
<td>2,8</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>4</td>
<td>2</td>
<td>1,3</td>
<td>2,3</td>
<td>1,8</td>
<td><1,7</td>
<td><1,8</td>
<td></td>
</tr>
<tr>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>15</td>
<td>18</td>
<td>17</td>
<td>17</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4,2</td>
<td>2,6</td>
<td><2,5</td>
<td><2,5</td>
<td></td>
</tr>
<tr>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>10</td>
<td>17</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>40</td>
<td>0</td>
<td>48</td>
<td>480</td>
<td>190</td>
<td>120</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>40</td>
<td>40</td>
<td><0,33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-131</td>
<td>40</td>
<td>1</td>
<td>2,2</td>
<td>370</td>
<td>80</td>
<td>45</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Cs-134</td>
<td>40</td>
<td>35</td>
<td>0,3</td>
<td>1,4</td>
<td>0,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>40</td>
<td>2</td>
<td>0,94</td>
<td>8,8</td>
<td>3,4</td>
<td>2,7</td>
<td>2,7</td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>4</td>
<td>0</td>
<td>1,1</td>
<td>4,4</td>
<td>2,9</td>
<td>3,1</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>36</td>
<td>44</td>
<td>41</td>
<td>42</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>4</td>
<td>0</td>
<td>1,2</td>
<td>1,9</td>
<td>1,6</td>
<td>1,6</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>28</td>
<td>38</td>
<td>33</td>
<td>33</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Hessen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>20</td>
<td>0</td>
<td>59</td>
<td>150</td>
<td>110</td>
<td>120</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>20</td>
<td>20</td>
<td><0,92</td>
<td></td>
<td></td>
<td></td>
<td><0,97</td>
<td></td>
</tr>
<tr>
<td>I-131</td>
<td>20</td>
<td>1</td>
<td>1,1</td>
<td>210</td>
<td>38</td>
<td>17</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Cs-134</td>
<td>20</td>
<td>20</td>
<td><0,92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>20</td>
<td>6</td>
<td>5,7</td>
<td>3,1</td>
<td><2</td>
<td></td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>4</td>
<td>0</td>
<td>1,2</td>
<td>8,5</td>
<td>3,8</td>
<td>3,2</td>
<td>2,7</td>
<td></td>
</tr>
<tr>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>44</td>
<td>100</td>
<td>78</td>
<td>84</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>4</td>
<td>0</td>
<td>1,6</td>
<td>13</td>
<td>5,7</td>
<td>4,2</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>34</td>
<td>61</td>
<td>51</td>
<td>55</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>20</td>
<td>0</td>
<td>100</td>
<td>240</td>
<td>170</td>
<td>180</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>20</td>
<td>20</td>
<td><0,61</td>
<td></td>
<td></td>
<td></td>
<td><0,65</td>
<td></td>
</tr>
<tr>
<td>I-131</td>
<td>20</td>
<td>1</td>
<td>1,1</td>
<td>210</td>
<td>38</td>
<td>17</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Cs-134</td>
<td>20</td>
<td>20</td>
<td><0,63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>20</td>
<td>4</td>
<td>1,2</td>
<td>8,5</td>
<td>3,8</td>
<td>3,2</td>
<td>2,7</td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>4</td>
<td>0</td>
<td>0,73</td>
<td>2,1</td>
<td>1,3</td>
<td>1,1</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>44</td>
<td>100</td>
<td>78</td>
<td>84</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>4</td>
<td>0</td>
<td>1,6</td>
<td>13</td>
<td>5,7</td>
<td>4,2</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>34</td>
<td>61</td>
<td>51</td>
<td>55</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>40</td>
<td>0</td>
<td>59</td>
<td>420</td>
<td>170</td>
<td>160</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>40</td>
<td>40</td>
<td><0,43</td>
<td></td>
<td></td>
<td></td>
<td><0,5</td>
<td></td>
</tr>
<tr>
<td>I-131</td>
<td>40</td>
<td>100</td>
<td>2,5</td>
<td>680</td>
<td>70</td>
<td>13</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Cs-134</td>
<td>40</td>
<td>31</td>
<td>0,3</td>
<td>0,68</td>
<td>0,46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>40</td>
<td>0</td>
<td>1,8</td>
<td>58</td>
<td>15</td>
<td>6,9</td>
<td>8,4</td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>2</td>
<td>0</td>
<td>1,3</td>
<td>1,6</td>
<td>1,5</td>
<td>1,5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>29</td>
<td>55</td>
<td>41</td>
<td>40</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>4</td>
<td>1</td>
<td>0,96</td>
<td>2,5</td>
<td>1,8</td>
<td>2</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>22</td>
<td>52</td>
<td>35</td>
<td>32</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>(West²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>28</td>
<td>28</td>
<td>1,8</td>
<td>58</td>
<td>8,7</td>
<td><0,39</td>
<td><0,46</td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>28</td>
<td>28</td>
<td>1,8</td>
<td>58</td>
<td>8,7</td>
<td><0,39</td>
<td><0,46</td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>1</td>
<td>0</td>
<td>1,6</td>
<td>1,6</td>
<td>1,6</td>
<td>1,6</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>(Ost³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>12</td>
<td>12</td>
<td>7,9</td>
<td>51</td>
<td>31</td>
<td>33</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>12</td>
<td>12</td>
<td>7,9</td>
<td>51</td>
<td>31</td>
<td>33</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>1</td>
<td>0</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Land</td>
<td>Nuklid</td>
<td>2011</td>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anzahl Gesamt</td>
<td>Anzahl <NWG</td>
<td>Minimalwert</td>
<td>Maximalwert</td>
<td>Mittel-/Medianwert</td>
<td>Median</td>
<td>Median</td>
<td></td>
</tr>
<tr>
<td>Bayern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>33</td>
<td>0</td>
<td>71</td>
<td>680</td>
<td>240</td>
<td>190</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>33</td>
<td>33</td>
<td>4,3</td>
<td>210</td>
<td>48</td>
<td><1,7</td>
<td><1,4</td>
<td></td>
</tr>
<tr>
<td>I-131</td>
<td>33</td>
<td>3</td>
<td>11</td>
<td>5,1</td>
<td>3,5</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-134</td>
<td>33</td>
<td>33</td>
<td><1,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>33</td>
<td>4</td>
<td>3,2</td>
<td>85</td>
<td>15</td>
<td>7,4</td>
<td>7,5</td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>11</td>
<td>5,1</td>
<td>3,5</td>
<td>2,6</td>
<td></td>
</tr>
<tr>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>27</td>
<td>120</td>
<td>73</td>
<td>72</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>4</td>
<td>1</td>
<td>1,3</td>
<td>4,7</td>
<td>3,4</td>
<td>2,7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>28</td>
<td>100</td>
<td>67</td>
<td>69</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Bayern (Nord)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>13</td>
<td>13</td>
<td>3,2</td>
<td>7,7</td>
<td>5,3</td>
<td>4,7</td>
<td>5,2</td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>13</td>
<td>4</td>
<td>3,2</td>
<td>7,7</td>
<td>5,3</td>
<td>4,7</td>
<td>5,2</td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>2</td>
<td>0</td>
<td>11</td>
<td>6,9</td>
<td>6,9</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayern (Süd)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>20</td>
<td>20</td>
<td>4</td>
<td>85</td>
<td>19</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>20</td>
<td>0</td>
<td>4</td>
<td>85</td>
<td>19</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3,3</td>
<td>3,3</td>
<td>3,3</td>
<td>2,6</td>
<td></td>
</tr>
<tr>
<td>Saarland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>8</td>
<td>0</td>
<td>120</td>
<td>380</td>
<td>230</td>
<td>210</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>8</td>
<td>8</td>
<td>1,5</td>
<td>56</td>
<td>19</td>
<td>20</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>I-131</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>1,5</td>
<td>0,35</td>
<td>0,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-134</td>
<td>8</td>
<td>8</td>
<td>1,1</td>
<td>10</td>
<td>4,9</td>
<td>4,5</td>
<td>3,7</td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>2,8</td>
<td>2,4</td>
<td>2,4</td>
<td>2,6</td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>2</td>
<td>0</td>
<td>57</td>
<td>100</td>
<td>71</td>
<td>63</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>1,7</td>
<td>2,2</td>
<td>2,2</td>
<td>2,2</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>4</td>
<td>0</td>
<td>39</td>
<td>79</td>
<td>52</td>
<td>46</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Berlin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>4</td>
<td>0</td>
<td>57</td>
<td>110</td>
<td>80</td>
<td>78</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>4</td>
<td>4</td>
<td>0,55</td>
<td>1,2</td>
<td>0,88</td>
<td>0,88</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>I-131</td>
<td>4</td>
<td>0</td>
<td>0,75</td>
<td>0,95</td>
<td>0,85</td>
<td>0,85</td>
<td>0,49</td>
<td></td>
</tr>
<tr>
<td>Cs-134</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1,5</td>
<td>0,85</td>
<td>0,85</td>
<td>0,49</td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>4</td>
<td>2</td>
<td>1,4</td>
<td>2,1</td>
<td>1,5</td>
<td>1,5</td>
<td>0,76</td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>2</td>
<td>0</td>
<td>0,55</td>
<td>1,2</td>
<td>0,88</td>
<td>0,88</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>U-234</td>
<td>2</td>
<td>0</td>
<td>17</td>
<td>18</td>
<td>17</td>
<td>17</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>2</td>
<td>0</td>
<td>0,75</td>
<td>0,95</td>
<td>0,85</td>
<td>0,85</td>
<td>0,49</td>
<td></td>
</tr>
<tr>
<td>U-238</td>
<td>2</td>
<td>0</td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Brandenburg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>32</td>
<td>0</td>
<td>29</td>
<td>200</td>
<td>92</td>
<td>84</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>32</td>
<td>32</td>
<td><0,28</td>
<td><0,28</td>
<td></td>
<td><0,28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-131</td>
<td>32</td>
<td>1</td>
<td>4,2</td>
<td>350</td>
<td>79</td>
<td>40</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Cs-134</td>
<td>31</td>
<td>31</td>
<td><0,34</td>
<td><0,34</td>
<td></td>
<td><0,34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>32</td>
<td>0</td>
<td>0,63</td>
<td>6,4</td>
<td>1,7</td>
<td>1,3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>10</td>
<td>0</td>
<td>4</td>
<td>2,7</td>
<td>2,6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-234</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>10</td>
<td>0</td>
<td>0,4</td>
<td>1,5</td>
<td>1,1</td>
<td>1,1</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>U-238</td>
<td>10</td>
<td>0</td>
<td>8</td>
<td>28</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>20</td>
<td>0</td>
<td>52</td>
<td>160</td>
<td>110</td>
<td>110</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>20</td>
<td>20</td>
<td>12</td>
<td>400</td>
<td>130</td>
<td>89</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>I-131</td>
<td>20</td>
<td>1</td>
<td>0,11</td>
<td>0,24</td>
<td><0,26</td>
<td><0,26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-134</td>
<td>20</td>
<td>17</td>
<td>0,24</td>
<td>5,4</td>
<td>1,8</td>
<td>1,5</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>20</td>
<td>0</td>
<td>1,9</td>
<td>18</td>
<td>9,9</td>
<td>9,9</td>
<td>3,1</td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>4</td>
<td>0</td>
<td>14</td>
<td>34</td>
<td>22</td>
<td>19</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>0,58</td>
<td>1,4</td>
<td>1</td>
<td>1</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>4</td>
<td>0</td>
<td>14</td>
<td>33</td>
<td>21</td>
<td>18</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Sachsen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>20</td>
<td>0</td>
<td>68</td>
<td>190</td>
<td>130</td>
<td>120</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>20</td>
<td>20</td>
<td>0,21</td>
<td>0,21</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>Cs-134</td>
<td>20</td>
<td>19</td>
<td>0,21</td>
<td>2,3</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>20</td>
<td>3</td>
<td>1</td>
<td>5,6</td>
<td>2,3</td>
<td>1,2</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1,8</td>
<td>1,8</td>
<td>1,8</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>U-234</td>
<td>4</td>
<td>0</td>
<td>71</td>
<td>160</td>
<td>110</td>
<td>100</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>4</td>
<td>0</td>
<td>1,6</td>
<td>5,2</td>
<td>3,3</td>
<td>3,2</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>U-238</td>
<td>4</td>
<td>0</td>
<td>54</td>
<td>130</td>
<td>86</td>
<td>80</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Land</td>
<td>Nuklid</td>
<td>2011</td>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>20</td>
<td>0 39</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>20</td>
<td>0 400</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-131</td>
<td>20</td>
<td>0 0</td>
<td><0,22</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-134</td>
<td>20</td>
<td>0 220</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>20</td>
<td>0 8,4</td>
<td>2,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>4</td>
<td>3 3,5</td>
<td>3,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-234</td>
<td>4</td>
<td>0 90</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>17</td>
<td>1 7,6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-238</td>
<td>19</td>
<td>0 150</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thüringen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>20</td>
<td>0 100</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>20</td>
<td>0 320</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-131</td>
<td>20</td>
<td>0 0</td>
<td><0,42</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-134</td>
<td>20</td>
<td>0 220</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>20</td>
<td>0 4,5</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>4</td>
<td>0 1,7</td>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-234</td>
<td>4</td>
<td>0 120</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>4</td>
<td>0 2,7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-238</td>
<td>4</td>
<td>0 60</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundesrepublik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-40</td>
<td>353</td>
<td>0 29</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>353</td>
<td>2 1000</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-131</td>
<td>332</td>
<td>2 1500</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-134</td>
<td>352</td>
<td>0,62 1,1</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>337</td>
<td>0,24 0,49</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>60</td>
<td>0 85</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-234</td>
<td>67</td>
<td>0 2,9</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>80</td>
<td>0 49</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-238</td>
<td>82</td>
<td>0 47</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deutschland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Nord²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>321</td>
<td>2 2</td>
<td><0,52</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>304</td>
<td>0,24 58</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>57</td>
<td>0,55 18</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundesrepublik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deutschland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Süd³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-60</td>
<td>32</td>
<td>0 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>32</td>
<td>0 85</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr-90</td>
<td>3</td>
<td>0 3,7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Liegen mehr als 50% der gemessenen Werte unterhalb der Nachweisgrenze, werden nur der Minimalwert, der Maximalwert und der Median angegeben. Der arithmetische Mittelwert wurde aus den Messwerten ohne Berücksichtigung der Nachweisgrenzen errechnet. Beim Median dagegen gehen die Nachweisgrenzen in die Berechnung ein.

2 Nördlich bzw. westlich der Linie Radolfzell-Eichstätt-Regensburg-Zwiesel

3 Südlich bzw. östlich der Linie Radolfzell-Eichstätt-Regensburg-Zwiesel

2.7 Abfälle

(Waste)

Bezüglich allgemeiner Aspekte zur Radioaktivitätsüberwachung von Abfällen wird auf Teil A - II - 2.7 verwiesen. Unter dem Begriff „Abfälle“ werden an dieser Stelle nicht nur Abfälle (zur Beseitigung) sondern auch wieder verwertbare Reststoffe verstanden, da Abfälle je nach Art der Behandlung auch wieder einer Nutzung zugeführt werden können. Zu überwachen sind nach dem Messprogramm für den Normalbetrieb folgende Medien:

- Sickerwasser und oberflächennahes Grundwasser von Hausmülldeponien,
- Asche, Schlacke, feste und flüssige Rückstände aus Rauchgasreinigungen von Verbrennungsanlagen für Klärschlamm und Hausmüll, sowie
- in den Handel gelangender Kompost aus Kompostierungsanlagen.

ern und im südöstlichen Baden-Württemberg und den weniger belasteten Gebieten in der übrigen Bundesrepublik bildet. Da eine regionale Abhängigkeit für die sonstigen aufgeführten Radionuklide nicht besteht, wurden die Messwerte aus allen Ländern zusammengefasst ausgewertet.

Im Sickerwasser bzw. oberflächennahen Grundwasser von Hausmülldeponien sind bei den höchsten Werten für Cs-137 anders als im Vorjahr noch Unterschiede zwischen dem nördlichen und dem südlichen Teil Deutschlands zu bemerken. Die Maximalwerte liegen bei 0,48 Bq/l bzw. 0,32 Bq/l (2010: 0,30 Bq/l bzw. 0,34 Bq/l), der Median für die gesamte Bundesrepublik beträgt 0,047 Bq/l (2010: 0,054 Bq/l).

Bei dem natürlich vorkommenden Nuklid K-40 liegt die Konzentration im Bereich von 0,084 Bq/l bis 100 Bq/l, der Median bei 13 Bq/l (2010: 0,11 bis 72 Bq/l, Median: 16 Bq/l).

H-3 wurde in 78 % der untersuchten Proben mit Werten zwischen 5 Bq/l und 580 Bq/l (2010: 5,6 bis 220 Bq/l) gefunden.

Bei den Abfällen der Verbrennungsanlagen ergibt sich folgendes Bild:

Co-60 wurde in sehr geringer spezifischer Aktivität in einer Probe aus der MVA Büddenstedt (Niedersachsen, 0,58 Bq/kg TM) gemessen (2010: Nieders.: 0,30 Bq/kg TM und Rheinland-Pfalz: 1,1 Bq/kg TM).

In zahlreichen Proben konnte das in der Nuklearmedizin angewandte Nuklid I-131 mit Werten von 0,3 Bq/kg TM bis 39 Bq/kg TM (2010: 0,28 bis 640 Bq/kg TM) nachgewiesen werden.

Für K-40 wurden Messwerte von 36 Bq/kg TM bis 1700 Bq/kg TM (2010: 60 bis 1600 Bq/kg TM) angegeben, für I-131 wurden Werte von 0,65 Bq/kg TM bis 41 Bq/kg TM (2010: 0,48 bis 43 Bq/kg TM) mitgeteilt.

Auch in einer Probe Rohschlacke aus der o.g. MVA wurden Spuren von Co-60 (0,48 Bq/kg TM) festgestellt (2010: 0,33 Bq/kg TM).

Die K-40-Messwerte liegen im Bereich von 3,1 Bq/kg TM bis 1800 Bq/kg TM (2010: 3,1 bis 1600 Bq/kg TM) mit einem Median von 100 Bq/kg TM (2010: 120 Bq/kg TM). Für I-131 wurden Messwerte von 0,27 Bq/kg TM bis 520 Bq/kg TM (2010: 0,37 bis 1100 Bq/kg TM) ermittelt.

Bei den flüssigen Rückständen aus Rauchgasreinigungsanlagen liegen die ermittelten Wert für Cs-137 im Bereich von 0,067 Bq/l bis 1,4 Bq/l, in den höher belasteten Gebieten unterhalb der gefundenen Nachweisgrenze (2010: ebenfalls alle Werte kleiner Nachweisgrenze), für das Gebiet der Bundesrepublik wurde ein Median von <0,081 Bq/l (2010: <0,092 Bq/l) berechnet.

Die spezifische Aktivität des natürlich vorkommenden Nuklids K-40 liegt im Bereich von 290 Bq/kg TM bis 750 Bq/kg TM, der Median bei 480 Bq/kg TM (2010: 200 bis 980 Bq/kg TM, Median: 490 Bq/kg TM).

Zusammenfassend ist festzustellen, dass der Gehalt an Cs-137 in Abfällen oft noch durch den Fallout nach dem Reaktorunfall von Tschernobyl bestimmt wird, was durch die höheren Werte im südlichen Gebiet der Bundesrepublik Deutschland gegenüber den anderen Gebieten zum Ausdruck kommt.
Tabelle 2.7-1 Überwachung von Abfällen im Jahr 2011
(Monitoring of wastes in the year 2011)

<table>
<thead>
<tr>
<th>Land</th>
<th>Nuklid</th>
<th>Anzahl gesamt</th>
<th>Anzahl <NWG</th>
<th>Minimalwert</th>
<th>Maximalwert</th>
<th>Mittelwert</th>
<th>Median</th>
<th>Median 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sickerwasser (Bq/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nord ²</td>
<td>Cs-137</td>
<td>58</td>
<td>31</td>
<td>0,0058</td>
<td>0,48</td>
<td>0,04</td>
<td><0,047</td>
<td></td>
</tr>
<tr>
<td>Süd ³</td>
<td>Cs-137</td>
<td>6</td>
<td>0</td>
<td>0,09</td>
<td>0,32</td>
<td>0,17</td>
<td>0,14</td>
<td>0,11</td>
</tr>
<tr>
<td>Alle Länder</td>
<td>K-40</td>
<td>64</td>
<td>7</td>
<td>0,084</td>
<td>100</td>
<td>19</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>H-3</td>
<td>64</td>
<td>14</td>
<td>5</td>
<td>580</td>
<td>61</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>Flugasche / Filterstaub (Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nord ²</td>
<td>Cs-137</td>
<td>43</td>
<td>1</td>
<td>0,39</td>
<td>110</td>
<td>20</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Süd ³</td>
<td>Cs-137</td>
<td>3</td>
<td>0</td>
<td>170</td>
<td>310</td>
<td>250</td>
<td>290</td>
<td>260</td>
</tr>
<tr>
<td>Alle Länder</td>
<td>K-40</td>
<td>46</td>
<td>0</td>
<td>31</td>
<td>3200</td>
<td>1200</td>
<td>1000</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>46</td>
<td>45</td>
<td>0,3</td>
<td>39</td>
<td>0,58</td>
<td><0,27</td>
<td><0,81</td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>42</td>
<td>22</td>
<td>0,3</td>
<td>39</td>
<td>0,88</td>
<td><1,3</td>
<td></td>
</tr>
<tr>
<td>Schlacke (Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nord ²</td>
<td>Cs-137</td>
<td>63</td>
<td>2</td>
<td>0,16</td>
<td>40</td>
<td>3,2</td>
<td>1,5</td>
<td>1,2</td>
</tr>
<tr>
<td>Süd ³</td>
<td>Cs-137</td>
<td>3</td>
<td>0</td>
<td>7,5</td>
<td>14</td>
<td>10</td>
<td>9,6</td>
<td>6,8</td>
</tr>
<tr>
<td>Alle Länder</td>
<td>K-40</td>
<td>66</td>
<td>0</td>
<td>36</td>
<td>1700</td>
<td>360</td>
<td>290</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>Co-60</td>
<td>66</td>
<td>65</td>
<td>0,65</td>
<td>41</td>
<td>0,48</td>
<td><0,2</td>
<td><0,16</td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>60</td>
<td>54</td>
<td>0,3</td>
<td>39</td>
<td>0,34</td>
<td><0,27</td>
<td></td>
</tr>
<tr>
<td>Feste Rückstände der Rauchgasreinigung (Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nord ²</td>
<td>Cs-137</td>
<td>39</td>
<td>12</td>
<td>0,23</td>
<td>38</td>
<td>14</td>
<td>2</td>
<td>2,2</td>
</tr>
<tr>
<td>Süd ³</td>
<td>Cs-137</td>
<td>3</td>
<td>0</td>
<td>4,9</td>
<td>110</td>
<td>54</td>
<td>44</td>
<td>27</td>
</tr>
<tr>
<td>Alle Länder</td>
<td>K-40</td>
<td>42</td>
<td>5</td>
<td>3,1</td>
<td>1800</td>
<td>530</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>40</td>
<td>10</td>
<td>0,27</td>
<td>520</td>
<td>64</td>
<td>3,5</td>
<td>3,1</td>
</tr>
<tr>
<td>Flüssige Rückstände der Rauchgasreinigung (Bq/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nord ²</td>
<td>Cs-137</td>
<td>26</td>
<td>19</td>
<td>0,067</td>
<td>1,4</td>
<td><0,079</td>
<td><0,092</td>
<td></td>
</tr>
<tr>
<td>Süd ³</td>
<td>Cs-137</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>46</td>
<td>11</td>
<td>4</td>
<td>5,0</td>
</tr>
<tr>
<td>Alle Länder</td>
<td>K-40</td>
<td>28</td>
<td>8</td>
<td>0,64</td>
<td>46</td>
<td>11</td>
<td>4</td>
<td>3,1</td>
</tr>
<tr>
<td></td>
<td>I-131</td>
<td>28</td>
<td>3</td>
<td>0,27</td>
<td>1300</td>
<td>110</td>
<td>3,1</td>
<td>7,4</td>
</tr>
<tr>
<td>Kompost (Bq/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nord ²</td>
<td>Cs-137</td>
<td>70</td>
<td>0</td>
<td>2</td>
<td>19</td>
<td>6,5</td>
<td>6,1</td>
<td>5,8</td>
</tr>
<tr>
<td>Süd ³</td>
<td>Cs-137</td>
<td>4</td>
<td>0</td>
<td>15</td>
<td>52</td>
<td>32</td>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td>Alle Länder</td>
<td>K-40</td>
<td>74</td>
<td>0</td>
<td>290</td>
<td>750</td>
<td>480</td>
<td>480</td>
<td>490</td>
</tr>
</tbody>
</table>

1 Liegen mehr als 50 % der gemessenen Werte unterhalb der Nachweisgrenze, werden nur der Minimalwert und der Maximalwert und der Median angegeben. Der arithmetische Mittelwert wurde aus den Messwerten ohne Berücksichtigung der Nachweisgrenzen errechnet. Beim Median dagegen gehen die Nachweisgrenzen in die Berechnung ein.
2 Nördlich zw. westliche der Linie Radolfzell-Eichstätt-Regensburg-Zwiesel
3 Südlich bzw. östlich der Linie Radolfzell-Eichstätt-Regensburg-Zwiesel

2.8 Inkorporationsüberwachung der Bevölkerung
(Monitoring of incorporation among the population)

In den Abbildungen 2.8-5 und 2.8-6 sind die bisher vorliegenden Ergebnisse von Referenzgruppenmessungen (getrennt für Frauen und Männer) an verschiedenen Orten in Deutschland zusammengefasst dargestellt. Es ist die bis zu einem bestimmten Zeitpunkt erreichte kumulierte Dosis aus inkorporiertem Cs-137 angegeben. Dieser Dosiswert ergibt sich aus der fortlaufenden Summierung der monatlichen effektiven Dosen. Allerdings liegen die Messergebnisse in den letzten Jahren überwiegend unterhalb der Erkennungsgrenze der Messanlagen, so dass die effektiven Dosen Maximalwerte darstellen. Für Männer aus dem Raum München z. B. beträgt diese kumulierte Dosis für die 25 Jahre seit dem Unfall in Tschernobyl maximal 0,23 mSv.

Der Tabelle 2.8-1 sind Jahres- und Monatsmittelwerte für den Raum München (Annual and monthly mean values in the Munich area) zu entnehmen. Messstelle: Bundesamt für Strahlenschutz, Leitstelle Inkorporationsüberwachung

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Frauen</th>
<th>Männer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zahl der Personen</td>
<td>spezifische Aktivität in Bq/kg</td>
<td>Zahl der Personen</td>
</tr>
<tr>
<td>K-40</td>
<td>Cs-137</td>
<td>K-40</td>
</tr>
<tr>
<td>1996</td>
<td>282</td>
<td>47</td>
</tr>
<tr>
<td>1997</td>
<td>304</td>
<td>44</td>
</tr>
<tr>
<td>1998</td>
<td>316</td>
<td>45</td>
</tr>
<tr>
<td>1999</td>
<td>290</td>
<td>56</td>
</tr>
<tr>
<td>2000</td>
<td>265</td>
<td>58</td>
</tr>
<tr>
<td>2001</td>
<td>362</td>
<td>57</td>
</tr>
<tr>
<td>2002</td>
<td>367</td>
<td>57</td>
</tr>
<tr>
<td>2003</td>
<td>419</td>
<td>57</td>
</tr>
<tr>
<td>2004</td>
<td>398</td>
<td>56</td>
</tr>
<tr>
<td>2005</td>
<td>444</td>
<td>55</td>
</tr>
<tr>
<td>2006</td>
<td>456</td>
<td>55</td>
</tr>
<tr>
<td>2007</td>
<td>387</td>
<td>54</td>
</tr>
<tr>
<td>2008</td>
<td>421</td>
<td>49</td>
</tr>
<tr>
<td>2009</td>
<td>432</td>
<td>49</td>
</tr>
<tr>
<td>2010</td>
<td>392</td>
<td>49</td>
</tr>
<tr>
<td>2011</td>
<td>322</td>
<td>53</td>
</tr>
</tbody>
</table>

Monatsmittelwerte für 2011

<table>
<thead>
<tr>
<th>Monat</th>
<th>Frauen</th>
<th>Männer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zahl der Personen</td>
<td>spezifische Aktivität in Bq/kg</td>
<td>Zahl der Personen</td>
</tr>
<tr>
<td>K-40</td>
<td>Cs-137</td>
<td>K-40</td>
</tr>
<tr>
<td>Januar</td>
<td>24</td>
<td>53</td>
</tr>
<tr>
<td>Februar</td>
<td>32</td>
<td>58</td>
</tr>
<tr>
<td>März</td>
<td>32</td>
<td>56</td>
</tr>
<tr>
<td>April</td>
<td>30</td>
<td>51</td>
</tr>
<tr>
<td>Mai</td>
<td>30</td>
<td>54</td>
</tr>
<tr>
<td>Juni</td>
<td>24</td>
<td>50</td>
</tr>
<tr>
<td>Juli</td>
<td>26</td>
<td>51</td>
</tr>
<tr>
<td>August</td>
<td>25</td>
<td>53</td>
</tr>
<tr>
<td>September</td>
<td>30</td>
<td>51</td>
</tr>
<tr>
<td>Oktober</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>November</td>
<td>24</td>
<td>49</td>
</tr>
<tr>
<td>Dezember</td>
<td>33</td>
<td>52</td>
</tr>
</tbody>
</table>
Tabelle 2.8-2 Jahres- und Monatsmittelwerte für den Raum Karlsruhe

(Annual and monthly mean values in the Karlsruhe area)

Messstelle: Forschungszentrum Karlsruhe

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Monat</th>
<th>Frauen</th>
<th>Männer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zahl der Personen</td>
<td>spezifische Aktivität in Bq/kg</td>
<td>Zahl der Personen</td>
</tr>
<tr>
<td></td>
<td>K-40</td>
<td>Cs-137</td>
<td>K-40</td>
</tr>
<tr>
<td>1996</td>
<td>36</td>
<td>49</td>
<td>38</td>
</tr>
<tr>
<td>1997</td>
<td>112</td>
<td>51</td>
<td>112</td>
</tr>
<tr>
<td>1998</td>
<td>114</td>
<td>51</td>
<td>118</td>
</tr>
<tr>
<td>1999</td>
<td>110</td>
<td>51,5</td>
<td>115</td>
</tr>
<tr>
<td>2000</td>
<td>109</td>
<td>51</td>
<td>106</td>
</tr>
<tr>
<td>2001</td>
<td>94</td>
<td>52</td>
<td>101</td>
</tr>
<tr>
<td>2002</td>
<td>86</td>
<td>50</td>
<td>86</td>
</tr>
<tr>
<td>2003</td>
<td>56</td>
<td>52</td>
<td>54</td>
</tr>
<tr>
<td>2004</td>
<td>62</td>
<td>53</td>
<td>56</td>
</tr>
<tr>
<td>2005</td>
<td>41</td>
<td>52</td>
<td>35</td>
</tr>
<tr>
<td>2006</td>
<td>19</td>
<td>41</td>
<td>18</td>
</tr>
<tr>
<td>2007</td>
<td>83</td>
<td>49</td>
<td>73</td>
</tr>
<tr>
<td>2008</td>
<td>81</td>
<td>48</td>
<td>69</td>
</tr>
<tr>
<td>2009</td>
<td>72</td>
<td>48</td>
<td>96</td>
</tr>
<tr>
<td>2010</td>
<td>69</td>
<td>49</td>
<td>97</td>
</tr>
<tr>
<td>2011</td>
<td>70</td>
<td>47</td>
<td>91</td>
</tr>
</tbody>
</table>

Monatsmittelwerte für 2011

<table>
<thead>
<tr>
<th>Monat</th>
<th>Zahl der Personen</th>
<th>spezifische Aktivität in Bq/kg</th>
<th>Zahl der Personen</th>
<th>spezifische Aktivität in Bq/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Januar</td>
<td>5</td>
<td>46</td>
<td>6</td>
<td>69</td>
</tr>
<tr>
<td>Februar</td>
<td>7</td>
<td>48</td>
<td>7</td>
<td>66</td>
</tr>
<tr>
<td>März</td>
<td>6</td>
<td>51</td>
<td>9</td>
<td>67</td>
</tr>
<tr>
<td>April</td>
<td>8</td>
<td>48</td>
<td>6</td>
<td>69</td>
</tr>
<tr>
<td>Mai</td>
<td>6</td>
<td>48</td>
<td>8</td>
<td>66</td>
</tr>
<tr>
<td>Juni</td>
<td>2</td>
<td>41</td>
<td>6</td>
<td>61</td>
</tr>
<tr>
<td>Juli</td>
<td>5</td>
<td>45</td>
<td>8</td>
<td>65</td>
</tr>
<tr>
<td>August</td>
<td>5</td>
<td>46</td>
<td>9</td>
<td>64</td>
</tr>
<tr>
<td>September</td>
<td>7</td>
<td>47</td>
<td>9</td>
<td>62</td>
</tr>
<tr>
<td>Oktober</td>
<td>6</td>
<td>45</td>
<td>8</td>
<td>65</td>
</tr>
<tr>
<td>November</td>
<td>8</td>
<td>46</td>
<td>9</td>
<td>62</td>
</tr>
<tr>
<td>Dezember</td>
<td>5</td>
<td>48</td>
<td>6</td>
<td>60</td>
</tr>
</tbody>
</table>
Abbildung 2.8-1 Inkorporiertes Cs-134, Cs-137 und resultierende Strahlenexposition
Referenzgruppe: BfS-München, Frauen
(Incorporated radiocesium and resulting radiation exposure
Reference group: BfS Munich, women)

Abbildung 2.8-2 Inkorporiertes Cs-134, Cs-137 und resultierende Strahlenexposition
Referenzgruppe: BfS-München, Männer
(Incorporated radiocesium and resulting radiation exposure
Reference group: BfS Munich, men)
Abbildung 2.8-3 Inkorporiertes Cs-134, Cs-137 und resultierende Strahlenexposition
Referenzgruppe: Karlsruhe, Frauen
(Incorporated radiocesium and resulting radiation exposure
Reference group: Karlsruhe, women)

Abbildung 2.8-4 Inkorporiertes Cs-134, Cs-137 und resultierende Strahlenexposition
Referenzgruppe: Karlsruhe, Männer
(Incorporated radiocesium and resulting radiation exposure
Reference group: Karlsruhe, men)
Abbildung 2.8-5 Strahlenexposition aus inkorporiertem radioaktivem Cäsium
Vergleich der Referenzgruppen: Frauen

(Radiation exposure from incorporated radioactive cesium
Comparison of reference groups: women)

Abbildung 2.8-6 Strahlenexposition aus inkorporiertem radioaktivem Cäsium
Vergleich der Referenzgruppen: Männer

(Radiation exposure from incorporated radioactive cesium
Comparison of reference groups: men)
III BERUFLICHE STRAHLENEXPOSITIONEN

(OCCUPATIONAL RADIATION EXPOSURES)

Bearbeitet vom Bundesamt für Strahlenschutz
1. Personendosisüberwachung
(Monitoring of personal dose)

1.1 Dosimeterüberwachte Personen
(Monitoring with personal dosimeters)

Die Gesamtzahl der überwachten Personen und der Betriebe, in denen beruflich strahlenexponierte Personen arbeiten, ist der Tabelle 1.1-1 zu entnehmen. Da 78 % der überwachten Personen im Bereich der Medizin tätig sind, ist in dieser Tabelle der Anteil des Arbeitsbereiches „Medizin“ gesondert ausgewiesen.

Die Zusammenstellung der Fälle mit Jahrespersonendosen über 20 mSv gibt nur Aufschluss über den Stand der Einhaltung der Grenzwerte nach Strahlenschutz- und Röntgenverordnung. Ein qualitatives Bild der Strahlenexposition aller Überwachten vermitteln die Häufigkeitsverteilungen der Jahrespersonendosen. Die Jahrespersonendosis ist die Summe aller dem Strahlenschutzregister mitgeteilten, gültigen Personendosisswerte einer Person im Kalenderjahr. Die Dosisanteile durch natürliche externe Strahlenexposition sind bereits subtrahiert. In der Tabelle 1.1-3 ist jeweils für den medizinischen und nichtmedizinischen Arbeitsbereich die Anzahl von Personen angegeben, für die während des ganzen Jahres die Personendosis unterhalb der Erkennungsgrenze lag, bzw. Jahrespersonendosen zwischen 0,1 und 0,2 mSv, zwischen 0,2 und 0,4 mSv usw. registriert wurden. Liegt die Strahlenexposition während des ganzen Jahres unterhalb der unteren Erkennungsgrenze für Ganzkörperdosis von 0,05 mSv, dann wird von der Messstelle für die überwachte Person eine Jahrespersonendosis von 0 mSv festgelegt. Dies trifft für den größten Teil der überwachten Personen zu. Eine messbare berufliche Strahlenexposition erhielten deshalb nur 19 % aller mit Personendosimetern überwachten Personen.

Ist vorauszusehen, dass im Kalenderjahr die Teilkörperdosis für die Hände, die Haut oder die Augenlinse festgelegte Dosiswerte überschreiten kann, so ist die Dosis für diese Körperteile durch weitere Dosimeter festzustellen. Diese Überwachung wurde im Jahr 2011 für die Hände bei ca. 22 000 Personen durchgeführt. Von diesen 22 000 Überwachten wiesen ca. 6000 Personen Teilkörperdosen von mehr als 0,5 mSv auf (untere Erkennungsgrenze für Teilkörperdosis von 0,05 mSv). Im Jahr 2011 kam es zu zwei Überschreitungen von Grenzwerten für die Teilkörperdosis.

Tabelle 1.1-4 enthält Zeitreihen über die mittlere Jahrespersonendosis und Jahreskollektivdosis aller mit Personendosimetern überwachten Personen. Die mittlere Jahrespersonendosis im Jahr 2011 betrug 0,11 mSv. Die gegenüber dem nichtmedizinischen Bereich niedrigeren Mittelwerte des medizinischen Bereiches sind im Wesentlichen auf den höheren Anteil an Personen zurückzuführen, die zwar regelmäßig überwacht werden, aber keiner Strahlenexposition ausgesetzt sind. Bildet man den Mittelwert über jene Personen, die einer messbaren Strahlenexposition ausgesetzt waren (ca. 66 000 Personen), so ergibt sich für diese Gruppe der Exponierten eine mittlere Jahrespersonendosis von 0,58 mSv (Vorjahr: 0,66 mSv).

Die Jahreskollektivdosis ist die Summe aller dem Strahlenschutzregister gemeldeten gültigen Personendosisswerte im Kalenderjahr. Im Jahr 2011 betrug die Jahreskollektivdosis aller überwachten Personen 38 Personen-Sv (Vorjahr 40 Personen-Sv).
Tabelle 1.1-1 Überwachung mit amtlichen Personendosimetern im Jahr 2011
(Auszug der überwachten Personen und Betriebe, Anteile im medizinischen Arbeitsbereich)
(Monitoring with official personal dosemeters in the year 2011)
(Number of monitored persons and plants, proportions in the medical occupational area)

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Überwachte Personen</th>
<th>Überwachte Betriebe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gesamt</td>
<td>Medizin</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>46885</td>
<td>33861</td>
</tr>
<tr>
<td>Bayern</td>
<td>65763</td>
<td>48813</td>
</tr>
<tr>
<td>Berlin</td>
<td>16925</td>
<td>12707</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>6934</td>
<td>5872</td>
</tr>
<tr>
<td>Bremen</td>
<td>3595</td>
<td>3205</td>
</tr>
<tr>
<td>Hamburg</td>
<td>10762</td>
<td>7605</td>
</tr>
<tr>
<td>Hessen</td>
<td>27467</td>
<td>20105</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>5834</td>
<td>4346</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>32179</td>
<td>25626</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>74620</td>
<td>60617</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>16389</td>
<td>13956</td>
</tr>
<tr>
<td>Saarland</td>
<td>4839</td>
<td>4510</td>
</tr>
<tr>
<td>Sachsen</td>
<td>13950</td>
<td>11466</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>8248</td>
<td>6898</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>12247</td>
<td>9365</td>
</tr>
<tr>
<td>Thüringen</td>
<td>6917</td>
<td>6462</td>
</tr>
<tr>
<td>Bundeswehr</td>
<td>1439</td>
<td>1212</td>
</tr>
<tr>
<td>Gesamtzahl 2011*</td>
<td>348949</td>
<td>272630</td>
</tr>
<tr>
<td>Anteil Medizin</td>
<td>78 %</td>
<td></td>
</tr>
<tr>
<td>Gesamtzahl 2010**</td>
<td>341223</td>
<td>264005</td>
</tr>
<tr>
<td>Anteil Medizin</td>
<td>77 %</td>
<td></td>
</tr>
<tr>
<td>Änderung gegenüber 2010</td>
<td>2,3 %</td>
<td>3,3 %</td>
</tr>
</tbody>
</table>

* Die Summen über die einzelnen Bundesländer sind größer als die Gesamtzahl der überwachten Personen bzw. Betriebe, da eine Person in mehreren Bundesländern arbeiten kann

** Abweichungen der Angaben gegenüber dem Vorjahresbericht beruhen auf Nachmeldungen

Tabelle 1.1-2 Anzahl der Personen mit Jahrespersonendosen oberhalb von 20 mSv im Jahr 2011
(Number of persons with annual personal doses above 20 mSv in the year 2011)

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Anzahl der Jahrespersonendosen >20 mSv/Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arbeitsbereich</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>1</td>
</tr>
<tr>
<td>Bayern</td>
<td>2</td>
</tr>
<tr>
<td>Berlin</td>
<td>1</td>
</tr>
<tr>
<td>Brandenburg</td>
<td></td>
</tr>
<tr>
<td>Bremen</td>
<td>1</td>
</tr>
<tr>
<td>Hamburg</td>
<td>1</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td></td>
</tr>
<tr>
<td>Niedersachsen</td>
<td></td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td></td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>2</td>
</tr>
<tr>
<td>Saarland</td>
<td></td>
</tr>
<tr>
<td>Sachsen</td>
<td></td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td></td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td></td>
</tr>
<tr>
<td>Thüringen</td>
<td>2</td>
</tr>
<tr>
<td>Gesamtzahl 2011*</td>
<td>7</td>
</tr>
<tr>
<td>Bezogen auf Überwachenzahl 2011</td>
<td>0,002 %</td>
</tr>
<tr>
<td>Gesamtzahl 2010**</td>
<td>3</td>
</tr>
<tr>
<td>Bezogen auf Überwachenzahl 2010</td>
<td>0,001 %</td>
</tr>
</tbody>
</table>
* Die Summen über die einzelnen Bundesländer sind größer als die Gesamtzahl der überwachten Personen bzw. Betriebe, da eine Person in mehreren Bundesländern arbeiten kann
** Abweichungen der Angaben gegenüber dem Vorjahresbericht beruhen auf Nachmeldungen

Tabelle 1.1-3 Verteilung der Jahrespersonendosen im Jahr 2011
(Distribution of the annual personal doses in the year 2011)

<table>
<thead>
<tr>
<th>Dosis H in mSv</th>
<th>Gesamt*</th>
<th>Medizin</th>
<th>Nichtmedizin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anzahl</td>
<td>Kumulativer Anteil in %</td>
<td>Anzahl</td>
</tr>
<tr>
<td>H=0</td>
<td>282 547</td>
<td>81 %</td>
<td>224 380</td>
</tr>
<tr>
<td>0<H≤0,2</td>
<td>36 905</td>
<td>92 %</td>
<td>29 632</td>
</tr>
<tr>
<td>0,2<H≤0,4</td>
<td>10 725</td>
<td>95 %</td>
<td>8 119</td>
</tr>
<tr>
<td>0,4<H≤0,6</td>
<td>5 052</td>
<td>96 %</td>
<td>3 592</td>
</tr>
<tr>
<td>0,6<H≤0,8</td>
<td>3 048</td>
<td>97 %</td>
<td>2 050</td>
</tr>
<tr>
<td>0,8<H≤1,0</td>
<td>2 161</td>
<td>98 %</td>
<td>1 403</td>
</tr>
<tr>
<td>1<H≤2</td>
<td>4 727</td>
<td>99 %</td>
<td>2 514</td>
</tr>
<tr>
<td>2<H≤4</td>
<td>2 420</td>
<td>< 100 %</td>
<td>774</td>
</tr>
<tr>
<td>4<H≤6</td>
<td>740</td>
<td>< 100 %</td>
<td>92</td>
</tr>
<tr>
<td>6<H≤8</td>
<td>319</td>
<td>< 100 %</td>
<td>34</td>
</tr>
<tr>
<td>8<H≤10</td>
<td>179</td>
<td>< 100 %</td>
<td>22</td>
</tr>
<tr>
<td>10<H≤15</td>
<td>110</td>
<td>< 100 %</td>
<td>15</td>
</tr>
<tr>
<td>15<H≤20</td>
<td>9</td>
<td>< 100 %</td>
<td>2</td>
</tr>
<tr>
<td>H>20</td>
<td>7</td>
<td>100 %</td>
<td>1</td>
</tr>
<tr>
<td>Gesamt *</td>
<td>348 949</td>
<td></td>
<td>272 630</td>
</tr>
</tbody>
</table>

* Die Summe aus Medizin und Nichtmedizin ist größer als die Gesamtanzahl, da eine Person in beiden Bereichen arbeiten kann

Tabelle 1.1-4 Mittlere Jahrespersonendosis und Jahreskollektivdosis der mit Personendosimetern überwachten Personen
(Mean annual personal dose and annual collective dose of the persons monitored with personal dosemeters)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Gesamt</th>
<th>Medizin</th>
<th>Nichtmedizin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mittl. Jahresdosis pro Person in mSv</td>
<td>Jahreskollektivdosis in Personen-Sv</td>
<td>Mittl. Jahresdosis pro Person in mSv</td>
</tr>
<tr>
<td>2001</td>
<td>0,14</td>
<td>44</td>
<td>0,07</td>
</tr>
<tr>
<td>2002</td>
<td>0,15</td>
<td>48</td>
<td>0,07</td>
</tr>
<tr>
<td>2003</td>
<td>0,14</td>
<td>44</td>
<td>0,07</td>
</tr>
<tr>
<td>2004</td>
<td>0,14</td>
<td>42</td>
<td>0,07</td>
</tr>
<tr>
<td>2005</td>
<td>0,15</td>
<td>46</td>
<td>0,07</td>
</tr>
<tr>
<td>2006</td>
<td>0,13</td>
<td>41</td>
<td>0,07</td>
</tr>
<tr>
<td>2007</td>
<td>0,14</td>
<td>46</td>
<td>0,07</td>
</tr>
<tr>
<td>2008</td>
<td>0,14</td>
<td>46</td>
<td>0,08</td>
</tr>
<tr>
<td>2009</td>
<td>0,13</td>
<td>43</td>
<td>0,06</td>
</tr>
<tr>
<td>2010</td>
<td>0,12</td>
<td>40</td>
<td>0,06</td>
</tr>
<tr>
<td>2011</td>
<td>0,11</td>
<td>38</td>
<td>0,07</td>
</tr>
</tbody>
</table>

Abbildung 1.1-1: Anzahl der mit Dosimetern überwachten Personen und der Personen mit Jahresdosen von mehr als 20 mSv (ab 1990 einschließlich der neuen Bundesländer)
(Number of persons monitored with dosimeters and persons with annual personal doses above 20 mSv - as from 1990 including the new federal states)

Abbildung 1.1-2: Jahreskollektivdosis in medizinischen und nichtmedizinischen Arbeitsbereichen
(Annual collective dose in medical and non-medical work sectors - as from 1990 including the new federal states)
1.2 Übersicht über beruflich strahlenexponierte Personen in kerntechnischen Anlagen

(Overview of data for occupationally exposed persons employed in nuclear facilities)

In den Tabellen 1.2-1 bis 1.2-2 ist die Jahreskollektivdosis nur fürPhotonen angegeben, da die Dosisbeiträge durch Neutronen- und Betastrahler nur in wenigen Fällen von Bedeutung sind. Abweichungen der Angaben über vergangene Jahre gegenüber dem Vorjahresbericht beruhen auf Nachmeldungen.

Tabelle 1.2-1 Berufliche Strahlenexposition beim Betrieb von Leichtwasserreaktoren

(Occupational radiation exposure during the operation of light water reactors)

<table>
<thead>
<tr>
<th>Jahr**</th>
<th>Zahl der Anlagen</th>
<th>Erzeugte Energie [TWh]</th>
<th>Überwachte Personen</th>
<th>Jahreskollektivdosis durch Photonen in Personen-Sv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gesamt</td>
<td>davon Fremdpersonal</td>
</tr>
<tr>
<td>2001</td>
<td>19</td>
<td>171</td>
<td>28 105</td>
<td>21 861</td>
</tr>
<tr>
<td>2002</td>
<td>19</td>
<td>165</td>
<td>28 626</td>
<td>21 738</td>
</tr>
<tr>
<td>2003</td>
<td>19</td>
<td>165</td>
<td>28 677</td>
<td>22 384</td>
</tr>
<tr>
<td>2004</td>
<td>18</td>
<td>167</td>
<td>28 777</td>
<td>22 972</td>
</tr>
<tr>
<td>2005</td>
<td>18</td>
<td>163</td>
<td>30 222</td>
<td>24 118</td>
</tr>
<tr>
<td>2006</td>
<td>17</td>
<td>167</td>
<td>25 664</td>
<td>21 163</td>
</tr>
<tr>
<td>2007</td>
<td>17</td>
<td>141</td>
<td>26 761</td>
<td>22 200</td>
</tr>
<tr>
<td>2008</td>
<td>17</td>
<td>149</td>
<td>24 835</td>
<td>20 268</td>
</tr>
<tr>
<td>2009</td>
<td>17</td>
<td>135</td>
<td>26 619</td>
<td>21 945</td>
</tr>
<tr>
<td>2010</td>
<td>17</td>
<td>141</td>
<td>27 666</td>
<td>22 958</td>
</tr>
<tr>
<td>2011</td>
<td>17</td>
<td>108</td>
<td>27 700</td>
<td>22 900</td>
</tr>
</tbody>
</table>

** Abweichungen der Angaben über vergangene Jahre gegenüber dem Vorjahresbericht beruhen auf Nachmeldungen

Tabelle 1.2-2 Berufliche Strahlenexposition beim Betrieb und der Stilllegung von Forschungsreaktoren

(Occupational radiation exposure during the operation and decommissioning of research reactors)

<table>
<thead>
<tr>
<th>Jahr**</th>
<th>Zahl der Anlagen</th>
<th>Überwachte Personen</th>
<th>Jahreskollektivdosis durch Photonen in Personen-Sv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gesamt</td>
<td>davon Fremdpersonal</td>
</tr>
<tr>
<td>2001</td>
<td>10</td>
<td>2234</td>
<td>1270</td>
</tr>
<tr>
<td>2002</td>
<td>9</td>
<td>1746</td>
<td>907</td>
</tr>
<tr>
<td>2003</td>
<td>10</td>
<td>1986</td>
<td>1043</td>
</tr>
<tr>
<td>2004</td>
<td>10</td>
<td>2215</td>
<td>1278</td>
</tr>
<tr>
<td>2005</td>
<td>10</td>
<td>2331</td>
<td>1359</td>
</tr>
<tr>
<td>2006</td>
<td>10</td>
<td>2413</td>
<td>1322</td>
</tr>
<tr>
<td>2007</td>
<td>10</td>
<td>2506</td>
<td>1454</td>
</tr>
<tr>
<td>2008</td>
<td>10</td>
<td>2542</td>
<td>1486</td>
</tr>
<tr>
<td>2009</td>
<td>10</td>
<td>2543</td>
<td>1485</td>
</tr>
<tr>
<td>2010</td>
<td>10</td>
<td>2550</td>
<td>1500</td>
</tr>
<tr>
<td>2011</td>
<td>10</td>
<td>2500</td>
<td>1500</td>
</tr>
</tbody>
</table>

** Abweichungen der Angaben über vergangene Jahre gegenüber dem Vorjahresbericht beruhen auf Nachmeldungen

Daten: Stand Juni 2012
2. Überwachung des fliegenden Personals
(Aircraft crew monitoring)

Mit der Strahlenschutzverordnung vom 20.07.2001 wurden die Anforderungen der EU-Richtlinie 96/29 EURATOM in nationales Recht umgesetzt. Überwachungspflichtig ist damit auch Luftfahrtpersonal, das in einem Beschäftigungsverhältnis gemäß deutschem Arbeitsrecht steht und während des Fluges durch kosmische Strahlung eine effektive Dosis von mindestens 1 mSv im Kalenderjahr erhalten kann. Die Betreiber von Flugzeugen ermitteln mit Computerprogrammen die Dosiswerte der kosmischen Strahlenexposition, ordnen diese personenbezogen ihrem Personal zu und geben diese über das Luftfahrtbundesamt an das Strahlenschutzregister des BfS weiter.

In Deutschland wurden im Jahr 2011 39 201 Personen (Vorjahr: 37 282) überwacht, die mittlere effektive Jahresdosis betrug 2,1 mSv (Vorjahr 2,3 mSv). Der höchste Jahrespersonendosiswert liegt bei 6,5 mSv. Die Verteilung ist in Tabelle 2-1 wiedergegeben. Die Kollektivdosis für das Jahr 2011 beträgt ca. 83 Personen-Sv. Das fliegende Personal zählt bezüglich der Kollektivdosis und der mittleren Jahresdosis zu den am höchsten strahlenexponierten Berufsgruppen Deutschlands. Auch die Form der Dosisverteilung ist nicht mit anderen Berufsgruppen vergleichbar.

Tabelle 2-1 Verteilung der effektiven Jahresdosis des fliegenden Personals im Jahr 2011
(Distribution of the annual effective dose of aircraft crews in the year 2011)

<table>
<thead>
<tr>
<th>Dosis E in mSv</th>
<th>Anzahl der Personen</th>
<th>Kumulativer Anteil in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>E=0</td>
<td>278</td>
<td>1 %</td>
</tr>
<tr>
<td>0 <E≤0,5</td>
<td>2674</td>
<td>8 %</td>
</tr>
<tr>
<td>0,5 <E≤1,0</td>
<td>3334</td>
<td>16 %</td>
</tr>
<tr>
<td>1,0 <E≤2,0</td>
<td>11 934</td>
<td>46 %</td>
</tr>
<tr>
<td>2,0 <E≤3,0</td>
<td>12 397</td>
<td>78 %</td>
</tr>
<tr>
<td>3,0 <E≤4,0</td>
<td>7133</td>
<td>96 %</td>
</tr>
<tr>
<td>4,0 <E≤5,0</td>
<td>1354</td>
<td>< 100 %</td>
</tr>
<tr>
<td>5,0 <E≤6,0</td>
<td>93</td>
<td>< 100 %</td>
</tr>
<tr>
<td>6,0 <E≤10,0</td>
<td>4</td>
<td>100 %</td>
</tr>
<tr>
<td>E>10,0</td>
<td>0</td>
<td>100 %</td>
</tr>
<tr>
<td>Gesamt</td>
<td>39 201</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2-2 Anzahl des fliegenden Personals sowie mittlere effektive Jahresdosis und Jahreskollektivdosis
(Number of aircraft crew personnel including mean annual effective dose and annual collective dose)

<table>
<thead>
<tr>
<th>Jahr**</th>
<th>Anzahl der Personen</th>
<th>Mittlere effektive Jahresdosis in mSv</th>
<th>Jahreskollektivdosis in Personen-Sv</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>29 849</td>
<td>2,0</td>
<td>58</td>
</tr>
<tr>
<td>2005</td>
<td>31 225</td>
<td>2,0</td>
<td>62</td>
</tr>
<tr>
<td>2006</td>
<td>32 549</td>
<td>2,2</td>
<td>71</td>
</tr>
<tr>
<td>2007</td>
<td>35 028</td>
<td>2,3</td>
<td>80</td>
</tr>
<tr>
<td>2008</td>
<td>37 116</td>
<td>2,3</td>
<td>86</td>
</tr>
<tr>
<td>2009</td>
<td>36 624</td>
<td>2,4</td>
<td>86</td>
</tr>
<tr>
<td>2010</td>
<td>37 282</td>
<td>2,3</td>
<td>86</td>
</tr>
<tr>
<td>2011</td>
<td>39 201</td>
<td>2,1</td>
<td>83</td>
</tr>
</tbody>
</table>

Daten: Stand Juni 2012
** Abweichungen der Angaben über vergangene Jahre gegenüber dem Vorjahresbericht beruhen auf Nachmeldungen

3. Überwachung von Arbeitsplätzen mit erhöhter Radonexposition
(Monitoring of radon enhanced workplaces)

An Personen, bei denen am Arbeitsplatz erheblich erhöhte Expositionen durch natürliche Strahlungsquellen auftreten können, ist eine Überwachung durchzuführen. Dies betrifft z. B. untertägige Bergwerke, Schauhöhlen und Anlagen der Wassergewinnung. Nach § 95 der Verordnung über den Schutz vor Schäden durch ionisierende Strahlen (Strahlenschutzverordnung - StrlSchV) hat derjenige, der in eigener Verantwortung eine Arbeit ausübt oder ausüben lässt, die einem der in der Anlage XI dieser Verordnung genannten Arbeitsfelder zuzuordnen ist, eine auf den Arbeitsplatz bezogene Abschätzung der Strahlenbelastung durchzuführen (§ 95 Abs. 1). Wird dabei eine erhöhte Strahlenexposition fest-
gestellt, so ist die Arbeit bei der zuständigen Behörde anzeigebedürftig (§ 95 Abs. 2). Für Personen, die anzeigebedürftige Arbeiten ausführen, ist die Körperdosis zu ermitteln. Für die Beschäftigten der Wismut GmbH, die Arbeiten zur Stilllegung und Sanierung der Betriebsanlagen und Betriebsstätten des Uranerzbergbaues ausführen, werden die Daten der Körperdosis auf der Grundlage der Regelungen des § 118 Abs. 2 Satz 1 ermittelt.

4. Inkorporationsüberwachung beruflich strahlenexponierter Personen (Incorporation monitoring of occupationally exposed persons)

Tabelle 4-1 Verteilung der effektiven Jahresdosis durch Inkorporation im Jahr 2011 (Distribution of the annual effective doses due to incorporation in the year 2011)

<table>
<thead>
<tr>
<th>Dosis E durch Inkorporation in mSv</th>
<th>Anzahl der Personen</th>
<th>Kumulativer Anteil in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>E=0</td>
<td>1254</td>
<td>95 %</td>
</tr>
<tr>
<td>0 <E<0,2</td>
<td>53</td>
<td>99 %</td>
</tr>
<tr>
<td>0,2 <E<1,0</td>
<td>10</td>
<td>< 100 %</td>
</tr>
<tr>
<td>1,0 <E<6,0</td>
<td>4</td>
<td>100 %</td>
</tr>
<tr>
<td>6,0 <E<20,0</td>
<td>0</td>
<td>100 %</td>
</tr>
<tr>
<td>E>20,0</td>
<td>0</td>
<td>100 %</td>
</tr>
<tr>
<td>Gesamt</td>
<td>1321</td>
<td></td>
</tr>
</tbody>
</table>
IV STRAHLENEXPOSITION DURCH MEDIZINISCHE MASSNAHMEN

(RADIATION EXPOSURES FROM MEDICAL APPLICATIONS)

Bearbeitet vom Bundesamt für Strahlenschutz
1. Diagnostische Strahlenanwendungen
(Diagnostic applications of radiation)

1.1 Röntgendiagnostik
(X-ray diagnostics)

Tabelle 1.1-1 Typische Werte für die effektive Dosis häufiger Röntgenmaßnahmen
(Ranges of effective doses for frequently applied x-ray diagnostic procedures)

<table>
<thead>
<tr>
<th>Untersuchungsart</th>
<th>Effektive Dosis in mSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untersuchungen mit Röntgenaufnahmen</td>
<td></td>
</tr>
<tr>
<td>Zahnaufnahme</td>
<td>≤ 0,01</td>
</tr>
<tr>
<td>Extremitäten (Gliedmaßen)</td>
<td>< 0,01 - 0,1</td>
</tr>
<tr>
<td>Schädelaufnahme (anterior-posterior)</td>
<td>0,03 - 0,06</td>
</tr>
<tr>
<td>Halswirbelsäule in 2 Ebenen</td>
<td>0,1 - 0,2</td>
</tr>
<tr>
<td>Brustkorb (Thorax), 1 Aufnahme</td>
<td>0,02 - 0,04</td>
</tr>
<tr>
<td>Mammographie beidseits je 2 Ebenen</td>
<td>0,2 - 0,4</td>
</tr>
<tr>
<td>Mammographie bilateral in 2 Ebenen</td>
<td>0,2 - 0,5</td>
</tr>
<tr>
<td>Lendenwirbelsäule in 2 Ebenen</td>
<td>0,6 - 1,1</td>
</tr>
<tr>
<td>Beckenübersicht</td>
<td>0,3 - 0,7</td>
</tr>
<tr>
<td>Bauchraum (Abdomenübersicht)</td>
<td>0,3 - 0,7</td>
</tr>
<tr>
<td>Röntgenuntersuchungen mit Aufnahmen und Durchleuchtung</td>
<td></td>
</tr>
<tr>
<td>Magen</td>
<td>4 - 8</td>
</tr>
<tr>
<td>Darm (Dünndarm bzw. Kolonkontrasteinlauf)</td>
<td>5 - 12</td>
</tr>
<tr>
<td>Koronarangiographie</td>
<td>4 - 7</td>
</tr>
<tr>
<td>PTCA (Perkutane transluminale koronare Angiographie zur Herzrhythmusstörung)</td>
<td>6 - 16</td>
</tr>
<tr>
<td>Bein-Becken-Pleurographie (ein Bein)</td>
<td>0,3 - 0,7</td>
</tr>
<tr>
<td>Becken-Bein-Arteriographie</td>
<td>5 - 9</td>
</tr>
<tr>
<td>CT-Untersuchungen</td>
<td></td>
</tr>
<tr>
<td>Hirnabszeß</td>
<td>1,7 - 2,3</td>
</tr>
<tr>
<td>Lendenwirbelsäule</td>
<td>4,8 - 8,7</td>
</tr>
<tr>
<td>Brustkorb (Thorax)</td>
<td>4,2 - 6,7</td>
</tr>
<tr>
<td>Bauchraum (Abdomen)</td>
<td>8,8 - 16,4</td>
</tr>
</tbody>
</table>

* typische CT (Computertomographie)-Untersuchung, ggf. nativ und nach Kontrastmittelgabe
Auswertung der Jahre 1996 bis 2010 – Untersuchungshäufigkeit

Im Gegensatz zur CT-Häufigkeit hat die Anzahl der konventionellen Röntgenuntersuchungen des Schädels, des Thorax, der Wirbelsäule und des Bauchraumes einschließlich des Verdauungs- und des Urogenitaltrakts abgenommen.

Auswertung der Jahre 1996 bis 2010 – Kollektive effektive Dosis

Die CT und die ebenfalls dosisintensive Angiographie (einschließlich interventioneller Maßnahmen) tragen nur etwa 10 % zu der Gesamthäufigkeit bei, ihr Anteil an der kollektiven effektiven Dosis betrug im Jahr 2010 jedoch mehr als drei Viertel (siehe Abbildung 1.1-4).
Abbildung 1.1-1 Häufigkeit von Röntgenuntersuchungen in Deutschland
(Frequency of x-ray examinations in Germany)

Abbildung 1.1-2 Vergleich der Häufigkeit von CT- und MRT-Untersuchungen in Deutschland
(Comparison of frequencies of CT/MRT examinations in Germany)
Abbildung 1.1-3 Mittlere effektive Dosis (in mSv) pro Einwohner und Jahr durch Röntgen- und CT-Untersuchungen in Deutschland
(Mean effective dose (mSv) per capita and year due to x-ray and CT diagnostics in Germany)

Abbildung 1.1-4 Prozentualer Anteil der verschiedenen Röntgenmaßnahmen an der Gesamthäufigkeit und an der kollektiven effektiven Dosis 2010
(Contribution of various x-ray diagnostic procedures to total frequency and to collective effective dose in 2010)
Röntgenreihenuntersuchungen zur Früherkennung von Brustkrebs (Mammographie-Screening)

Brustkrebs ist die häufigste Krebserkrankung und die häufigste Krebsstodesursache bei Frauen. Derzeit wird jährlich bei etwa 72 000 Frauen eine Brustkrebsdiagnose gestellt, wobei das mittlere Erkrankungsalter bei ca. 65 Jahren liegt. Im Jahr 2008 verstarben insgesamt etwa 17 000 Frauen an der Folgen einer Brustkrebskrankung. Erwartet wird, dass Röntgenreihenuntersuchungen zur Früherkennung von Brustkrebs (Mammographie-Screening) bei Frauen zwischen 50 und 69 Jahren den Erfolg einer Therapie und damit die Überlebenswahrscheinlichkeit der Betroffenen erhöhen könnten.

Anfangs wurde bei der Planung und Einführung davon ausgegangen, dass das Mammographie-Screening nur mit analogen, konventionellen Verfahren erfolgen sollte. Der schnelle Fortschritt konnte jedoch digitale Verfahren nicht mehr ausschließen, zumal die europäischen Standards der „European Reference Organisation for Quality Assured Breast Screening and Diagnostic Services (EUREF)“ inzwischen auch digitale Verfahren zulassen.

Im Vorfeld hat die Strahlenschutzkommission (SSK) zusammen mit dem BfS die Stellungnahme „Digitale Mammographie in der kurativen Anwendung und im Screening“ erarbeitet, in der die wesentlichen Anforderungen formuliert wurden, die bei der Einführung der digitalen Mammographie im Screening zu erfüllen sind.

Parallel wurde vom Normenausschuss Radiologie im Deutschen Institut für Normung eine sogenannte Public Available Specification (PAS) für digitale Röntgeneinrichtungen entwickelt, um technische Anforderungen für die Abnahmeprobeprüfung der Röntgeneinrichtungen festzulegen. Die für den Vollzug der Röntgenverordnung zuständigen obersten Landesbehörden haben beschlossen, diese Festlegungen dem Vollzug die Röntgenverordnung zu Grunde zu legen.

Nach der Vorlage der PAS und der SSK-Stellungnahme wurden die Mindestanforderungen an die apparative Ausstattung der Röntgeneinrichtungen im „Vertrag zur Änderung des Bundesmantelvertrags Ärzte/Ersatzkassen (EKV) über besondere Versorgungsauflagen im Rahmen des Programms zur Früherkennung von Brustkrebs durch Mammographie-Screening“ neu gefasst und damit auch digitale Verfahren zugelassen.

Die Screening-Mammographie-Untersuchung wird alle 2 Jahre angeboten. Anspruchsberechtigt sind 10,4 Mio Frauen. Ende 2009 lag die Teilnehmerquote bei 54,5 %. Nehmen 70 % der anspruchsberechtigten Frauen an der Screening-Maßnahme teil, so beläuft sich unter der Annahme einer effektiven Dosis von 0,5 mSv pro Screening-Untersuchung die kollektive effektive Dosis, die sich aus allen Röntgenuntersuchungen, die in Deutschland jährlich durchgeführt werden, ergibt. Wie bereits erwähnt spielen in der Abbildung 1.1-4 Screening-Mammographien zunehmend eine Rolle. Dies schlägt sich jedoch – auf Grund der vergleichsweise niedrigen Dosis pro Untersuchung – in den Abbildungen zur Dosis (1,1-3 und 1,1-4 rechts) kaum nieder. In den in Abbildung 1.1-4 gezeigten Anteilen, die aus Mammographien stammen, wurden nur etwa 40 % Mammographien berücksichtigt, die als „kurative Mammographien“ über die Kassen abgerechnet wurden, also als Mammographien, für die zur Abklärung eines Symptoms in der Brust eine Indikation für die Untersuchung bestand. Es ist jedoch davon auszugehen, dass es sich bei einem größeren Prozentsatz dieser „kurativen Mammographien“ um Früherkennungs-Mammographien handelt, die außerhalb des Mammographie-Screening-Programms und damit ohne die hier gültige Qualitätssicherung durchgeführt wurden („graues Screening“). Entgegen der Erwartung hat die Anzahl der „kurative Mammographie“ abgerechneten Untersuchungen nach Einführung des Mammographie-Screening-Programms verhältnismäßig wenig abgenommen (Abnahme zwischen 2006 und 2010 um ca. 30 % nach Daten der KBV bzw. um ca. 20 % bei Hinzunahme der PKV-Daten).
Da die Screening-Mammographie-Untersuchung für die Frauen mit einer Strahlenbelastung verbunden ist, haben sich BMU und BfS in zahlreichen Gesprächsrunden mit den Ländern, der Kassenärztlichen Bundesvereinigung (KBV) und den Spitzenverbänden der Krankenkassen bzw. dem GKV-Spitzenverband für die Einhaltung strenger Qualitätsanforderungen eingesetzt.

1.2 Nuklearmedizin, Diagnostik
(Nuclear medicine diagnostics)

Die Ergebnisse der aktuellen Auswertung der Daten zur Häufigkeit und Dosis von nuklearmedizinischen Untersuchungen beziehen sich auf den Fünfjahres-Zeitraum 2006 bis 2010. In die Abschätzung der kollektiven effektiven Dosis und deren Bewertung fließen die Resultate eines kürzlich abgeschlossenen UFOPLAN-Vorhabens ein („Erhebung von Häufigkeit und Dosis für nuklearmedizinische Untersuchungsverfahren“) sowie aktuelle Literatur [1, 2]. Pro Jahr wurden 2006-2010 in Deutschland im Mittel ca. 3 Millionen nuklearmedizinische Untersuchungen durchgeführt, was einer jährlichen Anwendungshäufigkeit von 36,4 Untersuchungen pro 1000 Einwohner entspricht. Für den betrachteten Zeitraum besteht ein leicht abnehmender Trend für die häufige Verwendung von nuklearmedizinischen Untersuchungen. Am häufigsten wurden Szintigraphien der Schilddrüse und des Skeletts durchgeführt (Abbildung 1.2-1). Bei Abbildung 1.2-1 ist zu beachten, dass die szintigraphischen Untersuchungen des Herzens in Ruhe und unter körperlicher Belastung einzeln gezählt wurden, auch wenn diese meistens im Rahmen einer Untersuchung hintereinander (während eines Tages oder über zwei Tage) stattfinden. Es wurde eine über den Zeitraum 2006 bis 2010 gemittelte kollektive effektive Dosis von ca. 7200 Personen-Sv pro Jahr ermittelt, was einer effektiven Dosis von etwa 0,1 mSv pro Einwohner und Jahr entspricht. Rund 80 % der kollektiven effektiven Dosis werden durch die Skelett-, die Myokard(Herz)- und die Schilddrüsenszintigraphie verursacht (Abbildung 1.2-1).

Die mittleren effektiven Dosiswerte nuklearmedizinischer Untersuchungen waren bei Entzündungs- und Gehirnuntersuchungen (jeweils 7,7 mSv pro Untersuchung) am höchsten. Die am häufigsten angewendete Schilddrüsenszintigraphie weist eine recht niedrige effektive Dosis von durchschnittlich 0,9 mSv pro Untersuchung auf. Die bei Kindern relativ häufig durchgeführten Nierenuntersuchungen sind ebenfalls durch eine niedrige Strahlenexposition gekennzeichnet (durchschnittlich 0,7 mSv pro Untersuchung). Insgesamt betrug die mittlere effektive Dosis pro Untersuchung 2,3 mSv.

Literatur
1.3 Strahlenhygienische Bewertung der Strahlenexposition durch diagnostische Maßnahmen
(Evaluation of radiation exposures resulting from diagnostic procedures)

Die nominelle Strahlenexposition der Bevölkerung durch röntgendiagnostische und nuklearmedizinische Untersuchungen betrug im Jahr 2010 etwa 1,9 mSv pro Einwohner und Jahr. Damit resultiert die zivilisatorische Strahlenexposition der Bevölkerung in Deutschland in der Hauptsache aus medizinischen Strahlenanwendungen, insbesondere aus röntgendiagnostischen Maßnahmen.

Abbildung 1.2-1 Prozentualer Anteil der nuklearmedizinischen Untersuchungen und ihr Anteil an der kollektiven effektiven Dosis in Deutschland 2010
(Contribution from the different nuclear medicine examination procedures to the collective effective dose and the proportion of the overall frequency of application for the different examinations in Germany 2010)

Bei Patientinnen und Patienten handelt es sich typischerweise um ältere Menschen, für die die Wahrscheinlichkeit einer strahlenbedingten Krebserkrankung deutlich geringer ist als für jüngere Personen. Von großem Interesse ist daher die

Im internationalen Vergleich liegt Deutschland nach den vorliegenden Daten bezüglich der jährlichen Anzahl der Röntgenuntersuchungen pro Einwohner und Jahr im oberen Bereich. Bei der vergleichenden Bewertung ist jedoch Vorsicht geboten, da auf Grund der unterschiedlichen Gesundheitssysteme die Auswertungsschemata sehr unterschiedlich und zum Teil auch nicht hinreichend transparent sind.

Bereits im Jahr 2000 lag in den USA und in Japan allein die aus CT-Untersuchungen resultierende effektive Dosis pro Kopf der Bevölkerung in der Größenordnung bzw. höher als die Gesamttdosis pro Einwohner für alle in Deutschland durchgeführten Röntgenleistungen. Im Jahre 2006 betrug die effektive Dosis pro Kopf aus Röntgen- sowie nuklearmedizinischer Diagnostik in den USA 3 mSv, wobei die CT bzw. nuklearmedizinische Untersuchungen etwa die Hälfte bzw. ein Viertel beitrugen [1]. Der hohe Anteil der CT an der medizinischen Strahlenexposition ist ein weltweit zu beobachtender Trend, der die gestiegene Wertigkeit der bildgebenden Verfahren in Diagnostik, Therapieplanung und Therapieüberwachung widerspiegelt.

Verglichen mit der Strahlenbelastung durch die Röntgendiagnostik (ca. 1,8 mSv pro Person im Jahr 2010) ist die Exposition durch die nuklearmedizinische Diagnostik relativ gering (etwa 0,1 mSv). Unabhängig davon sind Maßnahmen zur Dosisreduktion möglich und notwendig, wie die Einführung diagnostischer Referenzwerte und die Verwendung neuer Radiopharmaka. So führt z. B. der Ersatz von Tl-201-Chlorid durch mit Tc-99m markierte Verbindungen zur Verringerung der Strahlenbelastung bei der Herzszintigraphie.

Literatur

1.4 Alternative Untersuchungsverfahren
(Alternative examination procedures)

Die Zunahme von Ultraschall-Untersuchungen ist vergleichsweise moderat (um etwa 25 % über den gesamten betrachteten Zeitraum). Der größte Teil aller Sonographien wird im Bereich des Beckens/Abdomens durchgeführt.

Die Zahl der jährlich auftretenden Neuerkrankungen an Krebs in Deutschland wird für das Jahr 2012 auf ca. 258 000 Erkrankungen bei Männern und auf ca. 228 000 bei Frauen geschätzt [1]. Das mittlere Erkrankungsalter liegt für Männer wie für Frauen bei etwa 69 Jahren. Die Therapie einer Krebserkrankung erfolgt üblicherweise als Kombination von Chirurgie, Strahlentherapie und Chemotherapie, wobei die Strahlentherapie in den letzten Jahren eine immer größere Bedeutung erlangt hat.

Abbildung 1.4-1 Häufigkeit von Sonographieuntersuchungen. Zum Vergleich: Häufigkeit aller Röntgenuntersuchungen (einschließlich CT, ohne Zahnmedizin)

(Frequency of ultrasound examinations. For comparison: Frequency of X-ray examinations including CT, excluding dental examinations)

2. **Therapeutische Strahlenanwendungen**

(Therapeutic applications of radiation)

Die Zahl der jährlich auftretenden Neuerkrankungen an Krebs in Deutschland wird für das Jahr 2012 auf ca. 258 000 Erkrankungen bei Männern und auf ca. 228 000 bei Frauen geschätzt [1]. Das mittlere Erkrankungsalter liegt für Männer wie für Frauen bei etwa 69 Jahren. Die Therapie einer Krebserkrankung erfolgt üblicherweise als Kombination von Chirurgie, Strahlentherapie und Chemotherapie, wobei die Strahlentherapie in den letzten Jahren eine immer größere Bedeutung erlangt hat.

Literatur

3. Medizinische Forschung
(Medical research)

Tabelle 3.1
Vom BfS nach § 23 StrlSchV und § 28 a RöV erteilte Genehmigungen zur Anwendung radioaktiver Stoffe oder ionisierender Strahlung (einschließlich Röntgenstrahlung) am Menschen in der medizinischen Forschung in den Jahren 2010 und 2011
(Licenses granted by BfS for the use of radioactive substances or ionising radiation - including X-rays - applied on humans in medical research, in the years 2010 and 2011)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Anzahl der erteilten Genehmigungen</th>
<th>Anzahl der bearbeiteten Voranfragen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>270</td>
<td>332</td>
</tr>
<tr>
<td>2011</td>
<td>27</td>
<td>49</td>
</tr>
</tbody>
</table>

4. Herzschrittmacher
(Pacemakers)

Tabelle 4.1 enthält die Anzahl der Implantationen und Explantationen Pu-238-haltiger Herzschrittmacher im Vergleich zwischen dem aktualisierten Kenntnisstand des BfS-Herzschrittmacherregisters (HSM-Register) und den bisher veröffentlichten BMU-Jahresberichten.

Tabelle 4.1
Anzahl der Implantationen und Explantationen Pu-238-haltiger Herzschrittmacher
Vergleich HSM-Register des BfS (neu) mit den Berichten der Vorjahre
(Number of implantations and explantations of Pu-238 pacemakers - comparison: Pacemaker Register BfS (new) and BMU-Report (previous years))

<table>
<thead>
<tr>
<th>Jahr</th>
<th>HSM-Register</th>
<th>BMU-Jahresbericht</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Implantationen</td>
<td>Explantationen</td>
</tr>
<tr>
<td>1971</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1972</td>
<td>71</td>
<td>3</td>
</tr>
<tr>
<td>1973</td>
<td>122</td>
<td>7</td>
</tr>
<tr>
<td>1974</td>
<td>48</td>
<td>11</td>
</tr>
<tr>
<td>1975</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>1976</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1977</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>1978</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>1979</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>1980</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>1981</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>1982</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>1983</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>1984</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>1985</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>1986</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>1987</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Jahr</td>
<td>HSM-Register</td>
<td>BMU-Jahresbericht</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Implantationen</td>
<td>Explantationen</td>
</tr>
<tr>
<td>1988</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1989</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1990</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1991</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1992</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1993</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1994</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1995</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1996</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1997</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1998</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1999</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2001</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2003</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2004</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Summe</td>
<td>284</td>
<td>282</td>
</tr>
</tbody>
</table>

* neue Auswertung
† Vorjahre
V UMGANG MIT RADIOAKTIVEN STOFFEN UND IONISIERENDER STRAHLUNG

(The Handling of Radioactive Materials and Sources of Ionising Radiation)

Bearbeitet vom Bundesamt für Strahlenschutz und vom Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA)
1. Grenzüberschreitende Verbringung radioaktiver Stoffe
(Border-crossing transport of radioactive material)

1.1 Übersicht über die Ein- und Ausfuhrstatistik radioaktiver Stoffe
(Overview of statistics on the import and export of radioactive material)

Mit dem Begriff „hochradioaktive Strahlenquellen (HRQ)" werden ab dem Berichtsjahr 2009 Quellen bezeichnet, deren Aktivität den durch Strahlenschutzverordnung (StrlSchV) festgelegten, nuklidspezifischen Grenzwert überschreitet (Aktivität größer als 1/100 des A_1-Wertes gemäß Anlage III, Tabelle 1, Spalte 3a, StrlSchV). In dieser Statistik sind umschlossene Strahlenquellen nicht mehr ab dem allgemeinen Limit von 1850 GBq erfasst, sondern ab den nuklidspezifischen Werten „Aktivität HRQ/1/100 A_1“ der Spalte 3a der Anlage III der StrlSchV.

Die Gesamteinfuhr an Radionukliden in Gigabequerel (GBq) hat um weitere 23 % abgenommen, was wieder von der Abnahme bei den umschlossenen Strahlenquellen herrührt (Tabelle 1.1-1, Spalte 4). Der in Spalte 5 angegebene Wert für die Gesamteinfuhr enthält zusätzlich die nicht gesondert aufgeführten sonstigen radioaktiven Gemische wie z. B. kontaminierte Werkzeuge (insgesamt 2400 GBq).

Aktivierungsprodukte („Bestrahlungsproben") wie aktivierte Anlagenteile wurden 2011 mit einer Gesamtaktivität von 780 GBq eingeführt. Bei der Einfuhr von unbekannten Kernbrennstoffen und Ausgangsstoffen ist ein leichter Rückgang um knapp 11 % zu verzeichnen, was wiederum von der Abnahme der umschlossenen Strahlenquellen herrührt (Tabelle 1.1-1, Spalte 4). Der in Spalte 5 angegebene Wert für die Gesamteinfuhr enthält zusätzlich die nicht gesondert aufgeführten sonstigen radioaktiven Gemische wie z. B. kontaminierte Werkzeuge (insgesamt 2400 GBq).

Bei den unbekannten Kernbrennstoffen und Ausgangsstoffen ist ein Rückgang von 17 % festzustellen; bestrahltes Material wird auch hier seit dem Inkrafttreten der neugefassten Atomaufsichtsverordnung (AtAV, vom 30.04.2009)*** am 07.05.2009 für diese Statistik nicht mehr erfasst (vgl. oben).

*** Verordnung über die Verbringung radioaktiver Abfälle oder abgebrannter Brennelemente (Atomrechtliche Abfallverbringungsverordnung - AtAV)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Radionuklide ohne umschlossene Quellen ab 1850 GBq</th>
<th>Bestrahlungsproben (z. B. aktivierte Anlagenteile)</th>
<th>Umschlossene Quellen ab 1850 GBq</th>
<th>Gesamteinfuhr (ohne radioakt. Abfälle)</th>
<th>Kernbrennstoffe, Ausgangsstoffe (unbestrahlt und bestrahlt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>3 227 143</td>
<td>2 546 470</td>
<td>23 330 800</td>
<td>29 104 413</td>
<td>2 306 737</td>
</tr>
<tr>
<td>1994</td>
<td>1 911 797</td>
<td>1 072 513</td>
<td>71 315 900</td>
<td>74 300 210</td>
<td>1 999 972</td>
</tr>
<tr>
<td>1995</td>
<td>4 866 926</td>
<td>73 629</td>
<td>38 600 400</td>
<td>43 360 955</td>
<td>2 049 273</td>
</tr>
<tr>
<td>1996</td>
<td>10 447 635</td>
<td>511 014</td>
<td>59 595 336</td>
<td>70 917 985</td>
<td>2 226 240</td>
</tr>
<tr>
<td>1997</td>
<td>1 541 873</td>
<td>51 048</td>
<td>79 215 145</td>
<td>80 808 066</td>
<td>2 490 191</td>
</tr>
<tr>
<td>1998</td>
<td>3 254 186</td>
<td>26 300</td>
<td>63 455 965</td>
<td>66 736 451</td>
<td>2 685 212</td>
</tr>
<tr>
<td>1999</td>
<td>2 149 973</td>
<td>237</td>
<td>49 894 030</td>
<td>52 044 519</td>
<td>2 540 221</td>
</tr>
<tr>
<td>2000</td>
<td>2 070 200</td>
<td>299 203</td>
<td>59 094 344</td>
<td>61 465 318</td>
<td>2 446 259</td>
</tr>
<tr>
<td>2001</td>
<td>1 621 780</td>
<td>39 392</td>
<td>25 840 589</td>
<td>27 547 253</td>
<td>3 211 796</td>
</tr>
<tr>
<td>2002</td>
<td>2 154 465</td>
<td>34</td>
<td>25 656 390</td>
<td>27 814 225</td>
<td>3 070 944</td>
</tr>
<tr>
<td>2003</td>
<td>9 871 929</td>
<td>1</td>
<td>45 034 300</td>
<td>54 906 251</td>
<td>4 565 497</td>
</tr>
<tr>
<td>2004</td>
<td>634 604</td>
<td>1220</td>
<td>25 150 300</td>
<td>25 786 133</td>
<td>2 558 317</td>
</tr>
<tr>
<td>2005</td>
<td>488 683</td>
<td>0</td>
<td>27 969 374</td>
<td>28 458 227</td>
<td>4 219 415</td>
</tr>
<tr>
<td>2006</td>
<td>336 046</td>
<td>0</td>
<td>80 811 680</td>
<td>81 148 626</td>
<td>3 397 848</td>
</tr>
<tr>
<td>2007</td>
<td>2 116 020</td>
<td>1300</td>
<td>36 896 630</td>
<td>39 013 950</td>
<td>3 830 256</td>
</tr>
<tr>
<td>2008</td>
<td>591 121</td>
<td>0</td>
<td>20 038 339</td>
<td>20 629 456</td>
<td>3 760 712</td>
</tr>
<tr>
<td>2009</td>
<td>162 310</td>
<td>8100</td>
<td>50 689 823</td>
<td>50 860 233</td>
<td>4 747 953</td>
</tr>
<tr>
<td>2010</td>
<td>578 964</td>
<td>0</td>
<td>32 783 390</td>
<td>33 362 734</td>
<td>6 204 450</td>
</tr>
<tr>
<td>2011</td>
<td>448 512</td>
<td>780</td>
<td>25 170 470</td>
<td>25 622 149</td>
<td>5 550 891</td>
</tr>
</tbody>
</table>
Tabelle 1.1-2 Ausfuhr radioaktiver Stoffe aus der Bundesrepublik Deutschland - ohne radioaktive Abfälle

(Export of radioactive materials from the Federal Republic of Germany - without radioactive waste)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Radionuklide ohne umschlossene Quellen ab 1850 GBq (^1) (GBq)</th>
<th>Bestrahlungsproben (z. B. aktivierte Anlagenteile) (GBq)</th>
<th>Umschlossene Quellen ab 1850 GBq (^1) (GBq)</th>
<th>Gesamtausfuhr (ohne radioakt. Abfälle) (^2) (GBq)</th>
<th>Kernbrennstoffe, Ausgangsstoffe (unbestrahlt und bestrahlt) (^3) (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>2 365 740</td>
<td>0</td>
<td>3 063 200</td>
<td>5 428 940</td>
<td>2 983 893</td>
</tr>
<tr>
<td>1994</td>
<td>1 447 018</td>
<td>98</td>
<td>2 137 812</td>
<td>3 584 928</td>
<td>2 078 477</td>
</tr>
<tr>
<td>1995</td>
<td>1 088 060</td>
<td>22 201</td>
<td>5 702 702</td>
<td>6 812 963</td>
<td>1 657 725</td>
</tr>
<tr>
<td>1996</td>
<td>960 351</td>
<td>1 335</td>
<td>3 009 100</td>
<td>3 970 786</td>
<td>2 146 830</td>
</tr>
<tr>
<td>1997</td>
<td>392 404</td>
<td>22</td>
<td>2 146 212</td>
<td>2 538 638</td>
<td>3 550 137</td>
</tr>
<tr>
<td>1998</td>
<td>550 637</td>
<td>25 044</td>
<td>2 333 673</td>
<td>2 909 354</td>
<td>3 133 196</td>
</tr>
<tr>
<td>1999</td>
<td>711 403</td>
<td>81</td>
<td>1 705 422</td>
<td>2 424 966</td>
<td>3 257 216</td>
</tr>
<tr>
<td>2000</td>
<td>828 677</td>
<td>94</td>
<td>3 001 795</td>
<td>3 838 040</td>
<td>2 719 502</td>
</tr>
<tr>
<td>2001</td>
<td>548 627</td>
<td>23</td>
<td>1 122 457</td>
<td>1 671 185</td>
<td>3 228 135</td>
</tr>
<tr>
<td>2002</td>
<td>484 827</td>
<td>0</td>
<td>2 057 005</td>
<td>2 541 842</td>
<td>3 387 520</td>
</tr>
<tr>
<td>2003</td>
<td>603 203</td>
<td>14</td>
<td>4 223 996</td>
<td>4 833 831</td>
<td>3 691 535</td>
</tr>
<tr>
<td>2004</td>
<td>553 012</td>
<td>7</td>
<td>1 323 180</td>
<td>1 876 208</td>
<td>1 971 109</td>
</tr>
<tr>
<td>2005</td>
<td>293 648</td>
<td>0</td>
<td>919 800</td>
<td>1 213 957</td>
<td>1 244 377</td>
</tr>
<tr>
<td>2006</td>
<td>238 211</td>
<td>0</td>
<td>5 112 175</td>
<td>5 351 392</td>
<td>3 111 272</td>
</tr>
<tr>
<td>2007</td>
<td>197 017</td>
<td>0</td>
<td>2 698 485</td>
<td>2 895 503</td>
<td>3 836 072</td>
</tr>
<tr>
<td>2008</td>
<td>2 070 380</td>
<td>0</td>
<td>5 132 330</td>
<td>3 982 713</td>
<td>4 297 148</td>
</tr>
<tr>
<td>2009</td>
<td>133 245</td>
<td>0</td>
<td>4 812 237</td>
<td>4 945 482</td>
<td>4 243 784</td>
</tr>
<tr>
<td>2010</td>
<td>102 567</td>
<td>0</td>
<td>5 671 642</td>
<td>5 774 155</td>
<td>4 032 449</td>
</tr>
<tr>
<td>2011</td>
<td>115 285</td>
<td>1</td>
<td>2 053 722</td>
<td>2 168 993</td>
<td>3 338 873</td>
</tr>
</tbody>
</table>

1 seit 2009 ab A1/100
2 seit 1998 inklusive radioaktive Gemische: z. B. kontaminierte Werkzeuge
3 ab 2009 unbestrahlt

1.2 Einfuhrstatistik

(Import statistics)

Einfuhr offener und umschlossener Radionuklide ohne Strahlenquellen ab A1/100

Tabelle 1.2-1 gibt die Aktivitäten der eingeführten radioaktiven Stoffe wieder; ausgenommen sind hier umschlossene Strahlenquellen ab A1/100 und Aktivierungsprodukte sowie sonstige radioaktive Gemische.

Es zeigt sich in der Gesamtsumme wieder ein leichter Rückgang von 578 964 GBq im Vorjahr auf jetzt 448 512 GBq. Diese Abnahme rührt in der Hauptsache vom Rückgang bei H-3 her.

In Form von H-3-Gaslichtquellen sind im Berichtszeitraum 9843 GBq im Wesentlichen aus der Schweiz, aber auch aus Israel, eingeführt worden (in dem Wert für die Gesamteinhuhr von H-3 aus der Schweiz und Israel enthalten); H-3-Leuchtfarbe wurde nicht bezogen.

Einfuhr umschlossener Strahlenquellen ab A1/100

Tabelle 1.2-2 zeigt die Gesamtaktivitäten der Einfuhr an umschlossenen Strahlenquellen der Radionuklide Co-60, Se-75, Sr-90, Cs-137, Ir-192, Am-241 und Cf-252; jeweils ab deren Werten für A1/100 gemäß Anlage III Spalte 3a StrlSchV.

Es findet sich erwartungsgemäß dennoch der größte Posten wieder bei Co-60 mit 93,2 % der Gesamtaktivität. Co-60-Quellen kamen in der Hauptsache aus Kanada. Ein nicht ganz so umfangreicher Tausch von ausgedienten, in Deutschland genutzten Quellen gegen neue aus Kanada wie im Vorjahr ist hier zu erkennen, zumal auch bei der Ausfuhr (1.3) Lieferungen entsprechender Aktivitäten respektive Stückzahlen nach Kanada dokumentiert sind.
Tabelle 1.2-1 Aktivität der 2011 eingeführten offenen und umschlossenen Radionuklide (ohne Strahlenquellen ab A1/100)

Alle Werte in der Tabelle sind gerundet. Insofern kann es für einzelne Werte bei Summationen zu Abweichungen kommen.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Schweiz</td>
<td>17</td>
<td>308</td>
<td>43</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>Norwegen</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>432</td>
<td>968</td>
<td>165</td>
<td>972</td>
<td>130</td>
<td>171</td>
<td>179</td>
<td>174</td>
<td>740</td>
<td>130</td>
<td>174</td>
<td>179</td>
<td>174</td>
<td>740</td>
<td>130</td>
<td>174</td>
<td>179</td>
<td>174</td>
<td>740</td>
<td>130</td>
<td>174</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>Kanada</td>
<td>193</td>
<td>700</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>78</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2969</td>
<td>592</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Australien</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>16</td>
<td>3032</td>
<td>0</td>
<td>0</td>
<td>429</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>53</td>
<td>54</td>
<td>3596</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singapur</td>
<td>0</td>
<td>1372</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philippinen</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russland</td>
<td>10</td>
<td>1297</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>173</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5860</td>
<td>26</td>
<td>844</td>
<td>99</td>
<td>321</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belarusrus</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usbekistan</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Südafrika</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>2</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>3637</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indien</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonstige</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total activity values for sealed and unsealed radionuclides imported in the year 2011 - without sources at levels of above A1/100.
Tabelle 1.2-3: Aktivität der 2011 eingeführten umschlossenen Strahlenquellen ab A1/100 (Total activity values for sealed radiation sources imported in the year 2011 with levels of above A1/100)

<table>
<thead>
<tr>
<th>Versenderland</th>
<th>Aktivität in GBq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Co-60</td>
</tr>
<tr>
<td>Schweiz</td>
<td>23 740</td>
</tr>
<tr>
<td>USA</td>
<td>57</td>
</tr>
<tr>
<td>Kanada</td>
<td>22 181 200</td>
</tr>
<tr>
<td>Japan</td>
<td>170</td>
</tr>
<tr>
<td>Südkorea</td>
<td>51 600</td>
</tr>
<tr>
<td>Australien</td>
<td>0</td>
</tr>
<tr>
<td>Türkei</td>
<td>76 980</td>
</tr>
<tr>
<td>Albanien</td>
<td>0</td>
</tr>
<tr>
<td>Kroatien</td>
<td>51 250</td>
</tr>
<tr>
<td>Montenegro</td>
<td>0</td>
</tr>
<tr>
<td>Russland</td>
<td>634 591</td>
</tr>
<tr>
<td>Belarus</td>
<td>1 018 536</td>
</tr>
<tr>
<td>Ägypten</td>
<td>0</td>
</tr>
<tr>
<td>V. Arab. Emirate</td>
<td>5</td>
</tr>
<tr>
<td>Israel</td>
<td>0</td>
</tr>
<tr>
<td>Mexiko</td>
<td>0</td>
</tr>
<tr>
<td>Brasilien</td>
<td>36 500</td>
</tr>
<tr>
<td>Venezuela</td>
<td>0</td>
</tr>
<tr>
<td>Südafrika</td>
<td>76</td>
</tr>
<tr>
<td>Gabun</td>
<td>26 000</td>
</tr>
<tr>
<td>Malaysia</td>
<td>370</td>
</tr>
<tr>
<td>Singapur</td>
<td>74</td>
</tr>
<tr>
<td>Mongolei</td>
<td>0</td>
</tr>
<tr>
<td>Summe</td>
<td>23 466 114</td>
</tr>
</tbody>
</table>

Einfuhr unbestrahlter sowie bestrahlter Kernbrennstoffe, Ausgangsstoffe

Tabelle 1.2-3 zeigt die Gesamteinfuhr des Jahres 2011 von unbestrahlten Kernbrennstoffen und Ausgangsstoffen in Kilogramm. Es ist ein leichter Rückgang um knapp 11 % zu verzeichnen, der sich in den Spalten für Natururan und solchem mit >3-10 % U-235 findet.

Daten über gemäß der AtAV erfolgte Verbringungen bestrahlter Kernbrennstoffe sind somit nur noch den regelmäßigen Berichten an die Kommission zu entnehmen.
Tabelle 1.2-3 Einfuhr von unbestrahlten Kernbrennstoffen und Ausgangsstoffen in kg im Jahr 2011
(Import of non-irradiated nuclear fuels and raw materials in kg in the year 2011)

<table>
<thead>
<tr>
<th>Versenderland</th>
<th>abger. Uran</th>
<th>Natururan bis 3 % U-235</th>
<th>>3-10 % U-235</th>
<th>>10-20 % U-235</th>
<th>>85 % U-235</th>
<th>Plutonium</th>
<th>Thorium</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frankreich</td>
<td>110 033</td>
<td>2 930 234</td>
<td>0</td>
<td>27 299</td>
<td>54</td>
<td>32</td>
<td>0</td>
<td>3 067 652</td>
</tr>
<tr>
<td>Belgien</td>
<td>5954</td>
<td>2 5008</td>
<td>1988</td>
<td>0</td>
<td>449</td>
<td>0</td>
<td>13 401</td>
<td></td>
</tr>
<tr>
<td>Niederlande</td>
<td>0</td>
<td>3025</td>
<td>13 610</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16 635</td>
<td></td>
</tr>
<tr>
<td>Großbritannien</td>
<td>49 438</td>
<td>1 694 154</td>
<td>12 069</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 755 661</td>
<td></td>
</tr>
<tr>
<td>Schweden</td>
<td>0</td>
<td>24 171</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24 171</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>200 197 800</td>
<td>3968</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>201 848</td>
<td></td>
</tr>
<tr>
<td>Kanada</td>
<td>1 402 412</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>402 413</td>
<td></td>
</tr>
<tr>
<td>Russland</td>
<td>1381</td>
<td>61 004</td>
<td>0</td>
<td>0</td>
<td>204</td>
<td>0</td>
<td>62 385</td>
<td></td>
</tr>
<tr>
<td>Hongkong</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>Sonstige</td>
<td>6521</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6521</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>173 528</td>
<td>5 224 482</td>
<td>8033</td>
<td>144 109</td>
<td>54</td>
<td>449</td>
<td>204</td>
<td>5 550 891</td>
</tr>
</tbody>
</table>

1.3 Ausfuhrstatistik
(Export statistics)

Ausfuhr offener und umschlossener Radionuklide ohne Strahlenquellen ab A1/100

7019 GBq und damit ein gutes Drittel des ausgeführten H-3 war im Berichtszeitraum in Gaslichtquellen enthalten. Letztere wurden im Wesentlichen nach Kanada, in die Schweiz und nach Russland ausgeführt.
Ausfuhren von H-3-Leuchtfarbe wurden hingegen auch in 2011 nicht registriert.

Ausfuhr umschlossener Strahlenquellen ab A1/100
Die Gesamtausfuhr an umschlossenen Strahlenquellen ab A 1/100 (Tabelle 1.3-2) hat sich praktisch ausschließlich wegen des Rückganges der Co-60-Ausfuhren bei hier analog niedrigeren Stückzahlen von 5 671 642 GBq mit jetzt 2 053 722 GBq auf ein gutes Drittel reduziert bei gleichzeitiger deutlicher Zunahme der Ausfuhren von Se-75.
Weitere Nuklide sind Cs-137 und Ir-192 sowie Sr-90, Am-241 und Cf-252.
Gut 66 % des Co-60 bezog sich auf Rücklieferungen nach Kanada (Quellentausch). Trotz des o. g. Rückgangs findet sich der größte Posten mit 71,9 % der Gesamtausfuhr dieser Rubrik wieder in der Summe für Co-60.
Verbraucherland	H-3	C-14	F-18	S-35	Fe-55	Co-60	Ni-63	Kr-85	Sr-90	I-125	I-131	Cs-137	Ba-133	Pm-147	Lu-177	Ir-192	Am-241	Sonst.	Summe			
Schweiz	8691	4	6601	15	0	0	16	188	5	0	108	189	15	0	1	1101	0	0	22	16,946		
Norwegen	297	0	100	0	0	0	2	23	0	0	27	384	24	91	37	0	0	5	1	916		
Kanada	337	1575	0	185	16	68	32	5003	23	2014	418	0	167	0	257	11	0	168	20	12,614		
Australien	52	0	0	6	0	4	96	2	1357	129	0	184	0	2	0	0	0	5	14,055			
Neuseeland	69	0	0	0	0	0	0	18	0	0	2	7	0	98								
Japan	110	0	0	0	0	0	6660	1830	11	0	16	0	538	1	22	2	3092					
Schottland	0	0	0	29	12	29	433	0	5	35	949	224	0	157	0	1	181	0	36,862			
Türkei	104	0	0	3	16	3	24	0	34	0	73	0	19	0	152	1	429					
Marokko	0	0	0	0	0	1	0	1	0	0	0	0	0	173	0	1	0	176				
Ägypten	0	0	0	0	15	2	0	0	0	48	44	0	44	0	44	0	44	0	153			
Tunesien	0	0	0	0	0	0	0	0	0	0	0	0	0	215	3	0	22	2	1303			
Südafrika	0	0	0	0	0	0	0	0	0	0	0	0	0	1251	0	18	0	22	2	1303		
Nigeria	28	0	0	0	0	1	0	0	0	0	237	0	18	0	2	0	0	286				
Israel	0	0	0	0	0	0	0	0	0	0	0	0	0	70	0	0	0	2	4	202		
Indien	0	0	0	0	1	25	35	505	7	0	792	0	100	31	0	143	8	1647				
Thailand	2	0	0	4	3	0	89	1	0	0	53	0	37	0	0	24	0	0	213			
Malaysia	1	0	0	0	0	0	1	138	0	0	0	0	0	4	0	0	0	0	0	144		
Singapur	0	0	0	0	0	7	138	0	6147	0	0	0	23	0	0	0	0	0	6315			
Vietnam	0	0	0	0	4	2	0	16	0	0	0	93	0	43	0	0	7	0	165			
Indonesien	0	0	0	0	4	9	1	79	0	0	0	0	0	3	0	0	0	2	0	135		
China	0	0	0	0	19	42	45	1040	11	0	313	0	1093	0	0	48	2	2613				
Taiwan	0	0	0	0	0	7	0	128	0	0	0	97	0	50	0	0	1	283				
Hongkong	0	0	0	0	0	0	0	0	0	0	0	0	0	56	1	0	0	0	157			
Chile	0	0	0	0	0	0	0	0	0	0	0	0	0	27	0	10	0	1	113			
Brasilien	0	0	0	0	0	0	3	0	0	0	0	0	1	0	19	0	0	168	0	265		
Mexiko	0	0	0	0	0	0	2	0	157	2	0	43	0	0	0	0	0	0	204			
Kolumbien	0	0	0	0	0	0	0	0	0	0	0	0	1	0	16	0	111	0	228			
Sonstige	1	0	0	0	0	0	35	21	136	0	0	10	15	364	0	99	3	6	98	5	793	

Summe 19465 1579 6601 219 99 265 2272 10396 60 21773 3195 37011 4473 91 4878 1313 396 1123 76 115285
Daten Tabelle 1.3-2: Export von unbestrahlten Strahlenquellen ab A1/100 im Jahr 2011

<table>
<thead>
<tr>
<th>Verbraucherland</th>
<th>Aktivität in GBq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Co-60</td>
</tr>
<tr>
<td>Schweiz</td>
<td>0</td>
</tr>
<tr>
<td>Türkei</td>
<td>280 500</td>
</tr>
<tr>
<td>USA</td>
<td>82</td>
</tr>
<tr>
<td>Kanada</td>
<td>979 020</td>
</tr>
<tr>
<td>Australien</td>
<td>0</td>
</tr>
<tr>
<td>Japan</td>
<td>366</td>
</tr>
<tr>
<td>Südkorea</td>
<td>30</td>
</tr>
<tr>
<td>Kroatien</td>
<td>222</td>
</tr>
<tr>
<td>Serbien</td>
<td>0</td>
</tr>
<tr>
<td>Montenegro</td>
<td>0</td>
</tr>
<tr>
<td>Russland</td>
<td>779</td>
</tr>
<tr>
<td>Kasachstan</td>
<td>0</td>
</tr>
<tr>
<td>Saudi-Arabien</td>
<td>79</td>
</tr>
<tr>
<td>Ägypten</td>
<td>0</td>
</tr>
<tr>
<td>Marokko</td>
<td>64</td>
</tr>
<tr>
<td>Iran</td>
<td>0</td>
</tr>
<tr>
<td>China</td>
<td>184</td>
</tr>
<tr>
<td>Taiwan</td>
<td>42</td>
</tr>
<tr>
<td>Indien</td>
<td>107</td>
</tr>
<tr>
<td>Venezuela</td>
<td>71</td>
</tr>
<tr>
<td>Chile</td>
<td>68</td>
</tr>
<tr>
<td>Brasilien</td>
<td>74</td>
</tr>
<tr>
<td>Peru</td>
<td>76</td>
</tr>
<tr>
<td>Thailand</td>
<td>0</td>
</tr>
<tr>
<td>Malaysia</td>
<td>30</td>
</tr>
<tr>
<td>Singapur</td>
<td>30</td>
</tr>
<tr>
<td>Vietnam</td>
<td>214 700</td>
</tr>
<tr>
<td>Indonesien</td>
<td>0</td>
</tr>
<tr>
<td>Angola</td>
<td>77</td>
</tr>
<tr>
<td>Südafrika</td>
<td>143</td>
</tr>
<tr>
<td>Simbabwe</td>
<td>68</td>
</tr>
<tr>
<td>Sonstige</td>
<td>42</td>
</tr>
<tr>
<td>Summe</td>
<td>1 476 854</td>
</tr>
<tr>
<td>Stückzahl</td>
<td>111</td>
</tr>
</tbody>
</table>

Unbestrahlte Kernbrennstoffe

Tabelle 1.3-3 zeigt die Gesamtausfuhr an unbestrahlten Kernbrennstoffen und Ausgangsstoffen in Kilogramm. Die Ausfuhrmenge ist in 2011 mit 3 338 873 kg gegenüber 4 032 449 kg (2010) um 17 % gesunken.

Wieder liegt bei abgereichertem Uran mit 2 783 380 kg der mengenmäßig größte Anteil, es sind 83,4 % der Gesamtausfuhr. Beinahe die Gesamtmenge hiervon ist wieder nach Frankreich verbracht worden.

Der nahezu gesamte Rest findet sich erwartungsgemäß wie auch sonst bei angereichertem Uran mit >3-10 %igem Anteil an U-235.

Uran mit höheren Anreicherungsgraden ist im Berichtszeitraum ebenso wenig in relevanten Mengen ausgeführt worden, wie auch Plutonium und Thorium.
Das unter „Sonstige“ (Länder) aufgeführte abgereichert Uran stellt Abschirm- bzw. Transport- sowie Lagerbehälter für umschlossene Strahlenquellen dar und findet sich naturgemäß auch bei der Einfuhr.

Bestrahltes Material wird seit dem Inkrafttreten der neugefassten AtAV vom 07. Mai 2009 für diese Statistik nicht mehr erfasst.

Tabelle 1.3-3 Ausfuhr unbestrahlter Kernbrennstoffe und Ausgangsstoffe in kg im Jahr 2011
(Export of non-irradiated nuclear fuels and raw materials in kg in the year 2011)

<table>
<thead>
<tr>
<th>Verbraucherland</th>
<th>abger. Uran</th>
<th>Natururan</th>
<th>bis 3 % U-235</th>
<th>>3-10 %U-235</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frankreich</td>
<td>2 769 755</td>
<td>995</td>
<td>1602</td>
<td>200 874</td>
<td>2 973 226</td>
</tr>
<tr>
<td>Belgien</td>
<td>0</td>
<td>0</td>
<td>683</td>
<td>19 596</td>
<td>20 279</td>
</tr>
<tr>
<td>Niederlande</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>54</td>
<td>234</td>
<td>0</td>
<td>44 975</td>
<td>45 263</td>
</tr>
<tr>
<td>Schweden</td>
<td>4532</td>
<td>12 083</td>
<td>0</td>
<td>52 736</td>
<td>69 351</td>
</tr>
<tr>
<td>Spanien</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18 969</td>
<td>18 969</td>
</tr>
<tr>
<td>Südkorea</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27 577</td>
<td>27 577</td>
</tr>
<tr>
<td>USA</td>
<td>309</td>
<td>0</td>
<td>0</td>
<td>124 974</td>
<td>125 283</td>
</tr>
<tr>
<td>Russland</td>
<td>1041</td>
<td>0</td>
<td>0</td>
<td>1680</td>
<td>2721</td>
</tr>
<tr>
<td>Brasilien</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>47 694</td>
<td></td>
</tr>
<tr>
<td>Südafrika</td>
<td>4946</td>
<td>0</td>
<td>803</td>
<td>0</td>
<td>5749</td>
</tr>
<tr>
<td>Sonstige</td>
<td>2743</td>
<td>0</td>
<td>0</td>
<td>2743</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>2 783 380</td>
<td>13 312</td>
<td>3088</td>
<td>539 093</td>
<td>3 338 873</td>
</tr>
</tbody>
</table>

Die Ausfuhr bestrahlter Kernbrennstoffe und Ausgangsstoffe unterliegt der AtAV.

Bestrahlte Kernbrennstoffe

In diesem Abschnitt waren bis zum Berichtsjahr 2006 die Ausfuhrdaten für bestrahlte Kernbrennstoffe tabellarisch zusammengestellt und zwar ursprünglich in der Hauptsache für Brennelemente aus der kommerziellen Stromerzeugung, die wegen ihres hohen Wertstoffgehaltes zum Zwecke des Rezyklierens verbracht worden waren.

Durch § 9a Abs. 1 Satz 2 AtG ist dies derzeit jedoch nicht zulässig und es blieben lediglich Kleinmengen, die nicht unter die genannte Regelung fallen wie z. B. bestrahlte Brennstabsegmente zu Forschungszwecken oder MTR (“Material-Testing- Reactor“)- Brennelemente wie auch jene, die Eigentum der Vereinigten Staaten sind und somit nach deren Nutzungsdauer grundsätzlich zurückzuliefern waren und auch weiterhin zurückzuliefern sein werden.

Bestrahtes Material wird seit dem Inkrafttreten der neugefassten AtAV für die vorliegende Statistik nicht mehr erfasst.

Daten über gemäß der AtAV erfolgte Verbringungen bestrahlter Kernbrennstoffe sind somit nur noch den regelmäßigen Berichten an die Kommission zu entnehmen.

1.4 Genehmigungen und Anzeigen
(Licenses and notifications)

Tabelle 1.4-1 zeigt die Anzeigen und Genehmigungen im Jahr 2011. Diese Tabelle enthält seit dem Berichtsjahr 2006 die Rubrik „Einfuhr § 19 Abs. 1 StrlSchV“ Hier sind die Genehmigungen zur Einfuhr für jene hochradioaktiven Strahlenquellen (HRQ) aufgeführt, deren grenzüberschreitende Verbringung auf Grund des HRQ-Gesetzes vom 12. August 2005 i. V. m. § 20 der Strahlenschutzverordnung (StrlSchV) nicht im Anzeigeverfahren zulässig und daher genehmigungspflichtig ist.

Die Genehmigungen zur Ausfuhr solcher HRQ sind sinngemäß in der Rubrik „Aufuhr § 19 Abs. 1 StrlSchV“ enthalten, wo sich zuvor lediglich Genehmigungen für diejenigen sonstigen radioaktiven Stoffe fanden, deren Aktivität das 10⁸-fache der Freigrenzen gemäß Anlage III Tabelle 1 Spalte 2 StrlSchV pro Versandstück überschritt.

Da grenzüberschreitende Verbringungen von Konsumgütern nach § 108 StrlSchV jedoch nicht von einem Meldeverfahren begleitet werden, wird in dieser Spalte lediglich die Anzahl der im Berichtszeitraum erteilten Genehmigungen...
angegeben, welche jeweils eine Gültigkeit von zwei Jahren haben. Im Berichtszeitraum waren dies 9 für die Einfuhr und ebenfalls 9 für die Ausfuhr.

Es wurden im Berichtszeitraum vom BAFA 25 Einfuhr- und 87 Ausfuhrgenehmigungen gemäß § 3 Abs. 1 AtG sowie 33 Ausfuhr- und 30 Einfuhrgenehmigungen für sonstige radioaktive Stoffe gemäß § 19 Abs. 1 StrlSchV erteilt.

Die vorliegende Statistik enthält auf Grund der „Atomrechtlichen Abfallverbringungsverordnung“ (AtAV) keine Daten über radioaktive Abfälle; Informationen hierüber sind vielmehr den regelmäßigen Berichten an die Kommission zu entnehmen.

Mit der Neufassung der AtAV, jetzt „Verordnung über die Verbringung radioaktiver Abfälle oder abgebrannter Brennemente (Atomrechtliche Abfallverbringungsverordnung - AtAV)“ vom 30.04.2009 gilt diese zusätzlich auch für grenzüberschreitende Verbringungen bestrahlter Kernbrennstoffe.

Daten über gemäß der AtAV erfolgte Verbringungen bestrahlter Kernbrennstoffe sind somit ebenfalls den regelmäßigen Berichten an die Kommission zu entnehmen.

Daher stehen für 2011 hier 65 511 Einfuhrpositionen 27 955 aus 2010 sowie 163 189 Ausfuhrpositionen 89 069 aus 2010 gegenüber.

Tabelle 1.4-1 Zusammenstellung über die Anzahl der Genehmigungen und Anzeigen im Jahr 2011
(Overview of the number of licenses and notifications in the year 2011)

<table>
<thead>
<tr>
<th>Anzahl der Genehmigungen</th>
<th>Anzahl der Anzeigen</th>
<th>Anzahl der Genehmigungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 3 AtG und § 19 StrlSchV</td>
<td>§ 20 StrlSchV</td>
<td>§ 108 StrlSchV</td>
</tr>
<tr>
<td>für</td>
<td>erteilt genutzt</td>
<td>Nr. 1 (Einfuhr)</td>
</tr>
<tr>
<td>Einfuhr § 3 AtG</td>
<td>25 17</td>
<td>3557 (67 511)**</td>
</tr>
<tr>
<td>Ausfuhr § 3 AtG</td>
<td>87 37</td>
<td>5441 (163 189)**</td>
</tr>
<tr>
<td>Einfuhr § 19 Abs. 1 StrlSchV</td>
<td>30 27</td>
<td>Nr. 2 (Ausfuhr)</td>
</tr>
<tr>
<td>Ausfuhr § 19 Abs. 1 StrlSchV</td>
<td>33 27</td>
<td>9* 9*</td>
</tr>
</tbody>
</table>

* In 2011 erteilte Genehmigungen nach § 108 StrlSchV; die Laufzeiten betragen zwei Jahre
** Nach Einzelpositionen

Unter „Einfuhr § 19 StrlSchV“ sind ausschließlich Genehmigungen für HRQs ab A1 genannt.

Die grenzüberschreitende Verbringung radioaktiver Abfälle wird seit dem 01.08.1998 ausschließlich durch die Atomrechtliche Abfallverbringungsverordnung (AtAV) geregelt und überwacht. Mit der Neufassung der AtAV vom 30.04.2009 gilt diese zusätzlich auch für bestrahlte Kernbrennstoffe. Daten über gemäß der AtAV erfolgte Verbringungen sind somit in dieser Statistik nicht enthalten und können daher nur den regelmäßigen Berichten an die Kommission entnommen werden.
2. **Beförderung radioaktiver Stoffe**

(Transport of radioactive material)

Auf dem Gebiet des Transports radioaktiver Stoffe ist das BfS die zuständige Behörde zur Erteilung von Beförderungsgenehmigungen für alle Verkehrsträger gemäß § 4 Atomgesetz für Kernbrennstoffe und § 16 Strahlenschutzverordnung für Großquellen.

Gemäß Gefahrgutbeförderungsgesetz und den darauf beruhenden Verordnungen ist das BfS außerdem zuständig für die Erteilung von verkehrsrechtlichen Beförderungsgenehmigungen sowie für die Zulassung und Anerkennung von Transportbehältern.

Auf internationalem Gebiet wurde die Mitarbeit des BfS bei der Weiterentwicklung der Sicherheitsstandards zum Transport radioaktiver Stoffe bei der Internationalen Atomenergie-Organisation (IAEO) und der EU fortgesetzt.

2.1 **Übersicht über Beförderungsgenehmigungen und Transporte radioaktiver Stoffe**

(Overview of shipment approvals and transport of radioactive material)

Im Jahr 2011 wurden insgesamt 122 Genehmigungen (Einzel-, Mehrfach- und allgemeine Genehmigungen) erteilt. Weitere Informationen über die vom BfS erteilten Beförderungsgenehmigungen nach § 4 AtG für Kernbrennstoffe sowie nach § 16 StlSchV für Großquellen und über die durchgeführten Kernbrennstofftransporte können der Homepage des BfS (www.bfs.de) entnommen werden.

2011 wurden insgesamt 310 Transporte mit Kernbrennstoffen (s. Tabelle 2.1-1) realisiert, davon entfallen 59 Transporte auf das Binnenland, 104 auf den Export, 44 auf den Import und 103 Transporte entfallen auf den Transitverkehr. Mit Großquellen wurden 22 Transporte durchgeführt.
Teil B

Übersicht über die Anzahl der gemeldeten Kernbrennstofftransporte (Unterscheidung der Beförderungen nach Verkehrsträgern und Verkehrsart)
(Overview of the number of shipments of nuclear fuels reported – for various modes and types of transport)

<table>
<thead>
<tr>
<th>Anzahl der Inlandtransporte</th>
<th>2011</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schiene / unbestrahltes Material</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Schiene / bestrahltes Material</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Schiene / Reststoffe und Abfall</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Straße / unbestrahltes Material</td>
<td>58</td>
<td>69</td>
</tr>
<tr>
<td>Straße / bestrahltes Material</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Straße / Reststoffe und Abfall</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>59</td>
<td>69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anzahl der grenzüberschreitenden Transporte</th>
<th>2011</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luft / unbestrahltes Material</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Luft / bestrahltes Material</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Luft / Reststoffe und Abfall</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>See / unbestrahltes Material</td>
<td>102</td>
<td>133</td>
</tr>
<tr>
<td>See / bestrahltes Material</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>See / Reststoffe und Abfall</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Schiene / unbestrahltes Material</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Schiene / bestrahltes Material</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Schiene / Reststoffe und Abfall</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Straße / unbestrahltes Material</td>
<td>112</td>
<td>196</td>
</tr>
<tr>
<td>Straße / bestrahltes Material</td>
<td>35</td>
<td>43</td>
</tr>
<tr>
<td>Straße / Reststoffe und Abfall</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>251</td>
<td>382</td>
</tr>
</tbody>
</table>

Gemäß den gefahrgutrechtlichen Regelungen wurden 2011 vom BfS insgesamt 6 Zulassungen für Transportbehälter und 13 deutsche Anerkennungen ausländischer Zulassungen sowie eine verkehrsrechtliche Beförderungsgenehmigung (als Sondervereinbarung) erteilt.

2.2 Beförderung radioaktiver Stoffe im Schienen- und Schiffsverkehr der Eisenbahnen
(Transport of radioactive material by the rail- and shipping traffic)

Daten des Eisenbahn-Bundesamtes

Das Eisenbahn-Bundesamt (EBA) fungiert als Aufsichtsbehörde für die Beförderung radioaktiver Stoffe im Schienen- und Schiffsverkehr der Eisenbahnen (§ 24, Abs. 1, AtG) und als Genehmigungsbehörde für die Beförderung von sonstigen radioaktiven Stoffen (§§ 16 StrlSchV) im Schienen- und Schiffsverkehr der Eisenbahnen.

Die gesamte Anzahl der im Jahr 2011 beförderten Wagenladungen im Vergleich zu den Vorjahren ist in Tabelle 2.2-1 aufgeführt.
Tabelle 2.2-1
Zahl der jährlich beförderten Wagenladungen mit radioaktiven Stoffen
(Number of yearly transported truck loads containing radioactive materials)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Anzahl Wagenladungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>654</td>
</tr>
<tr>
<td>1996</td>
<td>780</td>
</tr>
<tr>
<td>1997</td>
<td>678</td>
</tr>
<tr>
<td>1998</td>
<td>415</td>
</tr>
<tr>
<td>1999</td>
<td>204 a</td>
</tr>
<tr>
<td>2000</td>
<td>258 a</td>
</tr>
<tr>
<td>2001</td>
<td>336</td>
</tr>
<tr>
<td>2002</td>
<td>433</td>
</tr>
<tr>
<td>2003</td>
<td>552</td>
</tr>
<tr>
<td>2004</td>
<td>509</td>
</tr>
<tr>
<td>2005</td>
<td>610</td>
</tr>
<tr>
<td>2006</td>
<td>536</td>
</tr>
<tr>
<td>2007</td>
<td>528</td>
</tr>
<tr>
<td>2008</td>
<td>481</td>
</tr>
<tr>
<td>2009</td>
<td>405</td>
</tr>
<tr>
<td>2010</td>
<td>416</td>
</tr>
<tr>
<td>2011</td>
<td>434</td>
</tr>
</tbody>
</table>

Tabelle 2.2-2 gibt einen Überblick hinsichtlich der Anzahl der Transporte mit der Eisenbahn in Abhängigkeit der jeweiligen rechtlichen Grundlage der erteilten Beförderungsgenehmigung.

Tabelle 2.2-2
Anzahl der Beförderungen in Abhängigkeit von der rechtlichen Grundlage
(Number of transports in respect of their legal basis)

<table>
<thead>
<tr>
<th>Rechtliche Grundlage</th>
<th>Genehmigungsbehörde</th>
<th>Anzahl Transporte</th>
<th>Anzahl Wagenladungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2011</td>
<td>2010</td>
</tr>
<tr>
<td>AtG § 4</td>
<td>Bundesamt für Strahlenschutz (BfS)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>AtG § 23 Abs. 2</td>
<td>Bundesamt für Strahlenschutz (BfS)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>StrlSchV § 16</td>
<td>Eisenbahn-Bundesamt (EBA)</td>
<td>126</td>
<td>97</td>
</tr>
<tr>
<td>StrlSchV § 17</td>
<td>genehmigungsfrei</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Tabelle 2.2-3 listet die Anzahl der Wagenladungen des Jahres 2011, spezifiziert nach der Art der beförderten radioaktiven Stoffe bzw. nach den gefahrgutrechtlichen UN-Nummern, im Vergleich zum Vorjahr auf.

Tabelle 2.2-4 zeigt die Gesamtaktivität für den Wagenladungsverkehr im Jahr 2011. Die Gesamtaktivität im Wagenladungsverkehr wird ausschließlich durch beide HAW-Transporte, d. h. der Rückführung der verglasten hochradioaktiven Abfälle aus Frankreich und den Verglasungsabfällen (VEK) aus Karlsruhe bestimmt.

Sowohl die Umladung der Behälter von den Straßenfahrzeugen auf die Eisenbahnwagen in Valognes als auch umgekehrt in Dannenberg wurde durch das EBA selbst bzw. im Auftrag des EBA durch den TÜV NORD EnSys GmbH & Co. KG begleitet. Die in der Transportdokumentation ausgewiesenen Protokolle über die - die Dichtheit der Versandstücke,
- die Einhaltung der zulässigen Grenzwerte für die Dosisleistung am Versandstück,
- die Einhaltung der zulässigen Grenzwerte für die Dosisleistung am beladenen Eisenbahnwagen,
- die Einhaltung der zulässigen Kontaminationsgrenzwerte am Versandstück,
- die Einhaltung der zulässigen Kontaminationsgrenzwerte an den Eisenbahnwagen in Valognes (vor der Beförderung) und in Dannenberg (nach der Beförderung) sowie an den Handhabungseinrichtungen (z. B. Traglasche Kran),
- die Einhaltung der Vorgaben für eine Messwertübernahme, sowie
- die Einhaltung der Kennzeichnungs- und Bezettelungsvorschriften

belegen die vorschriftenkonforme Beförderung der Behälter mit HAW-Glaskokillen.

Alle die im Rahmen der Aufarbeitung der Kontaminationsproblematik festgelegten Maßnahmen und Prozeduren wurden eingehalten.

Beförderung von verglasten Abfällen aus Karlsruhe (VEK)

Mit Blick auf die Wirksamkeit von Kontaminationsschutzmaßnahmen wurden auch hier den Beladungen und der Beförderung die BMU-Kriterien zu Grunde gelegt, d. h. im atomrechtlichen Aufsichtsverfahren wurden durch das EBA der Masterablaufplan (MAP), die Behälterspezifischen Ablaufpläne (BsA) und die Transportdokumentation (TDF) geprüft und zur Zustimmung verfügt. Die in der Transportdokumentation ausgewiesenen Protokolle belegen die vorschriftenkonforme Beförderung der Behälter.

Tabelle 2.2-5 listet den Anteil der überprüften Wagenladungen sowie die bei den Überprüfungen festgestellte Mängelquote auf.

In Tabelle 2.2-6 ist die Anzahl der Mängel, differenzierter nach der Gefahrgutkategorie, aufgelistet. Mängel mit radiologischer Relevanz traten nicht auf. Es wurden Verstöße gegen Kennzeichnungsvorschriften bzw. Frachtbriefangaben festgestellt.

Tabelle 2.2-5 Anteil der überprüften Wagenladungen bezogen auf Transportarten, sowie festgestellte Mängel

<table>
<thead>
<tr>
<th>Transportart</th>
<th>Wagenladungen</th>
<th>Mängel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anzahl 2011</td>
<td>2010</td>
</tr>
<tr>
<td>Sonstige radioaktive Stoffe</td>
<td>418</td>
<td>389</td>
</tr>
<tr>
<td>Unbestrahlte Brennelemente</td>
<td>16</td>
<td>27</td>
</tr>
</tbody>
</table>

Tabelle 2.2-6 Festgestellte Verstöße gegen Gefahrgutvorschriften

<table>
<thead>
<tr>
<th>Verstöße</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gefahrgutkategorie I (schwerwiegender Verstoß)</td>
<td>-</td>
</tr>
<tr>
<td>Gefahrgutkategorie II (weniger schwerwiegender Verstoß)</td>
<td>-</td>
</tr>
<tr>
<td>Gefahrgutkategorie III (kein schwerwiegender Verstoß)</td>
<td>2</td>
</tr>
</tbody>
</table>
3. Umgang mit radioaktiven Stoffen, Betrieb von Anlagen zur Erzeugung ionisierender Strahlung, Röntgeneinrichtungen und Störstrahler

(Handling of radioactive materials, operation of devices for the production of ionising radiation and X-ray devices)

Nach § 3 Abs. 2 Nr. 34 der Strahlenschutzverordnung versteht man unter Umgang mit radioaktiven Stoffen deren Gewinnung, Erzeugung, Lagerung, Bearbeitung, Verarbeitung, sonstige Verwendung und Beseitigung (im Sinne § 2 AtG) soweit es sich nicht um Arbeiten (im Sinne der StrlSchV, § 3 Abs. 1 Nr. 2) handelt.

3.1 Anwender radioaktiver Stoffe

(User of radioactive sources)

In Tabelle 3.1-1 ist die Zahl der in 2011 gültigen Genehmigungen nach §§ 7, 11, 15, 16, 106 StrlSchV und § 9 AtG in einer Übersicht, aufgeschlüsselt auf die Bundesländer, wiedergegeben.

Die Genehmigungen verteilen sich in 2011 im Wesentlichen zu 70,7 % auf Umgang nach § 7 StrlSchV, zu 4,6 % auf Anlagen zur Erzeugung ionisierender Strahlung § 11 StrlSchV, zu 1,8 % auf Beförderung und zu 22,4 % auf Tätigkeiten in fremden Anlagen. Nur ca. 0,2 % der Genehmigungen betraten § 9 AtG und 0,1 % den Zusatz radioaktiver Stoffe zu Konsumgütern.

- 24 % im Bereich der Medizin einschließlich der medizinischen Forschung und Lehre,
- 11 % im Bereich Forschung und Lehre außerhalb der Medizin,
- 55 % im Bereich Industrie, gewerbliche Wirtschaft und
- 10 % in sonstigen Bereichen, z. B. Behörden registriert.

Tabelle 3.1-1 Übersicht über gültige Genehmigungen
(Survey of current licences)

<table>
<thead>
<tr>
<th>Land</th>
<th>§ 7 StrlSchV (Umgang mit sonstigen radioaktiven Stoffen)</th>
<th>§ 11 StrlSchV (Errichtung und Betrieb von Anlagen zur Erzeugung von Strahlen)</th>
<th>§ 15 StrlSchV (Beschäftigung in fremden Anlagen und Einrichtungen)</th>
<th>§ 16 StrlSchV (Beförderung sonstiger radioaktiver Stoffe zu Konsumgütern)</th>
<th>§ 106 StrlSchV (Zusat radioaktiver Stoffe)</th>
<th>§ 9 AtG (Umgang mit Kernbrennstoffen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>2001</td>
<td>20 (Abs. 1), 102 (Abs. 2)</td>
<td>459</td>
<td>22</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Bayern</td>
<td>1351</td>
<td>1 (Abs. 1), 87 (Abs. 2)</td>
<td>395</td>
<td>17</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Berlin</td>
<td>769</td>
<td>76</td>
<td>209</td>
<td>49</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>333</td>
<td>9</td>
<td>73</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bremen</td>
<td>148</td>
<td>5</td>
<td>43</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hamburg</td>
<td>301</td>
<td>25</td>
<td>98</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hessen</td>
<td>830</td>
<td>61 (Abs. 1), 2 (Abs. 2)</td>
<td>211</td>
<td>13</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Mecklenburg- Vorpommern</td>
<td>178</td>
<td>11</td>
<td>821</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>1446</td>
<td>76 (Abs. 2)</td>
<td>247</td>
<td>49</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>482</td>
<td>28</td>
<td>168</td>
<td>25</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Saarland</td>
<td>142</td>
<td>11 (Abs. 2)</td>
<td>26</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sachsen</td>
<td>521</td>
<td>39</td>
<td>182</td>
<td>19</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>349</td>
<td>20 (Abs. 2)</td>
<td>57</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>551</td>
<td>55</td>
<td>120</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Thüringen</td>
<td>396</td>
<td>19</td>
<td>27</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Summe</td>
<td>9899</td>
<td>647</td>
<td>3136</td>
<td>256</td>
<td>18</td>
<td>40</td>
</tr>
</tbody>
</table>

a Genehmigung ohne Nachträge, Änderungen und Verlängerungen ("Stammgenehmigung")
b getrennt nach § 11 Abs. 1 und Abs. 2 StrlSchV

Tabelle 3.1-2 Übersicht über die Zahl der Inhaber von Genehmigungen
(Survey of the number of licencees according to § 7 StrlSchV relating to the handling of radioactive substances - as at December 31, 2011)

<table>
<thead>
<tr>
<th>Land</th>
<th>Zahl der Inhaber von Genehmigungen nach § 7 StrlSchV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medizin einschl. med. Forschung und Lehre</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>458</td>
</tr>
<tr>
<td>Bayern</td>
<td>213</td>
</tr>
<tr>
<td>Berlin</td>
<td>332</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>24</td>
</tr>
<tr>
<td>Bremen</td>
<td>31</td>
</tr>
<tr>
<td>Hamburg</td>
<td>50</td>
</tr>
<tr>
<td>Hessen</td>
<td>159</td>
</tr>
<tr>
<td>Mecklenburg- Vorpommern</td>
<td>74</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>115</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>0</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>68</td>
</tr>
<tr>
<td>Saarland</td>
<td>22</td>
</tr>
<tr>
<td>Sachsen</td>
<td>97</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>38</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>44</td>
</tr>
<tr>
<td>Thüringen</td>
<td>32</td>
</tr>
<tr>
<td>Summe</td>
<td>1757</td>
</tr>
</tbody>
</table>

a Genehmigungen nach § 11 StrlSchV und nach den §§ 6, 7, 9 AtG in Verbindung mit § 7 StrlSchV sind nicht berücksichtigt
Tabelle 3.1-3 Zahl der Inhaber von Genehmigungen \(^a\) nach § 7 StrlSchV zum Umgang mit ausschließlich umschlossenen radioaktiven Stoffen (Stand: 31.12.2011)
(Survey of the number of licences according to § 7 StrlSchV relating to the handling of sealed radioactive sources only - as at December 31, 2011)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td></td>
<td>131</td>
<td>61</td>
<td>620</td>
<td>66</td>
<td>58</td>
</tr>
<tr>
<td>Bayern</td>
<td></td>
<td>43</td>
<td>23</td>
<td>568</td>
<td>9</td>
<td>104</td>
</tr>
<tr>
<td>Berlin</td>
<td></td>
<td>104</td>
<td>18</td>
<td>116</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Brandenburg</td>
<td></td>
<td>21</td>
<td>18</td>
<td>163</td>
<td>10</td>
<td>47</td>
</tr>
<tr>
<td>Bremen</td>
<td></td>
<td>13</td>
<td>11</td>
<td>49</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Hamburg</td>
<td></td>
<td>4</td>
<td>0</td>
<td>63</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Hessen</td>
<td></td>
<td>24</td>
<td>14</td>
<td>227</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Mecklenburg-Vorp.</td>
<td></td>
<td>31</td>
<td>19</td>
<td>68</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td></td>
<td>16</td>
<td>28</td>
<td>401</td>
<td>26</td>
<td>21</td>
</tr>
<tr>
<td>Nordrhein-Westf.</td>
<td></td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td></td>
<td>42</td>
<td>15</td>
<td>184</td>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>Saarland</td>
<td></td>
<td>2</td>
<td>1</td>
<td>40</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Sachsen</td>
<td></td>
<td>35</td>
<td>63</td>
<td>224</td>
<td>11</td>
<td>60</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td></td>
<td>7</td>
<td>14</td>
<td>189</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td></td>
<td>27</td>
<td>9</td>
<td>72</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Thüringen</td>
<td></td>
<td>9</td>
<td>4</td>
<td>138</td>
<td>11</td>
<td>148</td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td>509</td>
<td>298</td>
<td>3142</td>
<td>178</td>
<td>543</td>
</tr>
</tbody>
</table>

\(^a\) Genehmigungen nach § 11 StrlSchV und nach den §§ 6, 7, 9 AtG in Verbindung mit § 7 StrlSchV sind hier nicht aufzuführen

Tabelle 3.1-4 Übersicht über die Zahl der Inhaber von Genehmigungen \(^a\) zur Errichtung und zum Betrieb von Anlagen zur Erzeugung ionisierender Strahlung nach § 11 StrlSchV (Stand: 31.12.2011)
(Survey of the number of licences according to § 11 StrlSchV relating to the construction and operation of devices for the production of ionising radiation - as at December 31, 2011)

<table>
<thead>
<tr>
<th>Land</th>
<th>Zahl der Inhaber von Genehmigungen nach § 11 StrlSchV</th>
<th>Medizin einschl. med. Forschung und Lehre</th>
<th>Forschung und Lehre außerhalb der Medizin</th>
<th>Industrie, gewerbliche Wirtschaft</th>
<th>Sonstige (z. B. Behörden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td></td>
<td>39</td>
<td>9</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Bayern</td>
<td></td>
<td>43</td>
<td>7</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Berlin</td>
<td></td>
<td>13</td>
<td>15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Brandenburg</td>
<td></td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bremen</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hamburg</td>
<td></td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hessen</td>
<td></td>
<td>21</td>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Mecklenburg-Vorpomern</td>
<td></td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td></td>
<td>29</td>
<td>4</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td></td>
<td>21</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Saarland</td>
<td></td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sachsen</td>
<td></td>
<td>20</td>
<td>14</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td></td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td></td>
<td>21</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Thüringen</td>
<td></td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td>253</td>
<td>58</td>
<td>45</td>
<td>4</td>
</tr>
</tbody>
</table>

\(^a\) einschließlich in Verbindung mit nach § 7 StrlSchV erteilten Genehmigungen
Tabelle 3.1-5 Ergebnisse der Dichtheitsprüfungen an umschlossenen radioaktiven Stoffen nach § 66 StrlSchV im Jahre 2011

(Survey on the results of leakage tests of sealed radioactive sources according to § 66 StrlSchV - year 2011)

<table>
<thead>
<tr>
<th>Land</th>
<th>Gesamtzahl der durchgeführten Dichtheitsprüfungen</th>
<th>Von Spalte 2 entfallen auf:</th>
<th>Anzahl und Nuklid der bei den Prüfungen als undicht ermittelten Präparate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>1592</td>
<td>92</td>
<td>464</td>
</tr>
<tr>
<td>Bayern</td>
<td>2257</td>
<td>143</td>
<td>430</td>
</tr>
<tr>
<td>Berlin</td>
<td>179</td>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>576</td>
<td>82</td>
<td>17</td>
</tr>
<tr>
<td>Bremen</td>
<td>90</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>Hamburg</td>
<td>220</td>
<td>18</td>
<td>56</td>
</tr>
<tr>
<td>Hessien</td>
<td>409</td>
<td>37</td>
<td>72</td>
</tr>
<tr>
<td>Mecklenburg-Vorp.</td>
<td>95</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>1592</td>
<td>155</td>
<td>302</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>124</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>266</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>Saarland</td>
<td>38</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>Sachsen</td>
<td>1843</td>
<td>1006</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>226</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>437</td>
<td>48</td>
<td>28</td>
</tr>
<tr>
<td>Thüringen</td>
<td>199</td>
<td>50</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe

<p>| 10 | 146 | 1738 | 1622 | 3247 | 112 | 9 | 209 | 1123 | 432 | 1538 | 86 |</p>
<table>
<thead>
<tr>
<th>Land</th>
<th>Humanmedizin</th>
<th>Zahnmedizin</th>
<th>Tiermedizin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>115 / 710</td>
<td>26 / 63</td>
<td>78 / 10</td>
</tr>
<tr>
<td>Bayern</td>
<td>151 / 32</td>
<td>9 / 2</td>
<td>10 / 1</td>
</tr>
<tr>
<td>Berlin</td>
<td>117 / 403</td>
<td>10 / 2</td>
<td>10 / 1</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>17 / 2</td>
<td>1 / 3</td>
<td>1 / 2</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>27 / 11</td>
<td>2 / 1</td>
<td>2 / 1</td>
</tr>
<tr>
<td>Hamburg</td>
<td>45 / 9</td>
<td>1 / 2</td>
<td>1 / 2</td>
</tr>
<tr>
<td>Hessen</td>
<td>175 / 42</td>
<td>8 / 1</td>
<td>8 / 1</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>52 / 10</td>
<td>3 / 1</td>
<td>3 / 1</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>420 / 22</td>
<td>9 / 2</td>
<td>9 / 2</td>
</tr>
<tr>
<td>Sachsen</td>
<td>21 / 115</td>
<td>2 / 1</td>
<td>2 / 1</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>38 / 7</td>
<td>2 / 1</td>
<td>2 / 1</td>
</tr>
<tr>
<td>Thüringen</td>
<td>7 / 2</td>
<td>1 / 2</td>
<td>1 / 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Land</th>
<th>Gesamtzahl der genehmigten Röntgeneinrichtungen (RöE) (nach § 3 Abs. 1 i.V.m. § 4 Abs. 4 Nr. 2 RöV)</th>
<th>Gesamtzahl der genehmigten RöE (nach § 3 Abs. 1 RöV)</th>
<th>Gesamtzahl der angezeigten RöE (nach § 4 Abs. 1 RöV)</th>
<th>Gesamtzahl der angezeigten RöE (nach § 4 Abs. 1 Nr. 2 RöV)</th>
<th>Gesamtzahl der genehmigten RöE (nach § 3 Abs. 1)</th>
<th>Gesamtzahl der angezeigten RöE (nach § 4 Abs. 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>115 / 710</td>
<td>26 / 63</td>
<td>78 / 10</td>
<td>78 / 10</td>
<td>117 / 403</td>
<td>10 / 2</td>
</tr>
<tr>
<td>Bayern</td>
<td>151 / 32</td>
<td>9 / 2</td>
<td>10 / 2</td>
<td>10 / 2</td>
<td>117 / 403</td>
<td>10 / 2</td>
</tr>
<tr>
<td>Berlin</td>
<td>175 / 42</td>
<td>8 / 1</td>
<td>8 / 1</td>
<td>8 / 1</td>
<td>117 / 403</td>
<td>10 / 2</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>52 / 10</td>
<td>3 / 1</td>
<td>3 / 1</td>
<td>3 / 1</td>
<td>38 / 7</td>
<td>2 / 1</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>420 / 22</td>
<td>9 / 2</td>
<td>9 / 2</td>
<td>9 / 2</td>
<td>420 / 22</td>
<td>9 / 2</td>
</tr>
<tr>
<td>Hamburg</td>
<td>21 / 115</td>
<td>2 / 1</td>
<td>2 / 1</td>
<td>2 / 1</td>
<td>21 / 115</td>
<td>2 / 1</td>
</tr>
<tr>
<td>Hessen</td>
<td>38 / 7</td>
<td>2 / 1</td>
<td>2 / 1</td>
<td>2 / 1</td>
<td>38 / 7</td>
<td>2 / 1</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>7 / 2</td>
<td>1 / 2</td>
<td>1 / 2</td>
<td>1 / 2</td>
<td>7 / 2</td>
<td>1 / 2</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>420 / 22</td>
<td>9 / 2</td>
<td>9 / 2</td>
<td>9 / 2</td>
<td>420 / 22</td>
<td>9 / 2</td>
</tr>
<tr>
<td>Sachsen</td>
<td>2 / 1</td>
<td>1 / 2</td>
<td>1 / 2</td>
<td>1 / 2</td>
<td>2 / 1</td>
<td>1 / 2</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>38 / 7</td>
<td>2 / 1</td>
<td>2 / 1</td>
<td>2 / 1</td>
<td>38 / 7</td>
<td>2 / 1</td>
</tr>
<tr>
<td>Thüringen</td>
<td>2 / 1</td>
<td>1 / 2</td>
<td>1 / 2</td>
<td>1 / 2</td>
<td>2 / 1</td>
<td>1 / 2</td>
</tr>
</tbody>
</table>

Table 3.1-6: Survey on the granted and registered X-ray installations (RöE) in medicine, dentistry and veterinary medicine in 2011

(Ubersicht über genehmigte und angezeigte Röntgeneinrichtungen (RöE) in der Humanmedizin, Zahnmedizin und Tiermedizin in 2011)
Teil B - V - UMGANG MIT RADIOAKTIVEN STOFFEN UND IONISIERENDER STRAHLUNG - 291 -

Übersicht über genehmigte und angezeigte Röntgeneinrichtungen sowie genehmigte Störstrahler in Technik / Nichtmedizin im Jahr 2011

(Survey on the granted and registered X-Ray installations and granted interfering radiation sources in technological / non-medical areas in 2011)

3.2 Bestand radioaktiver Abfälle

(Stock of radioactive waste)

Der Bestand an radioaktiven Abfällen für die einzelnen Abfallverursachergruppen wird sowohl für radioaktive Abfälle mit vernachlässigbarer Wärmeentwicklung als auch für wärmeentwickelnde radioaktive Abfälle jährlich in einer Erhebung durch das BfS ermittelt. Tabelle 3.2-1 enthält die zusammengefassten Daten für das Jahr 2010 und 2011 für Rohabfälle (unbehandelte Abfälle), Zwischenprodukte (behandelte Abfälle) und konditionierte Abfälle. Nicht enthalten ist in dieser Aufstellung der Bestand abgebrannter Brennelemente.

Tabelle 3.2-1 Übersicht über die Volumina zwischengelagerter radioaktiver Abfälle am 31. Dezember 2011

(Survey on the volume of intermittently stored radioactive wastes on 31 December 2011)

<table>
<thead>
<tr>
<th>Abfallart</th>
<th>Volumen in m^3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vernachlässigbar wärmeentwickelnd</td>
</tr>
<tr>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>unbehandelte Reststoffe</td>
<td></td>
</tr>
<tr>
<td>(verwertbare Reststoffe und Rohabfälle)</td>
<td>19 128</td>
</tr>
<tr>
<td>Bestand Jahresende</td>
<td></td>
</tr>
<tr>
<td>Zwischenprodukte</td>
<td></td>
</tr>
<tr>
<td>Bestand Jahresende</td>
<td>10 372</td>
</tr>
</tbody>
</table>

Land	Gesamtzahl der genehmigten Röntgeneinrichtungen (RöE) (nach § 3 Abs. 1 RöV)	Gesamtzahl der angezeigten RöE (nach § 4 Abs. 1)	Gesamtzahl der genehmigten Störstrahler (nach § 5 Abs. 1 RöV)
	RöE in der technischen Radiographie zur Grobstrukturanalyse (nach § 3 Abs. 1 i.V.m. § 4 Abs. 4 Nr. 1 RöV)	Sonstige RöE	RöE nach § 4 Abs. 1 Nr. 1 i.V.m. Anlage 2 Nr. 1 RöV und RöE nach § 4 Abs. 1 Nr. 3 RöV
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>83</td>
<td>1103</td>
<td>903</td>
</tr>
<tr>
<td>Bayern</td>
<td>426</td>
<td>735</td>
<td>752</td>
</tr>
<tr>
<td>Berlin</td>
<td>106</td>
<td>335</td>
<td>252</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>79</td>
<td>106</td>
<td>102</td>
</tr>
<tr>
<td>Bremen</td>
<td>33</td>
<td>55</td>
<td>24</td>
</tr>
<tr>
<td>Hamburg</td>
<td>43</td>
<td>122</td>
<td>204</td>
</tr>
<tr>
<td>Hessen</td>
<td>113</td>
<td>821</td>
<td>592</td>
</tr>
<tr>
<td>Mecklenburg-Vorp.</td>
<td>35</td>
<td>77</td>
<td>48</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>248</td>
<td>202</td>
<td>514</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>723</td>
<td>964</td>
<td>899</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>97</td>
<td>261</td>
<td>111</td>
</tr>
<tr>
<td>Saarland</td>
<td>52</td>
<td>32</td>
<td>50</td>
</tr>
<tr>
<td>Sachsen</td>
<td>154</td>
<td>248</td>
<td>220</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>118</td>
<td>97</td>
<td>54</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>35</td>
<td>128</td>
<td>92</td>
</tr>
<tr>
<td>Thüringen</td>
<td>54</td>
<td>41</td>
<td>170</td>
</tr>
<tr>
<td>Abfallart</td>
<td>Volumen in m3**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vernachlässigbar wärmeentwickelnd</td>
<td>wärmeentwickelnd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>2010</td>
<td>2011</td>
</tr>
<tr>
<td>konditionierte Abfälle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bestand Jahresende</td>
<td>101 415</td>
<td>96 513</td>
<td>727</td>
</tr>
<tr>
<td>konditionierte Abfälle</td>
<td>4535</td>
<td>1512</td>
<td>54</td>
</tr>
</tbody>
</table>

* Abweichungen der Angaben gegenüber dem Vorjahr beruhen auf Nachmeldungen

** Alle Werte in der Tabelle sind gerundet. Insofern kann es für einzelne Werte bei Summation zu Abweichungen kommen

Insgesamt lagerten bei allen Abfallverursachern 19 128 m3 unbehandelte Abfälle (Vorjahr: 17 517 m3); wobei sich unter diesen auch verwertbare Reststoffe befanden, die weiter- bzw. wiederverwendet oder nach entsprechenden Maßnahmen freigegeben werden können. Der Bestand an Zwischenprodukten mit vernachlässigbarer Wärmeentwicklung belief sich auf 10 372 m3 (Vorjahr: 10 295 m3). Diese lagen zum überwiegenden Teil bei den Abfallverursachern, zum Teil aber auch in zentralen Zwischenlagern. Der Bestand an konditionierten radioaktiven Abfällen mit vernachlässigbarer Wärmeentwicklung betrug am 31. Dezember 2011 insgesamt 101 415 m3 (Vorjahr: 96 513 m3). Auch dieser Bestand lagert sowohl bei den Abfallverursachern als auch in Zwischenlagern.

Detailliertere Angaben zum Bestand der konditionierten Abfälle am 31. Dezember 2011 sind für vernachlässigbar wärmeentwickelnde Abfälle in Tabelle 3.2-2 und für wärmeentwickelnde Abfälle in Tabelle 3.2-3 für die einzelnen Abfallverursachergruppen aufgeführt.

Tabelle 3.2-2 Übersicht über den Bestand an unbehandelten Rohabfällen, Zwischenprodukten und konditionierten Abfällen mit vernachlässigbarer Wärmeentwicklung nach Verursachergruppen am 31. Dezember 2011

(Survey on the stock of unprocessed raw wastes, intermediate products and conditioned wastes with negligible heat generation according to groups of waste producers on 31 December 2011)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>unbehandelte Rohabfälle</th>
<th>Zwischenprodukte</th>
<th>konditionierte Abfälle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forschungseinrichtungen</td>
<td>6508</td>
<td>6111</td>
<td>3786</td>
</tr>
<tr>
<td>kerntechnische Industrie</td>
<td>405</td>
<td>393</td>
<td>927</td>
</tr>
<tr>
<td>Kernkraftwerke</td>
<td>3720</td>
<td>3863</td>
<td>2482</td>
</tr>
<tr>
<td>stillgelegte Kernkraftwerke</td>
<td>5872</td>
<td>4976</td>
<td>2628</td>
</tr>
<tr>
<td>Landessammelstellen</td>
<td>1373</td>
<td>1194</td>
<td>257</td>
</tr>
<tr>
<td>Sonstige</td>
<td>335</td>
<td>335</td>
<td>293</td>
</tr>
<tr>
<td>Wiederaufarbeitung Karlsruhe (WAK)</td>
<td>914</td>
<td>644</td>
<td>0</td>
</tr>
<tr>
<td>Summe</td>
<td>19 128</td>
<td>17 517</td>
<td>10 372</td>
</tr>
</tbody>
</table>

** Alle Werte in der Tabelle sind gerundet. Insofern kann es für einzelne Werte bei Summationen zu Abweichungen kommen.

Der Mittelwert des jährlichen Anfalls über alle Verursachergruppen beträgt in den 26 Jahren, in denen eine Abfallerhebung durchgeführt wurde, ca. 4100 m3 (Vorjahr: ca. 4050 m3).

Neben dem Bestand an vernachlässigbaren wärmeentwickelnden radioaktiven Abfällen lagerten am 31. Dezember 2011 in der Bundesrepublik Deutschland ca. 3 m3 wärmeentwickelnde Rohabfälle (Vorjahr: ca. 3 m3) und ca. 727 m3 wärmeentwickelnde konditionierte Abfälle (Vorjahr: ca. 674 m3). Zusätzlich waren 1251 m3 wärmeentwickelnde Zwischenprodukte zwischengelagert (Vorjahr: 1251 m3). Bei den wärmeentwickelnden Rohabfällen handelt es sich um Abfälle des Forschungsreaktors Garching FRM II. Als Zwischenprodukte wurden die aus dem THTR (Hamm-Uentrop) entlagenen Kugelbrennelemente gemeldet.

Neben den HAW (high active waste)-Kokillen aus der Wiederaufarbeitung in Frankreich und Karlsruhe (WAK), die im Zwischenlager in Gorleben gelagert werden, handelt es sich bei den konditionierten wärmeentwickelnden radioaktiven Ab-
fälten u. a. um ca. 200 Fässer mit zementierten Abfällen, größtenteils Feedklärslämmle, Hülsen und BE-Strukturteile aus dem Betrieb und dem Rückbau der WAK, die in der Hauptabteilung Dekontaminationsbetriebe (HDB-WAK) am Standort des KIT Campus Nord in Karlsruhe des FZK lagern. Die Aufteilung des Bestandes an wärmeentwickelnden Abfällen ist in Tabelle 3.2-3 aufgezeigt.

Tabelle 3.2-3 Übersicht über den Bestand an unbehandelten Rohabfällen und konditionierten wärmeentwickelnden Abfällen nach Verursachergruppen am 31. Dezember 2011
(Survey on the stock of unprocessed raw wastes and conditioned heat generating wastes according to groups of waste producers on 31 December 2011)

<table>
<thead>
<tr>
<th>Verursachergruppe</th>
<th>unbehandelte Rohabfälle</th>
<th>Zwischenprodukte</th>
<th>konditionierte Abfälle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forschungseinrichtungen</td>
<td>3</td>
<td>3</td>
<td>85</td>
</tr>
<tr>
<td>kerntechnische Industrie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernkraftwerke</td>
<td>1251</td>
<td>1251</td>
<td>623</td>
</tr>
<tr>
<td>stillgelegte Kernkraftwerke</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Landessammelstellen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiederaufarbeitung Karlsruhe (WAK)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiederaufarbeitung europäisches Ausland (HAW)</td>
<td>623</td>
<td>568</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>3</td>
<td>3</td>
<td>1251</td>
</tr>
</tbody>
</table>

** Alle Werte in der Tabelle sind gerundet. Insofern kann es für einzelne Werte bei Summationen zu Abweichungen kommen.

3.3 Hochradioaktive Quellen (HRQ)
(High-activity sealed sources (HASS))

Bis zum Ende des Jahres 2011 wurden insgesamt 630 Genehmigungsinhaber mit ihren Stammdaten in das Register für hochradioaktive Strahlenquellen aufgenommen. 50 Bundes- und Landesbehörden wurde ein Zugang zum HRQ-Register erteilt.

Bis Ende 2011 wurden 79 000 Meldungen zu 23 500 registrierten Strahlenquellen aufgenommen. 50 Bundes- und Landesbehörden wurde ein Zugang zum HRQ-Register erteilt.

Bis Ende 2011 wurden 79 000 Meldungen zu 23 500 registrierten Strahlenquellen aufgenommen. 50 Bundes- und Landesbehörden wurde ein Zugang zum HRQ-Register erteilt.

Die Entwicklung des Datenbestandes im HRQ-Register seit 2006 zeigt die nachfolgende Tabelle.

Tabelle 3.3-1 Übersicht über die Entwicklung der Daten im HRQ-Register seit dem Jahr 2006
(Survey on the development of data in the HASS-register since the year 2006)

<table>
<thead>
<tr>
<th>Stand</th>
<th>Genehmigungsinhaber</th>
<th>Behörden</th>
<th>Strahlenquellen</th>
<th>Meldungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ende 2006</td>
<td>321</td>
<td>43</td>
<td>1740</td>
<td>3139</td>
</tr>
<tr>
<td>Ende 2007</td>
<td>453</td>
<td>47</td>
<td>7626</td>
<td>16 863</td>
</tr>
<tr>
<td>Ende 2008</td>
<td>540</td>
<td>47</td>
<td>13 800</td>
<td>32 600</td>
</tr>
<tr>
<td>Ende 2009</td>
<td>580</td>
<td>49</td>
<td>17 300</td>
<td>49 200</td>
</tr>
<tr>
<td>Ende 2010</td>
<td>590</td>
<td>49</td>
<td>20 100</td>
<td>63 000</td>
</tr>
<tr>
<td>Ende 2011</td>
<td>630</td>
<td>50</td>
<td>23 500</td>
<td>79 000</td>
</tr>
</tbody>
</table>
4. Meldepflichtige besondere Vorkommnisse

(Incidents subject to reporting)

Fälle erhöhter Radioaktivität in Metallschrott sind in der Übersicht aufgeführt, soweit radioaktive Quellen gefunden wurden.

Tabelle 4-1

Besondere Vorkommnisse beim Umgang mit radioaktiven Stoffen, beim Betrieb von Beschleunigern, bei der Beförderung radioaktiver Stoffe und beim Betrieb von Röntgeneinrichtungen *(Radiological incidents in handling radioactive substances, in the operation of accelerators and X-ray devices and during transport of radioactive material)*

<table>
<thead>
<tr>
<th>Datum</th>
<th>Vorkommnis</th>
<th>Ursache</th>
<th>Radiologische Folgen</th>
<th>Maßnahmen / Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2010</td>
<td>Fehlbestrahlung eines Patientenfußes in einer Strahlentherapienpraxis</td>
<td>Falsche Einstellung der Bestrahlungsfraktionen im Bestrahlungsplan</td>
<td>Schmerzen und Hautveränderungen am behandelten Fuß durch die irrtümlich applizierte Dosis von 48 Gray anstelle von 8 Gray</td>
<td>Einführung zusätzlicher Kontroll- und Freigabeschritte bei der Bestrahlungsplanung, ärztliche Überwachung des Patienten</td>
</tr>
<tr>
<td>11.01.11</td>
<td>Fund eines Metallteils (Ra-226; ca. 3,7 MBq, ODL außen 400 µSv/h) bei der Eingangskontrolle einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>17.01.11</td>
<td>Fund von mit radioaktiven Ablagerungen kontaminiertem Edelstahlschrott (Ra-226, 0,2 µSv/h am Container) bei einer Raffinerie</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>21.01.11</td>
<td>Fund von radioaktiv kontaminierten Krankenhausabfällen (I-123, 0,62 µSv/h am Container) bei der Müllverwertung</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Abklingen lassen, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>21.01.11</td>
<td>Fund von 3 radioaktiv kontaminierten Stahloffholen im Schrott (Ra-226, 2,2 µSv/h am Rohr) bei einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Gering</td>
<td>Ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>25.01.11</td>
<td>Fund von Rohrstücken (Co-60; pro Stück ca. 34 kBq, ODL außen 2,5 µSv/h) bei der Eingangskontrolle einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>25.01.11</td>
<td>Fund eines Messinstruments (Ra 226; ca. 34 kBq, ODL außen 8 µSv/h) bei der Eingangskontrolle einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>Datum</td>
<td>Vorkommnis</td>
<td>Ursache</td>
<td>Radiologische Folgen</td>
<td>Maßnahmen / Bemerkungen</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>--------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>28.01.11</td>
<td>Fehlbestrahlung eines Patienten mit einem Beschleuniger in einer Klinik</td>
<td>Softwarefehler</td>
<td>Applikation einer Dosis von 40 bis 65 Gy anstelle von 2 x 10 Gy; medizinische Untersuchung des Patienten anstehend (zurzeit keine akuten Folgen)</td>
<td>Schulung aller Beteiligten durch Herstellerfirma, Einführung eines Prüfschrittes bei der Datenübermittlung, Einführung der Fallbearbeitung durch zwei Personen</td>
</tr>
<tr>
<td>02.02.11</td>
<td>Fund von radioaktiven Schulpräparaten (Co-60, 1,48 MBq; Tl-204, 925 kBq; 9 x Ra-226, bis 1,11 MBq; Am-241, 340 kBq; Th-232, bis 37 kBq) im Keller eines Wohnhauses</td>
<td>Unterlassene Entsorgung</td>
<td>Keine</td>
<td>Sicherstellung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>04.02.11</td>
<td>Fund einer Eisenschiene mit 2 Leucht- oder Reflexionelementen (Ra-226; ODL-Oberfläche 400 µSv/h, geschätzte Gesamtaktivität je Element 1,2 MBq) bei der Eingangskontrolle einer Recyclingfirma</td>
<td>Container mit Metallschrott aus Privatgrundstück-Entrümpelung</td>
<td>Keine</td>
<td>Separierung, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>07.02.11</td>
<td>Fund eines Strahlers im Scheren schrott (Ra-226, 20 kBq bzw. 0,05 Bq/g) bei einem Stahlwerk</td>
<td>Inkrustation</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>07.02.11</td>
<td>Fund von radioaktiv kontaminiertem Müll aus einem Krankenhaus (In-111, 0,8 µSv/h am Container) bei einer Müllverwertungsfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Abklingen lassen und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>14.02.11</td>
<td>Fund von drei Flugzeug-Anzeiginstrumenten mit radioaktiver Leuchtfarbe (Ra-226) bei einem technischen Servicebetrieb</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Rücksendung an Absender</td>
</tr>
<tr>
<td>16.02.11</td>
<td>Fund eines Metallröhrchens (Ra 226, 700 kBq) in einer Schrottlieferung bei einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>22.02.11</td>
<td>Patientenverwechselung bei Bestrahlung der Prostata</td>
<td>Schwerhörigkeit eines Patienten</td>
<td>Gering, weil der Bestrahlungsplan des verwechselten Patienten nahezu der verordneten Bestrahlung entsprach</td>
<td>Organisatorische und technische Maßnahmen, durch die auch bei Hörr- und Verständigungsproblemen eines Patienten eine Verwechselung ausgeschlossen werden soll, wurden veranlasst</td>
</tr>
<tr>
<td>22.02.11</td>
<td>Fund von Armaturen mit Leuchtfarbe im Schrott (Ra-226, 50 kBq bzw. 31 Bq/g) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>23.02.11</td>
<td>Fund von 18 Ionisationsrauchmeldern (Am-241; 302 kBq Gesamtaktivität) bei einer Electorecycl- ing-Firma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Sicherstellung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>Datum</td>
<td>Vorkommnis</td>
<td>Ursache</td>
<td>Radiologische Folgen</td>
<td>Maßnahmen / Bemerkungen</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>04.03.11</td>
<td>Fund eines Kompasses mit radioaktiven Leuchttibern im Elektroenschrott bei einer Recyclingfirma</td>
<td>Unzulässige Entsorgung, wahrscheinlich Unkenntnis bezügl. vorhandener Radioaktivität, da nicht gekennzeichnet</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>15.03.11</td>
<td>Fund von drei Rauchmeldern (Am-241) im Elektroschrott einer Recycling-Firma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>18.03.11</td>
<td>Fund eines radioaktiv kontaminierten PKW (Cs-134, Cs-136, Cs-137, I 131, I-132, I-133, Tc-99m, Te-129, Te-132, variable Aktivitäten) auf einem Flughafen</td>
<td>Kontamination am Frachtgut durch Reaktorunfall in Fukushima, Japan</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>28.03.11</td>
<td>Fund von drei Radiumblättchen eines Radium-Emanators (Ra-226, 1,3 MBq) im Metallschrott bei einem Recyclingunternehmen</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Ordnungsgemässe Entsorgung</td>
</tr>
<tr>
<td>29.03.11</td>
<td>Fund eines Messinstruments (Ra-226; ca. 120 kBq, ODL außen 15 µSv/h) bei der Eingangskontrollrolle einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung, ordnungsgemässe Entsorgung</td>
</tr>
<tr>
<td>30.03.11</td>
<td>Angebot eines Messgeräts mit einem radioaktiven Strahler (Sr-90, 185 kBq) bei einer elektronischen Auktionsbörse</td>
<td>Illegaler Erwerb radioaktiver Stoffe</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>30.03.11</td>
<td>Fund eines Strahlers im Schrott, Scherenschrott (Th-232sec, 35 kBq bzw. 6,7 Bq/g) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>04.04.11</td>
<td>Fund von Gestein mit natürlichem radioaktivem Material (Ra-226, 1,6 MBq, 320 µSv/h bei Kontakt) im Müll bei einer thermschen Abfallbeiseitigungsanlage</td>
<td>Unzulässige Entsorgung</td>
<td>Gering</td>
<td>Vorübergehende Zwi schenlagerung, ordnungsgemässe Entsorgung</td>
</tr>
<tr>
<td>08.04.11</td>
<td>Unfall mit einem Versandstück mit einem Radiopharmakum (F-18, 18,77 GBq)</td>
<td>Unfall</td>
<td>Keine</td>
<td>Versandstück nicht beschädigt, kein Verstoß gegen gefahrhrechtsli che Vorschriften</td>
</tr>
<tr>
<td>08.04.11</td>
<td>Fund eines Eluatfläschchens mit radioaktiver Flüssigkeit (Tc-99m, 430 nSv/h an der Oberfläche) in einer medizinischen Praxis</td>
<td>Verstoß gegen Strahlenschutzvorschriften durch widerrechtliche Verbrin gung außerhalb des Strahlenschutzbereiches</td>
<td>Keine</td>
<td>Abklingen lassen und ordnungsgemässe Entsorgung</td>
</tr>
<tr>
<td>11.04.11</td>
<td>Fund von kontaminierten Stahlringen im Abbruchschrott (Co-60, 2 MBq bzw. 40 Bq/g) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>13.04.11</td>
<td>Fund eines Messgeräts mit eingebautem radioaktivem Strahler (60 µSv/h Dosisleistung) im Elektroschrott einer Recycling-Firma</td>
<td>Unzulässige Entsorgung, wahrscheinlich Unkenntnis bezügl. vorhandener Radioaktivität, da nicht gekennzeichnet</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>13.04.11</td>
<td>Fund eines kontaminierten Rohrstücks im Abbruchschrott (Ra-226, 40 kBq; Th-232sec, 8,5 kBq; U-235, 0,059 Bq/g; U-238sec, 1,2 Bq/g) bei einem Stahlwerk</td>
<td>Inkrustation</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>Datum</td>
<td>Vorkommnis</td>
<td>Ursache</td>
<td>Radiologische Folgen</td>
<td>Maßnahmen / Bemerkungen</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>18.04.11</td>
<td>Fund eines radioaktiv kontaminierten Absperrschiebers aus einem Bergbaubetrieb (Ra-226, 5,5 µSv/h an der Oberfläche) in einem Entsorgungsbetrieb</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>19.04.11</td>
<td>Fund eines plutoniumbetriebenen Herzschnittmachers (Pu-238, ca. 30 GBq) auf Grund einer medizinisch indizierten Explantation in einem Klinikum</td>
<td>Implantation des Herzschnittmachers vor ca. 30 Jahren im Ausland und Verbringung durch Ausreise des Patienten nach Deutschland</td>
<td>Keine</td>
<td>Sicherstellung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>21.04.11</td>
<td>Fund einer kontaminierten Tresortür im Schrott (Cs-137, 1,5 kBq; Ra-226, 40 kBq; Th-232sec, 4 kBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>26.04.11</td>
<td>Vorübergehender (Kontroll-)Verlust einer kombinierten Eindrücksonde mit einem Strahler (Cs-137, 129 MBq) auf einem Tagebau</td>
<td>Bruch des Gestänges</td>
<td>Keine</td>
<td>Bergung der Quelle aus 63 m Tiefe erfolgreich, die Quelle blieb unbeschädigt</td>
</tr>
<tr>
<td>Mai 2011</td>
<td>Verlust eines Teufenmarkers mit einer radioaktiven Quelle (Y-88, 660 kBq) durch Absturz in den Kavernensumpf in einer Erdgaspeicheranlage</td>
<td>Unfall</td>
<td>Keine, da auf Grund der Lage und der geringen Aktivität und Halbwertszeit Expositionen nicht zu erwarten sind</td>
<td>Keine</td>
</tr>
<tr>
<td>03.05.11</td>
<td>Fund von 12 Ionisationsrauchmeldern (Am-241, 222 kBq Gesamtaktivität) bei einer Electorecycle-Firma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>03.05.11</td>
<td>Fund eines kontaminierten Blechstückes im Scherenschrott (Th-232sec, 9 kBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>03.05.11</td>
<td>Fund von radioaktiv kontaminierten Verschraubungen (Co-60, 2,8 µSv/h) auf einem LKW bei einer Privatfirma</td>
<td>Unbekannt, ggf. bereits Kontamination des Rohmaterials</td>
<td>Keine</td>
<td>Separierung, Prüfung der Rücksendung an den Lieferanten</td>
</tr>
<tr>
<td>09.05.11</td>
<td>Fund eines Metallteiles mit abgereichertem Uran im Schrott (U-238, 10 MBq) bei einer Recycling-Firma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>11.05.11</td>
<td>Fehlbestrahlung eines Patienten</td>
<td>Unbekannt</td>
<td>Keine</td>
<td>Endbericht liegt noch nicht vor</td>
</tr>
<tr>
<td>11.05.11</td>
<td>Kontamination von drei medizinisch-technischen Assistenten (Tc-99m) in einer Klinik</td>
<td>Mangelnde Kontaminationsprüfung nach einem Unfall</td>
<td>Abgeschätzte Teilkörperdosen an den Fingerkuppen: 8 mSv, 295 mSv und 351 mSv</td>
<td>Auswertung der Fingeringsdosimeter, ärztliche Behandlung der medizinisch-technischen Assistenten, Durchführung einer Sonderunterweisung</td>
</tr>
<tr>
<td>16.05.11</td>
<td>Fund einer Ampulle mit radioaktivem Gas (Kr-85, ca. 150 kBq) bei einer Firma</td>
<td>Unterlassene Entsorgung</td>
<td>Keine</td>
<td>Ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>17.05.11</td>
<td>Beschädigung einer Troxler-Sonde (Cs-137, 300 MBq) durch eine Walze bei Bauarbeiten</td>
<td>Unfall</td>
<td>Keine</td>
<td>Sicherstellung in der Transportverpackung und Abgabe an Hersteller</td>
</tr>
<tr>
<td>Datum</td>
<td>Vorkommnis</td>
<td>Ursache</td>
<td>Radiologische Folgen</td>
<td>Maßnahmen / Bemerkungen</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>----------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>18.05.11</td>
<td>Fund kontaminiertter Hygieneartikel (I-131, 18 µSv/h) im Hausmüll, bei einer thermischen Verwertungsanlage</td>
<td>Unbekannt</td>
<td>Keine</td>
<td>Separierung und Abklinglagerung bis 07.08.2011, Zuführung zur Verbrennung</td>
</tr>
<tr>
<td>18.05.11</td>
<td>Fund eines radioaktiven Stoffes (Tc-99m, 0,5 µSv/h am Container) in einer Müllverwertungsanlage</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Abklingen lassen, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>20.05.11</td>
<td>Fund eines kontaminierten Rohstückes mit Beton im Schrott (Ra-226; 10 kBq bzw. 0,06 Bq/g; Th-232sec; 5 kBq bzw. 0,14 Bq/g; U-235; 0,02 Bq/g; U-238sec, 0,2 Bq/g) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>20.05.11</td>
<td>Fund von kontaminierten Teilen (Cs-134; Cs-137; Oberflächenkontamination max. 30 Bq/cm²; Gesamtaktivität ca. 116 kBq) in Metallschrott bei einem metallverarbeitenden Betrieb</td>
<td>Mangelnde Kontaminationsprüfung an Metallschrott, der aus der Region Fukushima, Japan, stammt</td>
<td>Keine</td>
<td>Separierung, Dekontamination und Weiterverarbeitung</td>
</tr>
<tr>
<td>30.05.11</td>
<td>Fund einer kontaminierten Filtermatte (Cs-134; Cs-137; 1,4 µSv/h an der Oberfläche) im Schiffsabfall bei einer Müllverwertungs firma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Sicherstellung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>01.06.11</td>
<td>Fund von zwei Radiumtrinkbechern (Ra-226) bei einem Schrott-Händler</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Lagerung in der Landes sammelstelle</td>
</tr>
<tr>
<td>03.06.11</td>
<td>Fund von kontaminierten Hygieneartikeln (I-131, 0,5 µSv/h) im Hausmüll bei einer thermischen Verwertungsanlage</td>
<td>Unbekannt</td>
<td>Keine</td>
<td>Abklingen lassen nach Untersuchung, ordnungsgemäße Verbrennung</td>
</tr>
<tr>
<td>07.06.11</td>
<td>Fund eines geschlossenen Metallrohres (Ra-226; ca. 1 MBq, ODL bis 30 µSv/h) in einer Recyclinganlage</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Keine</td>
</tr>
<tr>
<td>09.06.11</td>
<td>Fund von thoriumhaltigem Flugzeugschrott (Th-232; 10 µSv/h an der Oberfläche) auf einem Recyclinghof</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Rückgabe an den Hersteller, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>10.06.11</td>
<td>Fund von kontaminierten Metallplatten im Schrott (Ra-226; 15 kBq; Th-232sec; 20 kBq; U-235; 0,012 Bq/g; U-238sec, 0,022 Bq/g) bei einem Stahlwerk</td>
<td>Inkrustation, Radioaktivität im Baumaterial</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>17.06.11</td>
<td>Fund eines Metallbehälters mit einem radioaktiven Präparat (Cs-137, 350 kBq) im Schrott bei einer Recycling-Firma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>21.06.11</td>
<td>Störung beim Zurückfahren des Strahlers bei einem Afterloadinggerät</td>
<td>Technischer Geräte defekt</td>
<td>Gering (zusätzliche Dosis < 0,8 mSv), weil sich der Strahler nicht mehr in Patientennähe befand</td>
<td>Reparatur der Anlage durch den Hersteller</td>
</tr>
<tr>
<td>Datum</td>
<td>Vorkommnis</td>
<td>Ursache</td>
<td>Radiologische Folgen</td>
<td>Maßnahmen / Bemerkungen</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>22.06.11</td>
<td>Fund eines kontaminierten Behälters im Schrott (Ra-226, 0,15 Bq/g; Th-232sec, 0,1 MBq bzw. 0,85 Bq/g; U-235, 0,012 Bq/g; U-238sec, 0,26 Bq/g) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>22.06.11</td>
<td>Fehlbestrahlung eines Patienten mit Protonen in einer Klinik</td>
<td>Fehlerhafte Eingabe der Anzahl der Fraktionen</td>
<td>Irrtümliche Applikation der vollen Therapiedosis anstelle einer Fraktionsdosis, Nebenwirkungen</td>
<td>Medizinische Kontrolle des Patienten, zusätzliche organisatorische Maßnahmen (4-Augen-Prinzip), Änderung der Software</td>
</tr>
<tr>
<td>Juli 2011</td>
<td>Angebot eines Messgeräts mit einem radioaktiven Strahler (Sr-90, 185 kBq) bei einer elektronischen Auktionsbörse</td>
<td>Illegaler Erwerb radioaktiver Stoffe</td>
<td>Keine</td>
<td>Sicherstellung, ordnungsgemäßige Entsorgung</td>
</tr>
<tr>
<td>05.07.11</td>
<td>Fund eines radioaktiv kontaminierten elektrischen Schaltkabels (Ra-226, 2,3 MBq) bei einer Metallrecycling-Firma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>05.07.11</td>
<td>Fund von 8 Ionisationsrauchmeldern (Am-241, 148 kBq Gesamtaktivität) bei einer Electorecycling-Firma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Sicherstellung und ordnungsgemäßige Entsorgung</td>
</tr>
<tr>
<td>06.07.11</td>
<td>Unerlaubter Betrieb eines Röntgenröhren zum Knochendichtemessung in einer Apotheke</td>
<td>Verstoß gegen Strahlenschutzvorschriften</td>
<td>Teilweise geringe Expositionen an Versuchspersonen</td>
<td>Behördliches Verbot, Verhängen eines Bußgeldes</td>
</tr>
<tr>
<td>07.07.11</td>
<td>Fund von zwei Schulstrahlenquellen (Cs-137, 185 kBq; Kr-85, 185 kBq) in einer verlassenen Schule</td>
<td>Unterlassene Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>07.07.11</td>
<td>Unzulässige Exposition von 2 Arbeitnehmern bei der Wartung von Röntgeneinrichtungen</td>
<td>Mangelnde Funktion einer Warnsignalleuchte sowie von Sicherheitsschaltern und Sicherheitsteuereinrichtungen</td>
<td>Gesamtdosis pro Arbeitnehmer: ca. 5 µSv</td>
<td>Sicherstellung der Röntgeneinrichtungen</td>
</tr>
<tr>
<td>11.07.11</td>
<td>Fund eines Strahlers sowie eines Eimers mit kontaminierten Rückständen im Schrott, (Ra-226, 0,53 MBq bzw 24 kBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>19.07.11</td>
<td>Fund eines Radiumkissens (Ra-226, 1 MBq) in einer Müllfesteinrichtung bei einer thermischen Abfallbehandlungsanlage</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung, ordnungsgemäßige Entsorgung</td>
</tr>
<tr>
<td>20.07.11</td>
<td>Fund v. Metallkleinteilen (Th-232, ca. 100 kBq, ODL außen 2,1 µSv/h) bei der Eingangskontrolle einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung und ordnungsgemäßige Entsorgung</td>
</tr>
<tr>
<td>22.07.11</td>
<td>Fund eines Strahlers im Schrott, Messruhr (Ra-226, 0,1 MBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>25.07.11</td>
<td>Fund eines Strahlers im Schrott, Pressling (Ra-226, 0,35 MBq bzw. 44 Bq/g) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>Datum</td>
<td>Vorkommnis</td>
<td>Ursache</td>
<td>Radiologische Folgen</td>
<td>Maßnahmen / Bemerkungen</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>29.07.11</td>
<td>Fund eines Höhenmessers mit Leuchtfarbe (Ra-226, 0,1 MBq) bei einer Metallrecycling-Firma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>29.07.11</td>
<td>Fund einer Strahlenquelle (Co-60, 20 MBq) in einer Lieferung bei einer Schrottverwertungsfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>01.08.11</td>
<td>Fund eines kontaminierten Rohrs im Schrott (U-238sec, 40 kBq; U-235/Pa-231/Ac-227, 2 kBq; Th-232sec, 8 kBq; K-40, 4 kBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>03.08.11</td>
<td>Unbemerker Entritt von Personen in den OP-Bestrahlungsraum beim Betrieb einer Intrabeam-Röntgenbestrahlungseinrichtung</td>
<td>Unbekannt</td>
<td>Keine</td>
<td>Installation von Türkontakten an allen Zugangstüren</td>
</tr>
<tr>
<td>04.08.11</td>
<td>Fund eines Pakets mit einem Prüfstrahler (C-14) bei einer Postannahmestelle</td>
<td>Unterlassene Kontrollen</td>
<td>Keine</td>
<td>Separierung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>16.08.11</td>
<td>Fund eines Zifferblatts mit radioaktiver Leuchtfarbe im Schrott (Ra-226, 50 kBq bzw. 62,5 Bq/g) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>16.08.11</td>
<td>Fund eines kontaminierten Steins im Schrott (Ra-226, 0,1 MBq; U-235, 5 kBq; U-238sec, 0,1 MBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>16.08.11</td>
<td>Fund von radioaktiven Stoffen (I-131, 47 µSv/h am Behälter) in Hausmüll bei einer Müllverbrennungsanlage</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Sortierung durch eine Fachfirma, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>17.08.11</td>
<td>Fund eines Fassteils mit radioaktiven Leuchtziffern im Schrott (Ra-226, 0,3 MBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>23.08.11</td>
<td>Fund eines Gerätes mit radioaktiver Leuchtfarbe (Ra-226, 300 kBq) in einer Lieferung bei einem Entsorger</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>23.08.11</td>
<td>Fund von 950 Metallplaketten mit radioaktiver Leuchtfarbe (Ra-226, 375 MBq) in 4 Containern bei einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Sicherstellung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>24.08.11</td>
<td>Fund von radioaktiv kontaminierten Metallnetzen ca. 5 kg (Co-60, max. 128 Bq/g) in einer Schrottverfeuerung bei einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>28.08.11</td>
<td>Beschädigung einer Troxlersonde (Cs-137, 0,3 GBq) durch eine Walze bei Straßenbauarbeiten</td>
<td>Unfall durch Unachtsamkeit des Walzenfahrers</td>
<td>Keine, da Troxlersonde nur äußerlich beschädigt, Kontaminationsfreiheit durch Messungen bestätigt</td>
<td>Sicherstellung der Troxlersonde, polizeiliche Ermittlungen</td>
</tr>
<tr>
<td>29.08.11</td>
<td>Fund eines Anzeigeinstruments mit Leuchtfarbe (Ra-226, 0,35 MBq) bei einer Metallrecycling-Firma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>Datum</td>
<td>Vorkommnis</td>
<td>Ursache</td>
<td>Radiologische Folgen</td>
<td>Maßnahmen / Bemerkungen</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>29.08.11</td>
<td>Kontamination von zwei Mitarbeitern durch zwei undichte Strahler (Cs-137, 3,7 GBq) in einem Kohlekraftwerk</td>
<td>Undichtigkeit durch unsachgemäße Arbeiten an den Strahlenquellen einer Messeinheit für die Rauchgasentschwefelung</td>
<td>Folgedosen der Inkorporation in Folge der Kontamination von 20 µSv bzw. 40 µSv</td>
<td>Dekontamination der Mitarbeiter und der Arbeitsbereiche, ordnungsgemäße Entsorgung der Strahler</td>
</tr>
<tr>
<td>29.08.11</td>
<td>Fund von radioaktiv kontaminierten Feststoffen und Lösungen (Co-60; Cs-134; Cs-137 u.a.) bei einer Kontrolle in einem Forschungsbereich</td>
<td>Unbekannt</td>
<td>Keine</td>
<td>Ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>29.08.11</td>
<td>Fund von 7 radioaktiv kontaminierten Metallplaketten (Ra-226) in Gewerbemüll bei einer Lagerraumvermietung</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Sicherstellung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>29.08.11</td>
<td>Fund von 48 Metallplaketten mit radioaktiver Leuchtfarbe (Ra-226) bei der Durchsuchung eines Privatgeschäfts</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Sicherstellung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>30.08.11</td>
<td>Fund von 39 radioaktiv kontaminierten Metallplaketten (Ra-226) in Gewerbemüll bei einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Sicherstellung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>31.08.11</td>
<td>Fund von radioaktiv kontaminierten Metallplaketten (Ra-226) in zwei Containern bei einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Sicherstellung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>05.09.11</td>
<td>Verlust von radioaktiven Stoffen (H-3, 37 MBq; C-14, 1,85 MBq)</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Überarbeitung der Strahlenschutzanweisungen</td>
</tr>
<tr>
<td>08.09.11</td>
<td>Fund eines Gerätes mit einem Strahler (Ra-226 bis 11,1 MBq; ODL außen 450 µSv/h) bei der Eingangskontrolle einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung und ordnungsgemäße Entsorgung, Ermittlungen laufen</td>
</tr>
<tr>
<td>09.09.11</td>
<td>Fund eines Messgerätes mit Prüfstrahlenquellen (Cs-137, 129 kBq je Strahler) in einer Schrottlieferung bei einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>09.09.11</td>
<td>Verkleben eines Strahlers an einem Gammaradiographierät (Ir-192, 888 GBq) bei Prüfarbeiten in einem Kraftwerk</td>
<td>Fehlfunktion am Gerät</td>
<td>Handdosis ca. 50 mSv, Körpersdosis ca. 4 mSv bei den betroffenen Mitarbeitern</td>
<td>Quelle nach manuellem Eingriff des Mitarbeiters wieder ordnungsgemäß eingefahren</td>
</tr>
<tr>
<td>13.09.11</td>
<td>Fund eines kontaminierten Leuchtelements und einer Sockelplatte (Ra-226, ca. 350 kBq, ODL außen 65 µSv/h) bei der Eingangskontrolle einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>15.09.11</td>
<td>Fund einer Strahlenquelle (Cs-137, 46 kBq) in einem Forschungsinstitut</td>
<td>Unterlassene Kontrollen</td>
<td>Keine</td>
<td>Sicherstellung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>Datum</td>
<td>Vorkommnis</td>
<td>Ursache</td>
<td>Radiologische Folgen</td>
<td>Maßnahmen / Bemerkungen</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>16.09.11</td>
<td>Fund einer radioaktiven Strahlenquelle (Cs-137, 30 MBq) in einer Lieferung bei einem Schrotthändler</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Sicherstellung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>18.09.11</td>
<td>Fund einer gepressten Armatur im Schrott (Ra-226, 30 kBq bzw. 37,5 Bq/g) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>19.09.11</td>
<td>Fund von kontaminierten Blechelementen (Ra-226, ca. 240 kBq) und einem Stahlrohr (Ra-226, ca. 300 kBq) bei der Eingangskontrolle einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>20.09.11</td>
<td>Fund von innen kontaminierten Rohren (Ra-226, im Gleichgewicht mit den Tochternukliden) aus der Erdöl-/Erdgasförderung</td>
<td>Unzulässige Entsorgung von überwachungsbedürftigen Rückständen</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>21.09.11</td>
<td>Fund eines kontaminierten Rohrstücks im Schrott (Ra-226, 8 kBq; Th-232sec, 4 kBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>22.09.11</td>
<td>Fund eines kontaminierten Pflastersteins im Schrott (Ra-226, 20 kBq; U-235, 1 kBq; U-238sec, 20 kBq) bei einem Stahlwerk</td>
<td>Erhöhte natürliche Radioaktivität</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>22.09.11</td>
<td>Fund eines kontaminierten Rohrstücks im Schrott (Ra-226, 20 kBq; Th-232sec, 6 kBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>26.09.11</td>
<td>Fund eines kontaminierten Bleistücks im Schrott (Ra-226, 0,4 MBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>27.09.11</td>
<td>Fund von zwei radioaktiven Quellen (Sr-90, je 555 MBq) bei Abrissarbeiten</td>
<td>Unterlassene Entsorgung von zwei Flächenmassemessköpfen</td>
<td>Keine</td>
<td>Abholung durch den Hersteller</td>
</tr>
<tr>
<td>28.09.11</td>
<td>Fund eines kontaminierten Schrotttücks mit Beton im Schrott, (Ra-226, 40 kBq; Th-232sec, 7 kBq; U-235, 3 kBq; U-238sec, 50 kBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>30.09.11</td>
<td>Fund einer kontaminierten Tür mit Beton im Schrott (Ra-226, 9 kBq; Th-232sec, 10 kBq) bei einem Stahlwerk</td>
<td>Radioaktivität in Baustoffen</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>05.10.11</td>
<td>Fund eines Strahlers im Schrott (Ra-226, 60 kBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>05.10.11</td>
<td>Fund von Metallkleinteilen (69 Stück) mit Leuchtfarbe (Ra-226, ca. 105 kBq, ODL außen 20 µSv/h) bei der Eingangskontrolle einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>05.10.11</td>
<td>Fund eines radioaktiv kontaminierten Metallrohrs (Ra-226, 5,5 MBq) in einem Haufwerk bei einer Metallrecycling-Firma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>Datum</td>
<td>Vorkommnis</td>
<td>Ursache</td>
<td>Radiologische Folgen</td>
<td>Maßnahmen / Bemerkungen</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--------------------------------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>08.10.11</td>
<td>Fund einer kontaminierten Armatur im Schrott (Ra-226, 5 kBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>08.10.11</td>
<td>Fund eines Behälters mit radioaktiver Leuchtfarbe im Schrott (Ra-226, 20 kBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>15.10.11</td>
<td>Fund einer kontaminierten Wasserwaage im Schrott (Ra-226, 30 kBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>18.10.11</td>
<td>Freigabe eines Leichnams nach einer therapeutischen Behandlung mit I-131</td>
<td>Unkenntnis</td>
<td>Keine</td>
<td>Schutzmaßnahmen beim Beerdigungsinstitut, (Handschuhe, Dosimeter)</td>
</tr>
<tr>
<td>20.10.11</td>
<td>Fund eines Leuchtelements (Ra-226, 740 kBq, ODL außen 105 µSv/h) bei der Eingangskontrolle einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>20.10.11</td>
<td>Fund eines Anzeigeinstruments (Ra-226) im Schrott bei einem Schrotthändler</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Sicherstellung, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>25.10.11</td>
<td>Fund von kontaminierten Rohrstücken (Co-60; ca. 10 kBq, ODL außen 0,6 µSv/h) bei der Eingangskontrolle einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>25.10.11</td>
<td>Fund von radioaktiv kontaminierten Stoffen (Tc-99m, 2,2 µSv/h am Behälter) in Hausmüll bei einer Müllverwertungs- firma</td>
<td>Unzulässige Entsorgung von Patientenausscheidungen</td>
<td>Keine</td>
<td>Abklingen lassen, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>26.10.11</td>
<td>Freisetzung einer radioaktiven Lösung (F-18, 28 GBq) in einer Anlage zur Herstellung von PET-Diagnostika</td>
<td>Fehler am Kugelventil und Materialfehler am Glasfläschchen</td>
<td>Personendosis der Mitarbeiter von 2 bis 4 µSv</td>
<td>Dekontamination des Bereichs</td>
</tr>
<tr>
<td>28.10.11</td>
<td>Fund einer radioaktiv kontaminierten Metallfeder (Co-60, 1,2 MBq) in einer Lieferung bei einer Metall-recycling- Firma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>02.11.11</td>
<td>Fund von Brachytherapie-Seeds (I-125) in Mick-Applikatoren bei einer Galvanik-Firma</td>
<td>Mangelnde Kontrolle vor der Versendung der Mick-Applikatoren</td>
<td>Handdosis des Mitarbeiters ca. 8 µSv, Dosisleistung an den Applikatoren 30 - 100 µSv/h</td>
<td>Organisatorische Änderungen beim Versender, Einführung von zusätzlichen Kontroll- und Dokumentationsschritten</td>
</tr>
<tr>
<td>03.11.11</td>
<td>Fund von Behältern mit radioaktiven Stoffen (Uranylnitrat, 21 µSv an der Oberfläche) auf einem Betriebshof</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Sicherstellung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>04.11.11</td>
<td>Fund eines Strahlers im Scherschrott (Ra-226, 30 kBq; Th-232sec, 6 kBq; U-235, < 0,8 kBq; U-238sec, < 80 kBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>07.11.11</td>
<td>Fund von radioaktiv kontaminierten Zinkblechteilen (Ra-226) aus einer ehemaligen Dachindeckung im Schrott</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>Datum</td>
<td>Vorkommnis</td>
<td>Ursache</td>
<td>Radiologische Folgen</td>
<td>Maßnahmen / Bemerkungen</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>08.11.11</td>
<td>Fund radioaktiver Stoffe (Uran-abgereichert; ODL ca. 20 µSv/h) in einer Lieferung bei einem Schrotthändler</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>11.11.11</td>
<td>Fund von zwei Bleibehältern mit Strahlenquellen (Cs-137, 130 kBq & 21 kBq; Co-57) bei einer Hausdurchsuchung</td>
<td>Unerlaubter Besitz radioaktiver Stoffe</td>
<td>Keine</td>
<td>Sicherstellung, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>11.11.11</td>
<td>Fund von 25 Einzelgebinden mit natürlichen radioaktiven Stoffen (Thorium; Uran; 20 µSv/h an den Objekten) in einer Industrieanlage</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>14.11.11</td>
<td>Verlust von zwei Ionisationsrauchmeldern beim Abbau einer Brandmeldeanlage</td>
<td>Versehentliche Entsorgung der Melder im Elektronikschrott</td>
<td>Keine</td>
<td>Erneute Unterweisung des Montagepersonals</td>
</tr>
<tr>
<td>16.11.11</td>
<td>Mangelnde Funktion eines Türsicherheitsschalters während einer Übung</td>
<td>Defekt am Sicherheitspositionstaster, mangelfahre Wartungsanweisung</td>
<td>Keine</td>
<td>Reparatur und ordnungsgemäße Einbindung des Sicherheitspositionstasters</td>
</tr>
<tr>
<td>22.11.11</td>
<td>Fund eines Anzeigegerätes mit Leuchtfarbe (Ra-226, 60 kBq) bei einer Recycling-Firma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>25.11.11</td>
<td>Fund von sechs Anzeigeeinrichtungen mit radioaktiver Leuchtfarbe (Ra-226, 500 kBq) in Gebäudeabbruchmaterial bei einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Sicherstellung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>25.11.11</td>
<td>Fund eines Rohrscheibers (Ra-226; ca. 50 kBq, Th-228; 20 kBq, ODL außen 8 µSv/h) bei der Eingangskontrolle einer Recyclingfirma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>28.11.11</td>
<td>Fund einer radioaktiv kontaminierten Metallfeder (Co-60, 1,28 MBq) in einer Lieferung bei einer Metallrecycling-Firma</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung, ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>29.11.11</td>
<td>Fund eines kontaminierten Rohrstücks im Schrott (Ra-226, 20 kBq; Th-232sec, 2 kBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>30.11.11</td>
<td>Fund eines kontaminierten Rohrstücks im Schrott (Ra-226, 50 kBq; Th-232sec, 5 kBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>02.12.11</td>
<td>Vorübergehender Verlust eines Pakets mit radioaktiven Stoffen (I-131, 18,5 MBq) auf dem Transportweg</td>
<td>Allgemeines menschliches Versagen</td>
<td>Keine</td>
<td>Wiederfinden des Pakets nach Suche und Rücksendung an den Absender</td>
</tr>
<tr>
<td>04.12.11</td>
<td>Fund eines Scherenteils im Schrott (Ra-226, 60 kBq) bei einem Stahlwerk</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>05.12.11</td>
<td>Fund eines radioaktiv kontaminierten Metallteils (Co-60, 1,8 MBq) in einer Lieferung in einem Eisenbahnwaggon</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung und ordnungsgemäße Entsorgung</td>
</tr>
<tr>
<td>Datum</td>
<td>Vorkommnis</td>
<td>Ursache</td>
<td>Radiologische Folgen</td>
<td>Maßnahmen / Bemerkungen</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>10.12.11</td>
<td>Fund eines kontaminierten Tresors im Schrott (Ra-226, 3 kBq ; Th-232sec, 6 kBq) bei einem Stahlwerk</td>
<td>Radioaktivität in Baumaterialien</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>13.12.11</td>
<td>Fund von 15 Radium-Trinkbechern sowie von radioaktiv kontaminierten Verschraubungen und Rohrteilen (Ra-226, 17 µSv/h an den Objekten) in einer Lieferung bei einer Recyclinganlage</td>
<td>Unzulässige Entsorgung</td>
<td>Keine</td>
<td>Separierung, ordnungsgemäß Entsorgung</td>
</tr>
<tr>
<td>16.12.11</td>
<td>Verlust von 29 Ionisationsrauchmeldern (Am-241; Ra-226; 5 kBq bis 2,6 MBq) beim Abriss eines Hauses</td>
<td>Unterlassene Entsorgung</td>
<td>Keine</td>
<td>Wiederauffinden und ordnungsgemäß Entsorgung von 16 Stück, Suche nach restlichen Ionisationsrauchmeldern andauernd</td>
</tr>
<tr>
<td>23.12.11</td>
<td>Fund von kontaminierten Hygieneartikeln (I-131, 3,7 µSv/h) im Hausmüll in einer thermischen Verwertungsanlage</td>
<td>Unbekannt</td>
<td>Keine</td>
<td>Separierung, Abklinglagerung, ordnungsgemäß Verbrennung</td>
</tr>
<tr>
<td>30.12.11</td>
<td>Versehentliche Bestrahlung einer MTRA in einem Klinikum für Strahlentherapie</td>
<td>Mangelnde Kommunikation und Sorgfalt</td>
<td>Keine, Strahlenexposition nach Abschätzung vernachlässigbar</td>
<td>Analyse des Ereignisses, erneute Unterweisung des Personals</td>
</tr>
</tbody>
</table>
Teil B
VI NICHTIONISIERENDE STRAHLUNG

(NON-IONISING RADIATION)

Bearbeitet vom Bundesamt für Strahlenschutz
1. Elektromagnetische Felder - Forschung und aktuelle Themen
(Electromagnetic fields - research activities and current topics)

1.1 Elektromagnetische Felder allgemein
(Electromagnetic fields in general)

Mit dem zunehmenden Technisierungsgrad der Umwelt steigt auch die Zahl der künstlichen Quellen, die zu einer Exposition der allgemeinen Bevölkerung gegenüber nichtionisierender Strahlung beitragen können. Unter dem Begriff „Nichtionisierende Strahlung“ werden elektrische, magnetische und elektromagnetische Felder in einem Frequenzbereich von 0 Hertz (Hz) bis 300 Gigahertz (GHz) sowie optische Strahlung im Wellenlängenbereich von 100 Nanometer bis 1 Millimeter zusammengefasst.

Das hierzu in 2010 durchgeführte Forschungsvorhaben ist:

Die Projektergebnisse geben Hinweise auf Quellen nichtionisierender Strahlung, bei denen Kenntnislücken bezüglich möglicher Expositionen von Personen bestehen. Sie enthalten weiter Hinweise, welche Techniken in Zukunft für die Exposition der Bevölkerung relevant werden könnten und bestätigen auf folgende Weise die Bedeutung, die dem europäischen Normungsprozess zukommt: Die Anwendung harmonisierter technischer Normen ist zwar freiwillig, die dort definierten Verfahren aber vielfach genutzt, da man davon ausgeht, dass dadurch die Anforderungen der europäischen Richtlinien, einschließlich des Schutzes vor Gefahren durch Strahlung, erfüllt sind. Dies ist eine Voraussetzung für das Inverkehrbringen und für die Inbetriebnahme von Produkten auf dem europäischen Gemeinschaftsmarkt und deshalb können bei fehlenden weitergehenden Regelungen die in den europäischen Normen definierten Verfahren für den Strahlenschutz hohe Bedeutung erlangen.

1.2 Statische Magnetfelder
(Static magnetic fields)

Das Vorhaben „Auswirkungen wiederholter Exposition mit starken statischen Magnetfeldern des MRT auf die kognitive Leistungsfähigkeit von Probanden“ befasste sich mit möglichen Auswirkungen starker statischer Magnetfelder auf die kognitive Leistungsfähigkeit sowie das kognitive und emotionale Verhalten der Jungtiere in Bezug auf Lernfähigkeiten. Die meisten Personen konnten sich an die Felder schnell gewöhnen und hatten dann keine Beschwerden mehr.

Insgesamt haben die genannten Forschungsvorhaben keine gesundheitlichen Risiken für schwangere Patientinnen und das medizinische Personal aufgedeckt. Eine Beeinträchtigung der Leistungsfähigkeit von Medizinern, die Eingriffe an offenen MRT-Systemen durchführen, ist ebenfalls nicht zu erwarten.

1.3 Niederfrequente elektrische und magnetische Felder

(Low-frequency electric and magnetic fields)

Auf Grund der konsistenten Ergebnisse epidemiologischer Studien wird eine Krebs begünstigende Wirkung niederfrequenter Magnetfelder im Fall der im frühen Kindesalter auftretenden Leukämie diskutiert. Die Studien zeigen einen statistisch signifikanten Zusammenhang bei einer erhöhten häuslichen Magnetfeldexposition von mehr als 0,3 - 0,4 Mikrotesla (µT). Deshalb haben die WHO und die IARC bereits 2002 niederfrequente Magnetfelder als „möglicherweise krebsverstärkend“ (Klasse 2B) eingestuft. Die Ergebnisse zeigen sich auch in neueren epidemiologischen Studien, konnten jedoch durch tierexperimentelle Arbeiten und Untersuchungen an Zelllinien bisher nicht bestätigt werden.

Insgesamt haben die genannten Forschungsvorhaben keine gesundheitlichen Risiken für schwangere Patientinnen und das medizinische Personal aufgedeckt. Eine Beeinträchtigung der Leistungsfähigkeit von Medizinern, die Eingriffe an offenen MRT-Systemen durchführen, ist ebenfalls nicht zu erwarten.

Im Bereich „Niederfrequente elektromagnetische Felder“ initiierte und koordinierte das BfS im Jahr 2011 folgende Studien:

<table>
<thead>
<tr>
<th>Thema</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auswirkungen niederfrequenter Magnetfelder auf die Entstehung und den Verlauf von neurodegenerativen Erkrankungen im experimentellen Modell (www.bfs.de/de/elektro/nff/weitere_informationen/Neurodegenerative_Erkrankungen)</td>
<td></td>
</tr>
<tr>
<td>Untersuchungen zu den Mechanismen für die biologische Wirkung niederfrequenter Magnetfelder auf das genetische Material und die Signaltransduktion</td>
<td></td>
</tr>
<tr>
<td>Untersuchung des Einflusses von intrakorporalen Feldkomponenten an Gewebegrenzschichten bei der numerischen Bestimmung induzierter Feldstärkeverteilungen in hoch aufgelösten realistischen Computermodellen zur Überprüfung der Einhaltung von Grenzwerten</td>
<td></td>
</tr>
</tbody>
</table>

1.4 Hochfrequente elektromagnetische Felder

(High-frequency electromagnetic fields)

Hochfrequente elektromagnetische Felder (>100 kHz – 300 GHz) kommen in unserem Alltag hauptsächlich bei Anwendungen vor, die zur drahtlosen Informationsübertragung bei Radio, Mobilfunk oder Fernsehen verwendet werden. Der erste Parameter für Maßnahmen zum Schutz vor hochfrequenten elektromagnetischen Feldern ist die Gewebeerwärmung, da in wissenschaftlichen Untersuchungen erst bei einer Erhöhung der Körpertemperatur gesundheitlich bedeutende Beeinträchtigungen beobachtet werden.

Dies und die Nutzung neuer technologischer Anwendungen verschiedener Frequenzbereiche hochfrequenter elektromagnetischer Felder, z. B. Anwendungen wie die im Millimeterwellen- oder Terahertzbereich arbeitenden Körperscanner, erfordert weitere Forschung zur Verbesserung der wissenschaftlichen Datenlage.

Die hierfür auf Initiative des BfS im Jahr 2011 beauftragten und betreuten Forschungsvorhaben sind:

<table>
<thead>
<tr>
<th>Forschungsprojekte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einfluss hochfrequenter Felder auf menschliche Fibroblasten (Gentoxizität)</td>
</tr>
<tr>
<td>Gentoxische Effekte von Terahertz-Strahlung in vitro</td>
</tr>
<tr>
<td>Altersabhängige Wirkungen hochfrequenter elektromagnetischer Felder des Mobilfunks auf Entwicklungs- und Differenzierungsprozesse des Zentralnervensystems in juvenilen Laboragnern</td>
</tr>
<tr>
<td>Tumorpromotion durch hochfrequente elektromagnetische Felder in Kombination mit kanzerogenen Substanzen</td>
</tr>
<tr>
<td>Entwicklung und Anwendung von Verfahren zur Bestimmung der Exposition gegenüber nichtionisierender Strahlung mit Frequenzen im Terahertzbereich</td>
</tr>
<tr>
<td>Bestimmung der Exposition gegenüber elektromagnetischen Feldern, die durch den Einsatz von Radio-Frequency-Identification (RFID) -Technologien entstehen</td>
</tr>
</tbody>
</table>

Die Mobilfunkbetreiber haben sich im Dezember 2001 gegenüber der Bundesregierung dazu verpflichtet, den Verbraucher- und Gesundheitsschutz im Bereich des Mobilfunsks zu verbessern. Die hierzu abgegebene Selbstverpflichtung hat vier Schwerpunkte:

- Die Verbesserung von Kommunikation und Partizipation bei der Standortfindung,
- Verbraucherschutz und Verbraucherinformation zu Handys,
- Die finanzielle Unterstützung der Erforschung der Wirkung hochfrequenter elektromagnetischer Felder,
- Die Beteiligung am Aufbau einer EMF-Datenbank (EMF = elektromagnetische Felder) bei der Bundesnetzagentur (BNetzA), eines Netzes von EMF-Monitoren und an EMF-Messprogrammen.

Um beim Ausbau des BOS-Netzes die grundlegenden Anforderungen des Strahlenschutzes sowie der Information und Risikokommunikation angemessen zu berücksichtigen, hat das BfS mit der Bundesanstalt für den Digitalfunk der Behörden und Organisationen mit Sicherheitsaufgaben (BDBOS) eine Vereinbarung geschlossen. Darin ist festgelegt, dass die BDBOS zur Klärung offener wissenschaftlicher Fragen die Durchführung von Forschungsvorhaben zur Risikobewertung von Feldern des TETRA-Standards finanziert. Die fachliche und administrative Bearbeitung und die Vergabe der Forschungsvorhaben erfolgt durch das BfS in Anlehnung an die Verfahren, die sich in Umsetzung der Selbstverpflichtung der Mobilfunknetzbetreiber bewährt haben.

Risikokommunikation

Speziell für den Bereich „Mobilfunk“ wurden bereits im Rahmen des Deutschen Mobilfunk-Forschungsprogramms Forschungsvorhaben durchgeführt, mit dem Ziel, die Wahrnehmung des Mobilfunsks in der Gesellschaft und die Risiko-
wahrnehmung an sich zu erfassen sowie Möglichkeiten zur Verbesserung der Risikokommunikation zu diesem Thema aufzuzeigen. Hierzu wurde 2011 folgendes Forschungsvorhaben vom BfS initiiert und koordiniert:

Internationaler Experten-Workshop zur Weiterentwicklung des EMF-Portals

Ziel des Experten-Workshops war es, das EMF-Portal bei internationalen Experten besser bekannt zu machen und es ihnen als wertvolles Hilfsmittel für die Risikobewertung für elektromagnetische Felder vorzustellen. Wünsche der Experten hinsichtlich einer Verbesserung und Erweiterung des Portals wurden aufgenommen und sollen in einem weiteren Vorhaben umgesetzt werden.

Umweltzeichen „Blauer Engel“

Die Strahlenschutzkommission (SSK) hat bereits im Jahr 2001 empfohlen, „bei der Entwicklung von Geräten und der Errichtung von Anlagen die Minimierung von Expositionen zum Qualitätskriterium zu machen."

Das BfS stellt in regelmäßigen Abständen die unter standardisierten Bedingungen ermittelten SAR-Werte handelsüblicher Mobiltelefone in einer Liste zusammen und veröffentlicht sie unter www.bfs.de/de/elektro/oekolabel.html. Zurzeit umfasst die Erhebung 1784 Geräte von 50 Herstellern und vier Netzbetreibern. In der folgenden Tabelle wurden nur Geräte berücksichtigt, für die ein SAR-Wert vorliegt:

Tabelle 1.4-1 SAR-Werte für Mobiltelefone

<table>
<thead>
<tr>
<th>Betrachtete Modelle</th>
<th>SAR-Werte für den Anwendungsfall „Handy am Kopf“</th>
<th>SAR-Werte für körpennah betriebene (body worn) Mobiltelefone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anzahl</td>
<td>SAR-Wert W/kg</td>
</tr>
<tr>
<td>Klassische Mobiltelefone und Smartphones (nur aktuell erhaltliche)</td>
<td>300</td>
<td>0,05-1,86</td>
</tr>
<tr>
<td>Smartphones (nur aktuell erhaltliche)</td>
<td>218</td>
<td>0,05-1,86</td>
</tr>
<tr>
<td>Klassische Mobiltelefone und Smartphones **</td>
<td>1570</td>
<td>0,05-1,94</td>
</tr>
<tr>
<td>Smartphones **</td>
<td>239</td>
<td>0,05-1,86</td>
</tr>
</tbody>
</table>

* „strahlungsarm“ gemäß Strahlenschutzkriterium des Umweltzeichens „Blauer Engel“
** inklusive nicht mehr in Produktion befindlicher Auslaufmodelle

Unter www.bfs.de/de/elektro/hff/anwendungen/mobilfunk/oekolabel_mobiltelefone.html erfolgt eine kurze statistische Auswertung der Erhebung zur Frage, wie viele Geräte aus dieser Liste das Kriterium für die Vergabe des Umweltzeichens "Blauer Engel" (SAR-Wert bis 0,6 W/kg) zurzeit erfüllen bzw. seit Beginn der Erhebungen im Jahre 2002 erfüllt haben. Demnach konnte für 1570 klassische Mobiltelefone und Smartphones ein standardisiert ermittelter SAR-Wert (Anwendungsfall Handy am Kopf, „Handys“) gefunden werden. Davon sind 300 aktuelle Geräte (Rest Auslaufmodelle), von denen 221 Geräte zu der, erstmals speziell berücksichtigten, Gerätegruppe der multimediafähigen Smartphones gezählt werden können.

Es lässt sich erkennen, dass aus Sicht des Strahlenschutzes mit der Begrenzung auf einen SAR-Wert bis 0,6 W/kg ca. 39 % der im August des Jahres 2012 auf dem deutschen Markt aktuell erhältlichen klassischen Mobiltelefone und Smartphone mit dem Umweltzeichen „Blauer Engel“ hätten ausgezeichnet werden können; zieht man hier nur die aktuell erhältlichen Smartphone in Betracht, dann wären es 38 % gewesen.

Für 247 von insgesamt 1784 erfassten Geräten konnte ein SAR-Wert für den Anwendungsfall Betrieb am Körper (body worn) erhoben werden. Auch hier gilt der Teilkörper-Basisgrenzwert von 2 W/kg. In Unterscheidung zum Anwendungsfall Handy am Kopf ist in der Vergabegrundlage für das Umweltzeichen Blauer Engel noch keine spezielle Anforderung für den Betrieb am Körper enthalten. In Tabelle 1.4-1 wird der Anteil der Mobiltelefone angegeben, die analog zum Strahlenschutzkriterium des Blauen Engels einen SAR-Wert bis zu 0,6 Watt pro Kilogramm für den Anwendungsfall body worn vorweisen.

Bei der Messung des SAR-Werts für diesen Anwendungsfall gehen die Hersteller davon aus, dass von ihnen empfohlenes Zubehör, z. B. Handytaschen mit eingebautem Abstandshalter, verwendet wird. Wenn der Benutzer die Herstellerempfehlung in der Praxis nicht beachtet, können höhere SAR-Werte auftreten. Im ungünstigsten Fall kann sogar der empfohlene Grenzwert überschritten werden.

Die Dicken der von den Herstellern verwendeten Abstandshalter und damit die gewählten Messabstände bei der Ermittlung der body-worn-Werte sind nicht einheitlich. Um dies zu dokumentieren und die bessere Vergleichbarkeit dieser SAR-Werte ermöglichen, werden die herstellerseitigen Messabstände in der SAR-Wertetabelle in einer separaten Spalte erstmalig angegeben (88 Angaben wurden gemacht).

Das Bundesamt für Strahlenschutz hält eine für den Verbraucher einfach zu erkennende Kennzeichnung noch immer für wünschenswert. Die Hersteller sind weiterhin aufgefordert, die Entwicklung strahlungssicherer Handys voranzutreiben und sich auch weiter an einer verstärkten Verbraucherinformation zu beteiligen.

Weitere Produkte, die mit dem Umweltzeichen ausgezeichnet werden können, wenn bestimmte Anforderungen an die Strahlungseigenschaften nachgewiesen werden, sind:

2. Optische Strahlung (Optical radiation)

2.1 Solares UV-Monitoring (Solar UV-Monitoring)

Man erkennt die große Schwankungsbreite der UV-Werte, die vor allem wetterbedingt ist. Im Norden und in der Mitte Deutschlands trat im Juni 2011 und im Süden Deutschlands im Mai und Juni 2011 ein UVI-Wert von 9 auf. Eine durch
den Abbau der atmosphärischen Ozonschicht bedingte Zunahme der UV-Strahlungsintensität kann auf Grund der vielfältigen Einflussgrößen derzeit nicht nachgewiesen werden.

2.2 Forschung (Research)

Übermäßige UV-Belastung führt zu sofortigen sowie dauerhaften und irreversiblen Gesundheitsschäden an Auge und Haut. Gleichzeitig wirkt sich UV-Strahlung gesundheitsfördernd aus, indem durch UV-B-Strahlung die körpereigene Synthese von Vitamin D induziert wird. Vitamin D wird vor allem für den Calcium- und Phosphatstoffwechsel, insbesondere für den Knochenaufbau benötigt, ist jedoch ebenfalls an Prozessen wie Zelldifferenzierung, Zellvermehrung oder Immunmodulation beteiligt. Weiterhin wird diskutiert, ob eine ursächliche Beziehung zwischen Vitamin-D-Status und Krebsrisiko besteht, also ob ein niedriger Vitamin-D-Status das Risiko zum Beispiel für Darmkrebs erhöhen könnte. Die Tatsache, dass UV-B-Strahlung ein nachgewiesenes Kanzerogen ist, gleichzeitig aber auch für die körpereigene Vitamin-D-Synthese benötigt wird, führt zu international widersprüchlichen Empfehlungen hinsichtlich einer gesundheitsförderlichen UV-Exposition - also letztendlich hinsichtlich des richtigen UV-Schutz-Verhaltens. Daher wurden Forschungsanstrengungen unternommen, um der Frage nachzugehen, welchen UV-Intensitäten die deutsche Bevölkerung im Abhängigkeit vom UV-Index und dem individuellen Lebensstil real ausgesetzt ist und welche UV-Dosen zu welchem Vitamin-D-Leveln im Blutserum führen. Im Jahr 2011 wurden hierfür folgende Forschungsvorhaben im Bereich UV abgeschlossen:

Bestimmung der individuellen solaren UV-Exposition in Abhängigkeit von Lebensstil und aktuellem UV-Index
UV-abhängige Vitamin D Synthese - Bilanzierung der Exposionszeit durch UV zur Produktion des optimalen Vitamin-D₃-Bedarfs im menschlichen Körper

Das Forschungsvorhaben „UV-abhängige Vitamin D-Synthese - Bilanzierung der Exposition durch UV zur Produktion des optimalen Vitamin-D₃-Bedarfs im menschlichen Körper“ ergab, dass bereits niedrige UV-Dosen (bis 10 % der minimalen sonnenbrandwirksamen Dosis, MED) ausreichen, um die Vitamin-D-Bildung einzuleiten. Bestrahlungen in Solarien erreichen nur etwa 30 % der Vitamin-D-Bildungseffektivität der natürlichen oder mit einer medizinischen Strahlenquelle simulierten Sonnenstrahlung in gleicher Dosierung. Bis zu einem Alter von 65 Jahren konnte für die Konzentration von 7-Dehydrocholesterol, der Ausgangssubstanz für die Bildung von Vitamin D in der Haut, keine Altersabhängigkeit bestätigt werden. Dafür zeigte sich eine deutliche Abhängigkeit der Vitamin-D-Bildungseffektivität der Haut von der Körperregion und der Körperverteilung der UV-Bestrahlung.

2.3 Zertifizierung von Solarienbetrieben (Certification of solaria)

Als eine Maßnahme hierzu wurde vor rund zehn Jahren eine freiwillige Zertifizierung für Solarien („Geprüftes Sonnenstudio – zertifiziert nach den Kriterien des BfS“) nach den Kriterien des Runden Tisches Solarien (RTS) etabliert. Die wesentlichen Kriterien für diese Zertifizierung waren:
- keine Nutzung von Solarien für Personen unter 18 Jahre,
- definierte Gerätestandards mit limitierter UV-Bestrahlung,
- einheitliche Betriebsabläufe,
- Einhaltung von Hygienevorschriften,
- fachliche Qualifikation der im Kundenkontakt stehenden Mitarbeiter, und

Die Verordnung gilt für den Betrieb von UV-Bestrahlungsgeräten, die zu kosmetischen Zwecken oder für sonstige Anwendungen am Menschen außerhalb der Heil- oder Zahnheilkunde gewerblich oder im Rahmen sonstiger wirtschaftlicher Unternehmungen eingesetzt werden. Sie regelt:
- Anforderungen an den Betrieb von UV-Bestrahlungsgeräten,
- Schulungen zur Qualifikation von Fachpersonal,
- Fortbildung von Fachpersonal zum Erhalt der Qualifikation,
- Einsatz und Aufgaben von Fachpersonal in Solarien,
- Informationspflichten gegenüber den Nutzerinnen und Nutzern von Solarien,
- Dokumentationspflichten derjenigen, die UV-Bestrahlungsgeräte betreiben,
- Bußgeldvorschriften bei Zuwiderhandlung sowie
- Übergangsvorschriften für Altgeräte und Schulung von Fachpersonal.
Schulungen und Fortbildungen von Fachpersonal in Solarien dürfen ausschließlich Schulungsstätten durchführen, die hierfür eigens durch die Deutsche Akkreditierungsstelle (www.dakks.de) akkreditiert wurden.

2.4 Hautkrebspräventionsmaßnahmen
(Skin cancer prevention measurements)

Literatur
ANHANG

(ANNEX)

Bearbeitet vom Bundesamt für Strahlenschutz
1. Erläuterung zu den verwendeten Begriffen
(Explanation of terms)

1.1 Strahlendosis und ihre Einheiten
(Radiation dose and related units)

Primär werden durch die Wechselwirkung von Strahlung mit Materie Ladungsträger (Ionen) erzeugt. Ein Maß für die erzeugte Ladung pro Masse ist die Ionendosis, die Einheit ist das Coulomb pro Kilogramm (C/kg). Die alte Einheit dafür ist das Röntgen (R).

Die auf das Material übertragene Energie pro Masseneinheit wird als Energiedosis bezeichnet. Sie wird in der Einheit Gray (Gy) gemessen. 1 Gray ist die Energiedosis, die bei der Übertragung der Energie von 1 Joule auf eine Masse von 1 kg entsteht (1 Gy = 1 J/kg). Entsprechend ist die Energiedosisleistung eine Energiedosis pro Zeiteinheit und wird in Gray pro Sekunde (Gy/s) oder Gray pro Stunde (Gy/h) gemessen.

Molekulare Veränderungen durch Ionisations- und Anregungsprozesse können der Ausgangspunkt für die Entwicklung biologischer Strahlenwirkungen sein. Allerdings ist das Ausmaß einer biologischen Strahlenwirkung nicht allein von der Energiedosis (Strahlungsenergie pro Masseneinheit) abhängig, sondern auch von der Art und Energie der Strahlung (Strahlenqualität).

Durch diese Umrechnung erhält man zunächst die Organdosis. In Formeln lässt sich dies folgendermaßen ausdrücken:

\[H_{T,R} = w_R \times D_{T,R} \]

\(D_{T,R} \) Energiedosis im Organ T durch die Strahlungsart R
\(w_R \) Strahlungs-Wichtungsfaktor
\(H_{T,R} \) Organdosis im Organ T durch die Strahlungsart R

| Tabelle 1.1-1 Strahlungs-Wichtungsfaktoren wR nach StrlSchV, Anl. VI, Teil C (Radiation weighting factors according to Radiation Protection Ordinance) |
|---------------------------------|----------|
| Strahlenart und Energiebereich | wR |
| Photonen, alle Energien | 1 |
| Elektronen, Myonen, alle Energien | 1 |
| Neutronen | |
| < 10 keV | 5 |
| 10 keV bis 100 keV | 10 |
| > 100 keV bis 30 MeV | 20 |
| > 2 MeV bis 20 MeV | 10 |
| > 20 MeV | 5 |
| Protonen außer Rückstoßprotonen > 2 MeV | 5 |
| Alphateilchen, Spaltfragmente, schwere Kerne | 20 |
Die Einheit der Organdosis ist das Sievert (Sv). Da der Strahlungs-Wichtungsfaktor dimensionslos ist, ist die Dimension der Organdosis ebenfalls Joule pro Kilogramm. Strahlendosen im Sievertbereich treten selten auf, es wird daher üblicherweise die Untereinheit Millisievert verwendet. Ein Sievert entspricht 1000 Millisievert.

Die verschiedenen Organe und Gewebe sind in Hinblick auf mögliche Strahlenschäden verschieden empfindlich. Um die Strahlenbelastungen verschiedener Organe vergleichen zu können, wurde deshalb die effektive Dosis eingeführt, die als Maß für die Gesamtbelastung eines Menschen durch ionisierende Strahlung dient. Die effektive Dosis ergibt sich aus der Organdosis durch Multiplikation mit dem Gewebe-Wichtungsfaktor.

\[E = w_T \times H_T \]

Die Gewebe-Wichtungsfaktoren sind in der folgenden Abbildung dargestellt, sie ergeben zusammengenommen den Wert eins.

![Abbildung 1.1-1 Gewebe-Wichtungsfaktoren nach Strahlenschutzverordnung (StrlSchV, Anl. VI, Teil C) (Tissue weighting factors according to Radiation Protection Ordinance)](image)

Dadurch, dass dieser Wert entsprechend der Strahlenwirkung gewichtet ist und damit direkt einem bestimmten Risiko zugeordnet werden kann, lassen sich die effektiven Dosen aus verschiedenen Quellen zu einem Wert für die Gesamtstrahlenbelastung eines Menschen addieren. Auf der Ebene der Dosisbetrachtung können dann die Beiträge aus natürlichen, zivilisatorisch veränderten und zivilisatorischen Strahlenquellen verglichen werden.

Die Wirkung einer Strahlenart auf ein Organ kann also durch Multiplikation der Energiedosis mit dem Strahlungs-Wichtungsfaktor und dem Gewebe-Wichtungsfaktor in Zahlen gefasst werden. Soll die effektive Dosis für eine Strahleneinposition durch mehrere Strahlungsarten berechnet werden, die mehrere Organe betreffen, so müssen die genannten Formeln zusammengefasst und eine Summierung über alle Komponenten durchgeführt werden:

\[E = \sum_T w_T H_T = \sum_T w_T \sum_R w_R D_{T,R} \]

1.2 Die Messung der Strahlendosen

(Measurement of radiation dose)

Alle Messgrößen beziehen sich auf den menschlichen Körper oder als Ersatz auf ein Phantom aus gewebeäquivalentem Material (Dichte 1 g/cm\(^3\), Massenzusammensetzung 76,2 % Sauerstoff, 11,1 % Kohlenstoff, 10,1 % Wasserstoff und 2,6 % Stickstoff), der sogenannten ICRU-Kugel mit 30 cm Durchmesser, die von der ICRU (International Commis-
sion on Radiation Units and Measurements, Quantities and Units in Radiation Protection Dosimetry) im Jahr 1993 eingeführt worden ist.

Im Zusammenhang mit der Überwachung beruflich strahlenexponierter Personen wird der Begriff Personendosis verwendet. Die Strahlenschutzverordnung definiert als Messgrößen die Personendosis als Äquivalentdosis gemessen an einer repräsentativen Stelle der Oberfläche einer Person und unterscheidet die Tiefen-Personendosis Hp(10) in einer Messtiefe von 10 mm und die Oberflächen-Personendosis Hp(0,07) in einer Messtiefe von 0,07 mm. Die Tiefen-Personendosis wird z. B. von einem üblichen Ganzkörpersensor (Filmdosimeter) gemessen, das an der Vorderseite des Rumpfes getragen wird. Die Oberflächen-Personendosis ist z. B. für die Bestimmung durch ein Fingerdosimeter zur Überwachung der Hautdosis als Teilkörperdosis gedacht.

1.3 Äußere und innere Bestrahlung
(External and internal radiation exposure)

Radionuklide mit einer langen Halbwertszeit und einer zusätzlich langen Verweildauer (lange biologische Halbwertszeit) im Organismus tragen nach einer Inkorporation über eine entsprechend lange Zeit zur Strahlenbeladung bei. Daher wird bei der Berechnung der Strahlenbeladung nach Inkorporation derartiger Radionuklide die 50-Jahre-Folgedosis (70-Jahre-Folgedosis bei Kindern) ermittelt. Das bedeutet, dass bei der Festlegung des Dosisfaktors die Dosisleistung (Strahlenbeladung in einem Zeitintervall, dividiert durch dieses Zeitintervall) über die auf die Inkorporation folgenden 50 Jahre (bzw. 70 Jahre) integriert (aufsummiert) wird. Unter diesen Annahmen sind Dosisfaktoren für die verschiedenen Inkorporationswege (z. B. Ingestion und Inhalation) sowie für verschiedene chemische Formen der inkorporierten Radionuklide (z. B. löslich und unlöslich) abgeschätzt worden.

Die Aktivität einer radioaktiven Substanz wird in Becquerel (Bq) angegeben. Die Anzahl der Becquerel bezeichnet die Anzahl der spontanen Kernumwandlungen je Sekunde. Die frühere Einheit ist das Curie (Ci; 1 Ci ist gleich 3,7 · 1010 Bq). Kenngröße für die Exposition von innen ist der Dosisfaktor, d. h. der Quotient aus der in einem bestimm-
ten Gewebe oder Organ erzeugten Organdosis und der dem Körper zugeführten Aktivität eines bestimmten Radionuklids, gemessen in Sievert pro Becquerel (Sv/Bq).

1.4 Stochastische und deterministische Strahlenwirkung

![Abbildung 1.4-1 Schematische Darstellung der Dosis-Wirkungsbeziehungen für stochastische und deterministische Effekte](chart_of_the_dose-response-relationships_in_sto-)

1.5 Genetische Strahlenwirkungen
(Genetic radiation effects)

Wirken ionisierende Strahlen auf Keimdrüsen oder Keimzellen, können sie Schäden im Erbgut (Mutationen) verursachen, die zu genetisch bedingten Krankheiten (Erbschäden) führen. Diese können sich bei den Kindern und Kindeskindern der bestrahlten Personen in Form von Fehlbildungen, Stoffwechselstörungen, Immunschäden etc. auswirken, aber auch erst nach vielen Generationen sichtbar werden. Wie Krebserkrankungen sind auch genetisch bedingte Krankheiten keine spezifischen Folgen einer Strahlenexposition, sondern treten mit dem gleichen klinischen Erscheinungsbild auch spontan oder infolge anderer Umweltinflüsse auf.

Die Internationale Strahlenschutz-Kommission (ICRP) geht davon aus, dass das genetische Risiko für bis zu zwei Generationen nach Bestrahlung der Eltern mit einer einmaligen Gonaden-Dosis von 1 Gy bei 500 Geburten zu einer zusätzlichen schweren Erkrankung führt, die durch eine strahlenbedingte Mutation verursacht wird. Bei chronischer Strahlenbelastung über mehrere Generationen wird davon ausgegangen, dass durch eine Gonaden-Dosis von 1 Gy ein zusätzlicher Fall einer Mutation bei 100 Geburten ausgelöst wird, die die Ursache für eine schwere Erkrankung ist.

Bei den Abschätzungen des genetischen Strahlenrisikos geht man von einer Verdopplungsdosis in Höhe von 1 Gy im Falle einer chronischen Bestrahlung aus. D. h. eine Dosis von 1 Gy verdoppelt die spontane Mutationshäufigkeit für die Gesamtheit aller klinisch dominanten Mutationen, die bei etwa 2 % pro Generation liegt. Für den Fall einer akuten Bestrahlung liegt die Verdopplungsdosis bei 0,3 Gy. Von den röntgendiagnostischen Maßnahmen verursacht die Computertomographie (CT) die höchste Strahlenexposition. Eine CT des Unterleibs bedingt etwa eine Keimdrüsendosis von 35 mSv (Ovarien) bis 40 mSv (Hoden). Dies erhöht das spontane genetische Risiko von etwa 2 bis 3 % (für mono- genetische und chromosomale Erkrankungen) um 0,07 % bei der Frau und 0,08 % beim Mann.

1.6 Induktion bösartiger Neubildungen
(Induction of malignant neoplasms)

Während für die Abschätzung des genetischen Strahlenrisikos keine ausreichenden Erfahrungen beim Menschen vorliegen, kann man für die Abschätzung des Risikos für bösartige Neubildungen, d. h. Leukämien und solide Tumoren, auf eine Vielzahl von Daten aus epidemiologischen Untersuchungen beim Menschen zurückgreifen. In Betracht kommen hierfür vor allem Untersuchungen an
- Überlebenden nach den Atombombenabwürfen in Hiroshima und Nagasaki,
- Patienten mit medizinischen Strahlenexpositionen,
- Personen nach beruflichen Strahlenexpositionen,
- Personen mit hohen Radonexpositionen in Wohnungen,
- Personen mit signifikanten Strahlenbelastungen durch die Tschnobyl-Katastrophe,

Da sich eine strahlenbedingte Krebserkrankung nicht von einer „spontanen“ unterscheidet, können diese im Einzelfall nicht allein auf Grund ihrer Erscheinungsform oder ihres klinischen Verlaufes als strahlenbedingte Erkrankung erkannt werden. Nur epidemiologisch-statistische Untersuchungen können dazu beitragen, quantitative Daten für die Risikoabschätzung beim Menschen zu erhalten. Strahlenexponierte Personengruppen müssen dabei vergleichbaren (etwa hinsichtlich Alter und Geschlecht) nicht-exponierten Personengruppen gegenübergestellt werden. Dann kann erkannt werden, ob und in welchem Ausmaß die Raten an malignen Erkrankungen nach Bestrahlung in der exponierten Gruppe
erhöht sind. Es kann lediglich die Wahrscheinlichkeit ermittelt werden, mit der eine individuelle Krebserkrankung durch die vorausgegangene Bestrahlung verursacht ist.

Es wurde beobachtet, dass vor allem myeloische Leukämien (akute und chronische Erscheinungsformen), aber auch akute lymphatische Leukämien, nach Bestrahlung vermehrt auftreten. Dagegen sind chronisch-lymphatische Leukämien nur in sehr geringem Maße nach Strahlenexposition vermehrt beobachtet worden.

1.7 Risikoabschätzung (Risk assessment)

Abschätzungen zum Risiko strahlenbedingter Krebs- und Leukämierkrankungen beruhen auf Auswertungen dieser epidemiologischen Studien, die von nationalen und internationalen wissenschaftlichen Gremien, wie von der japanischen Radiation Effects Research Foundation (RERF), dem wissenschaftlichen Komitee über die Effekte der atomaren Strahlung der Vereinten Nationen (UNSCEAR) und auch der deutschen Strahlenschutzkommission (SSK) vorgenommen werden. Um das allgemeine Strahlenrisiko abschätzen zu können, müssen die Ergebnisse der epidemiologischen Untersuchungen, die nur für die untersuchten Personengruppen und die speziellen Beobachtungs- und Extrapolationsbedingungen gelten, unter der Annahme von Risikomodellen zur Krebsentstehung ausgewertet werden. Dabei sind insbesondere folgende Übertragungen vorzunehmen:

- Extrapolation von beobachtbaren Risiken im mittleren bis hohen Dosisbereich der Studien (z.B. bei Atombomben-Überlebenden) auf den Bereich niedriger Dosen sowie von akuten Bestrahlungssituationen (wiederum etwa bei den Atombomben-Überlebenden) auf chronische Expositionen, wie sie z.B. bei beruflich strahlenexponierten Personen vorkommen,
- Projektion des Risikos von der nur begrenzten, durch die Studie bedingten Beobachtungszeit auf die Lebenszeit der bestrahlten Personen,
- Transfer der Risikoabschätzungen auf verschiedene Bevölkerungsgruppen mit meistens unterschiedlichen natürlichen Krebsraten (z.B. von den japanischen Atombombenüberlebenden auf eine europäische Bevölkerung).

Ausgehend von den epidemiologischen Daten für die japanischen Atombomben-Überlebenden sowie unter der Annahme eines relativen Risikomodells gegebenen Risikobeschätzungen von UNSCEAR [1] ein Lebenszeitsrisiko strahlenbedingter Todesfälle für solide Tumoren von 4,9 % - 8,2 % bei einer kurzzeitigen Exposition von 1 Sv. Da die Auswertung der Daten von japanischen Atombomben-Überlebenden mit einer linearen Dosis-Wirkungs-Beziehung verträglich ist, kann dieses Risiko zu kleineren Dosen extrapoliert werden. Bei einer Exposition von 100 mSv erhöht sich das Lebenszeitsrisiko deshalb um etwa 1%, bei 10 mSv um 0,1%. Strahlenbedingte Krebserkrankungen sind von Krankheitsbild nicht zu unterscheiden von den sogenannten spontan entstehenden Krebserkrankungen. Im Vergleich dazu haben in Deutschland etwa 25% aller Todesfälle Krebs als Ursache, d. h. von einer Million Menschen werden etwa 250.000 an einer Krebserkrankung sterben.

Literatur
1.8 Strahlenschutzmaßnahmen
(Radiation protection measures)

§ 46 der StrSchV begrenzt die Strahlenexposition der Bevölkerung wie folgt:
- Für Einzelpersonen der Bevölkerung beträgt der Grenzwert der effektiven Dosis durch Strahlenexpositionen aus Tätigkeiten nach § 2 Abs. 1 Nr. 1 ein Millisievert im Kalenderjahr.
- Unbeschadet des Absatzes 1 beträgt der Grenzwert der Organdosis für die Augenlinse 15 Millisievert im Kalenderjahr und der Grenzwert der Organdosis für die Haut 50 Millisievert im Kalenderjahr.
- Bei Anlagen oder Einrichtungen gilt außerhalb des Betriebsgeländes der Grenzwert für die effektive Dosis nach Absatz 1 für die Summe der Strahlenexposition aus Direktstrahlung und der Strahlenexposition aus Ableitungen. Die für die Strahlenexposition aus Direktstrahlung maßgebenden Aufenthaltszeiten richten sich nach den räumlichen Gegebenheiten der Anlage oder Einrichtung oder des Standortes; liegen keine begründeten Angaben für die Aufenthaltszeiten vor, ist Daueraufenthalt anzunehmen.

Für die Strahlenexposition der Bevölkerung durch mit Fortluft oder Abwasser emittierte radioaktive Stoffe sind in § 47, Abs. 1 Strahlenschutzverordnung Dosisgrenzwerte festgelegt:
„Für die Planung, die Errichtung und den Betrieb von Anlagen oder Einrichtungen gelten folgende Grenzwerte der durch Ableitungen radioaktiver Stoffe mit Luft oder Wasser aus diesen Anlagen oder Einrichtungen jeweils bedingten Strahlenexposition von Einzelpersonen der Bevölkerung im Kalenderjahr:
1. Effektive Dosis 0,3 Millisievert;
2. Organdosis für Keimdrüsen, Gebärmutte, Knochenmark (rot) 0,3 Millisievert;
3. Organdosis für Dickdarm, Lunge, Magen, Blase, Brust, Leber, Speiseröhre, Schilddrüse, andere Organe oder Gewebe gemäß Anlage VI Teil C Nr. 2 Fußnote 1, soweit nicht unter Nr. 2 genannt 0,9 Millisievert;
4. Organdosis für Knochenoberfläche, Haut 1,8 Millisievert.
Es ist dafür zu sorgen, dass radioaktive Stoffe nicht unkontrolliert in die Umwelt abgeleitet werden.“

Literatur

2. Physikalische Einheiten
(Physical units)

Basiseinheiten

Tabelle 2-1 Basiseinheiten
(Basic units)

<table>
<thead>
<tr>
<th>Einheiten</th>
<th>Kurzzeichen</th>
<th>Basisgröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter</td>
<td>m</td>
<td>Länge</td>
</tr>
<tr>
<td>Kilogramm</td>
<td>kg</td>
<td>Masse</td>
</tr>
<tr>
<td>Sekunde</td>
<td>s</td>
<td>Zeit</td>
</tr>
<tr>
<td>Ampère</td>
<td>A</td>
<td>Stromstärke</td>
</tr>
<tr>
<td>Kelvin</td>
<td>K</td>
<td>Temperatur</td>
</tr>
<tr>
<td>Mol</td>
<td>mol</td>
<td>Stoffmenge</td>
</tr>
<tr>
<td>Candela</td>
<td>cd</td>
<td>Lichtstärke</td>
</tr>
</tbody>
</table>
Tabelle 2-2 SI-Einheiten in der Radiologie

<table>
<thead>
<tr>
<th>Physikalische Größe</th>
<th>SI-Einheit</th>
<th>alte Einheit</th>
<th>Beziehung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktivität</td>
<td>Becquerel (Bq)</td>
<td>Curie (Ci)</td>
<td>1 Ci = 3,7 \times 10^{10} Bq *</td>
</tr>
<tr>
<td></td>
<td>1 Bq = 1/s</td>
<td></td>
<td>1 Bq = 2,7 \times 10^{-11} Ci = 27 pCi</td>
</tr>
<tr>
<td>Energiedosis</td>
<td>Gray (Gy)</td>
<td>Rem (rd)</td>
<td>1 rem = 0,01 Gy *</td>
</tr>
<tr>
<td></td>
<td>1 Gy = 1 J/kg</td>
<td></td>
<td>1 Gy = 100 rd *</td>
</tr>
<tr>
<td>Äquivalentdosis</td>
<td>Sievert (Sv)</td>
<td>Rem (rem)</td>
<td>1 Sv = 100 rem *</td>
</tr>
<tr>
<td></td>
<td>1 Sv = 1 J/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ionendosis</td>
<td>Coulomb pro Kilogramm</td>
<td>Röntgen (R)</td>
<td>1 R = 2,58 \times 10^{-4} C/kg *</td>
</tr>
<tr>
<td></td>
<td>(C/kg)</td>
<td></td>
<td>= 0,258 mC/kg *</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 C/kg = 3876 R</td>
</tr>
<tr>
<td>Energiedosisleistung</td>
<td>Gray pro Sekunde</td>
<td>Rad pro Sekunde</td>
<td>1 rd/s = 0,01 Gy/s *</td>
</tr>
<tr>
<td></td>
<td>(Gy/s)</td>
<td>(rd/s)</td>
<td>1 Gy/s = 100 rd/s *</td>
</tr>
<tr>
<td>Ionendosisleistung</td>
<td>Ampere pro Kilogramm</td>
<td>Röntgen pro Sekunde</td>
<td>1 R/s = 2,58 \times 10^{-4} A/kg *</td>
</tr>
<tr>
<td></td>
<td>(A/kg)</td>
<td>(R/s)</td>
<td>= 0,258 mA/kg *</td>
</tr>
</tbody>
</table>

Bei Werten mit * ist der Umrechnungsfaktor genau angegeben, bei den anderen ist er abgerundet.

Dezimale Vielfache und Teile von Einheiten

Dezimale Vielfache und Teile von Einheiten können durch Vorsetzen der in Tabelle 2-3 aufgeführten Präfixe vor den Namen der Einheit bezeichnet werden.

Tabelle 2-3 Präfixe

<table>
<thead>
<tr>
<th>Präfix</th>
<th>Kurzbezeichnung</th>
<th>Faktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exa</td>
<td>E</td>
<td>\text{10}^{18}</td>
</tr>
<tr>
<td>Peta</td>
<td>P</td>
<td>\text{10}^{15}</td>
</tr>
<tr>
<td>Tera</td>
<td>T</td>
<td>\text{10}^{12}</td>
</tr>
<tr>
<td>Giga</td>
<td>G</td>
<td>\text{10}^{9}</td>
</tr>
<tr>
<td>Mega</td>
<td>M</td>
<td>\text{10}^{6}</td>
</tr>
<tr>
<td>Kilo</td>
<td>k</td>
<td>\text{10}^{3}</td>
</tr>
<tr>
<td>Hekto</td>
<td>h</td>
<td>\text{10}^{2}</td>
</tr>
<tr>
<td>Deka</td>
<td>da</td>
<td>\text{10}^{1}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Präfix</th>
<th>Kurzbezeichnung</th>
<th>Faktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dezi</td>
<td>d</td>
<td>\text{10}^{-1}</td>
</tr>
<tr>
<td>Zenti</td>
<td>c</td>
<td>\text{10}^{-2}</td>
</tr>
<tr>
<td>Milli</td>
<td>m</td>
<td>\text{10}^{-3}</td>
</tr>
<tr>
<td>Mikro</td>
<td>µ</td>
<td>\text{10}^{-6}</td>
</tr>
<tr>
<td>Nano</td>
<td>n</td>
<td>\text{10}^{-9}</td>
</tr>
<tr>
<td>Piko</td>
<td>p</td>
<td>\text{10}^{-12}</td>
</tr>
<tr>
<td>Femto</td>
<td>f</td>
<td>\text{10}^{-15}</td>
</tr>
<tr>
<td>Atto</td>
<td>a</td>
<td>\text{10}^{-18}</td>
</tr>
</tbody>
</table>
Tabelle 2-4 Physikalische Größen in der Nichtionisierenden Strahlung
(*Physical quantities in non-ionising radiation*)

<table>
<thead>
<tr>
<th>Niederfrequente elektrische und magnetische Felder</th>
<th>Hochfrequente elektromagnetische Felder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrische Feldstärke
(E) V/m (Volt pro Meter)</td>
<td>Elektrische Feldstärke
(E) V/m (Volt pro Meter)</td>
</tr>
<tr>
<td>Magnetische Feldstärke
(H) A/m (Ampere pro Meter)</td>
<td>Magnetische Feldstärke
(H) A/m (Ampere pro Meter)</td>
</tr>
<tr>
<td>Magnetische Flussdichte
(B) Vs/m² (Voltssekunde pro Quadratmeter);
(T) (Tesla)
(1) Vs/m² = 1 T
gebräuchlich: (1) µT
Veraltet: G (Gauss)</td>
<td>Leistungsflussdichte
(S) W/m² (Watt pro Quadratmeter)</td>
</tr>
<tr>
<td></td>
<td>Spezifische Absorptionsrate
(SAR) W/kg (Watt pro Kilogramm)</td>
</tr>
<tr>
<td></td>
<td>gemittelt über 6 min Einwirkdauer und 10 g Gewebe</td>
</tr>
</tbody>
</table>

\[B = \mu \cdot H = \mu_0 \cdot \mu_r \cdot H \]

1) dabei ist \(\mu \) die Permeabilitätskonstante,
\(\mu_0 \) die Permeabilitätskonstante im Vakuum und
\(\mu_r \) die Permeabilitätszahl eines Mediums.

\[B (\mu T) = 1,256 \cdot H (A/m) \]

\[1 \text{ G} = 10^{-4} \text{ T} = 100 \mu \text{T} \]

3. Glossar
(Glossary)

Aerosol
Gase mit festen oder flüssigen Schwebeteilchen.

Aktivität (Radioaktivität)
Die Aktivität ist das Maß für die Anzahl der Kernumwandlungen eines Radionuklids oder mehrerer Radionuklide pro Zeiteinheit (i. A. Sekunde). Die Aktivität wird in Becquerel (Bq) angegeben. Die alleinige Angabe der Aktivität ohne Kenntnis des Radionuklids lässt keine Aussage über die Strahlenexposition zu.

AKR-Mäuse
Labormäuse, die bereits eine Veranlagung zur Ausbildung von Leukämie besitzen.

Alphastrahler
Radionuklide, die Alphateilchen (Heliumatomkerne) aussenden.

Anthropogen
Durch den Menschen beeinflusst, verursacht.

Äquivalentdosis
Produkt aus der Energiedosis (absorbierter Dosis) im ICRU-Weichtiegewebeno dem Qualitätsfaktor der Veröffentlichung Nr. 51 der International Commission on Radiation Units and Measurements (ICRU report 51, ICRU Publications, 7910 Woodmont Avenue, Suite 800, Bethesda, Maryland 20814, U.S.A.). Beim Vorliegen mehrerer Strahlungsarten und -energien ist die gesamte Äquivalentdosis die Summe ihrer ermittelten Einzelbeiträge.

Die Äquivalentdosis ist eine Messgröße. Sie wird in der Einheit Sievert (Sv) angegeben. 1 µSv = Mikrosievert ist der millionste Teil des Sievert. 1 mSv = Millisievert ist der tausendste Teil des Sievert.

Ärztliche und zahnärztliche Stellen (ÄS)
Zur Qualitätssicherung einer medizinischen Strahlenanwendung am Menschen bestimmt die zuständige Landesbehörde ärztliche und zahnärztliche Stellen. Die zuständige Behörde legt fest, in welcher Weise diese Stellen die Prüfungen durchführen, mit denen sichergestellt wird, dass bei der Anwendung von ionisierender Strahlung oder radioaktiver Stoffe am Menschen die Erfordernisse der medizinischen Wissenschaft beachtet werden und die angewendeten Verfahren und eingesetzten Einrichtungen oder Geräte den nach dem Stand der Technik jeweils notwendigen Qualitätsstandards entsprechen, um die Strahlenexposition des Patienten so gering wie möglich zu halten.
<table>
<thead>
<tr>
<th>Anhang</th>
<th>Athermische Effekte</th>
<th>Eine Reihe verschiedener Effekte bei Einwirkung elektromagnetischer Felder, die unabhängig von einer Erwärmung des Gewebes auftreten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Becquerel</td>
<td>Si-Einheit der Aktivität. Die Aktivität von 1 Becquerel (Bq) liegt vor, wenn 1 Atomkern je Sekunde zerfällt. 1 Becquerel (Bq) = 2,7 · 10⁻¹¹ Curie</td>
</tr>
<tr>
<td></td>
<td>Betastrahlung</td>
<td>Teilchenstrahlung, die aus Elektronen (oder Positronen) besteht, die beim radioaktiven Zerfall von Atomkernen ausgesandt werden</td>
</tr>
<tr>
<td></td>
<td>Betasubmersion</td>
<td>Strahlenexposition durch Betastrahlung von radioaktiven Stoffen in der Atmosphäre</td>
</tr>
<tr>
<td></td>
<td>Biologische Effekte</td>
<td>Einflüsse auf lebendes Material (Organismen, Gewebe, Zellen)</td>
</tr>
<tr>
<td></td>
<td>Bioturbation</td>
<td>Bioturbation ist das Durchwühlen und Durchmischen (Turbation) von Böden oder Sedimenten durch Lebewesen. Sie gehört zu den Translokationsprozessen</td>
</tr>
<tr>
<td></td>
<td>Brachytherapie</td>
<td>Behandlung von Erkrankungen durch in den Körper eingeführte bzw. auf den Körper aufgelegte Strahlenquellen (s. a. Teletherapie)</td>
</tr>
<tr>
<td></td>
<td>Bystander-Effekt</td>
<td>Der Begriff „Bystander-Effekt“ beschreibt die Beobachtung, dass nicht nur Zellen, die von Strahlung getroffen werden, also Energiedepositionen erhalten, Schäden aufweisen, sondern dass zusätzlich auch in nicht getroffenen Zellen, in den sog. „bystander cells“ ebenfalls Schäden gefunden werden</td>
</tr>
<tr>
<td></td>
<td>Computertomographie (CT)</td>
<td>Röntgenuntersuchung mit relativ hoher Strahlenexposition aber sehr hoher Aussagekraft durch Darstellung als überlagerungsfreies Querschnittsbild</td>
</tr>
<tr>
<td></td>
<td>Dekontamination</td>
<td>Beseitigung oder Verminderung von radioaktiven Verunreinigungen</td>
</tr>
<tr>
<td></td>
<td>Deterministisch</td>
<td>Nicht-stochastisch; deterministische Strahlenschäden sind solche, bei denen die Schwere des Schadens mit der Dosis zunimmt und in der Regel ein Schwellenwert besteht, z. B. Hautrötung, Augenlinsertrübung (siehe auch stochastisch)</td>
</tr>
<tr>
<td></td>
<td>Diagnostischer Referenzwert (DRW)</td>
<td>In der RöV sind DRW definiert als „Dosiwerte für typische Untersuchungen mit Röntgenstrahlung, bezogen auf Standardphantome oder auf Patientengruppen mit Standardmaßen, mit für die jeweilige Untersuchungsart geeigneten Röntgeneinrichtungen und Untersuchungsverfahren“. Die DRW dienen den Ärzten bei häufigen und/oder dosisintensiven Röntgenuntersuchungen als obere Richtwerte, die nicht beständig und ungerechtfertigt überschritten werden dürfen. Im Gegensatz zur Röntgendiagnostik sind die DRW in der nuklearmedizinischen Diagnostik keine oberen Richtwerte, sondern Optimalwerte. Sie geben also die für eine gute Bildqualität notwendige Aktivität an und sollen bei Standardverfahren und -patienten appliziert werden. Den Ärztlichen Stellen fällt die Aufgabe zu, die Einhaltung der DRW bei der Patientenexposition zu überprüfen. Die DRW stellen keine Grenzwerte für Patienten dar und gelten nicht für einzelne individuelle Untersuchungen</td>
</tr>
<tr>
<td></td>
<td>Dosimetrie</td>
<td>Quantitative Erfassung der Exposition durch ionisierende Strahlung oder elektromagnetische Felder</td>
</tr>
<tr>
<td></td>
<td>Dosimeter</td>
<td>Personendosimeter; ein Messgerät zur Bestimmung der individuellen Exposition durch ionisierende Strahlung oder elektromagnetische Felder</td>
</tr>
<tr>
<td></td>
<td>Dosis</td>
<td>Siehe Energiedosis, Äquivalentdosis, effektive Dosis, Organdosis, Kollektivdosis, Ortsdosis, Personendosis</td>
</tr>
</tbody>
</table>
| | Dosisfaktor | Im Dosisfaktor werden verschiedene Wichtungen für z. B. die betroffenen Organe, die Strahlungsart, die nuklidspezifischen Eigenschaften und die Art der Exposition berücksichtigt. Beispielsweise kann durch Multiplikation des Dosisfaktors mit der Aktivität des aufgenommenen Radionuklids der Wert der jeweils betrachten Dosis errechnet werden. Der Dosisfaktor wird auch als Dosikoeffizient bezeichnet.
Effektive Dosis
Summe der gewichteten Organdosen in den in Anlage VI Teil C der StrlSchV angegebenen Geweben oder Organen des Körpers durch äussere oder innere Strahlenexposition; die effektive Dosis ergibt sich aus den Organdosen durch Multiplikation mit dem jeweiligen Gewebe-Wichtungsfaktor

Elektrisches Feld
Zustand des Raumes um eine elektrische Ladung, der sich durch Kraftwirkungen auf andere elektrische Ladungen äussert

Elektrische Feldstärke
Maß für die Stärke und Richtung der Kraft auf eine Ladung im elektrischen Feld, dividiert durch die Ladung. Ihre Einheit ist Volt pro Meter (V/m)

Elektrische Ladung
Eigenschaft von Körpern, die darin besteht, dass eine Anziehungskraft zwischen den geladenen Körpern entsteht. Willkürlich unterscheidet man zwischen positiven und negativen elektrischen Ladungen. Ladungen mit gleichen Vorzeichen stoßen sich ab, jene mit ungleichen Vorzeichen ziehen sich an. Die Einheit ist Coulomb (C)

Elektrostatisches Feld
Elektrisches Feld, in dem keine elektrischen Ströme fließen

Elektrische Spannung
Maß für die Arbeit, die erforderlich ist, um eine Ladung in einem elektrischen Feld von einem Punkt zum anderen zu bringen, dividiert durch die Ladung. Die Einheit ist Volt (V)

Elektrischer Strom
Die durch den Querschnitt eines Leiters pro Zeiteinheit hindurchfließende elektrische Ladung. Die Einheit ist Ampere (A)

Elektrosensibilität
Umschreibung für eine subjektiv empfundene besondere Empfindlichkeit gegenüber nieder- und hochfrequenten elektromagnetischen Feldern. Elektromagnetische Felder werden als Ursache für verschiedene Befindlichkeitsstörungen wie Kopf- und Gliederschmerzen, Schlaflosigkeit, Schwindelgefühle, Konzentrationsschwächen oder Antriebslosigkeit gesehen. Ein wissenschaftlicher Nachweis für einen ursächlichen Zusammenhang zwischen den Beschwerden und dem Einwirken niederfrequenter oder hochfrequenter elektromagnetischer Felder konnte bisher nicht erbracht werden

Elektrosensitivität
Besondere Empfindlichkeit gegenüber nieder- und hochfrequenten elektromagnetischen Feldern; betroffene Personen spüren z. B. elektrische Ströme nachweislich bei geringeren Intensitäten als der Durchschnitt der Bevölkerung

Energiedosis
Quotient aus der Energie, die durch ionisierende Strahlung auf das Material in einem Volumenelement übertragen wird und der Masse in diesem Volumenelement. Die Einheit der Energiedosis ist das Gray (Gy)

Epidemiologie
Die Epidemiologie ist das Studium der Verbreitung und Ursachen von gesundheitsbezogenen Zuständen und Ereignissen in bestimmten Populationen. Das epidemiologische Wissen wird im Allgemeinen angewendet, um Gesundheitsprobleme der Bevölkerung unter Kontrolle zu halten

Erkennungsgrenze
In der Kernstrahlungsmesstechnik ist die Erkennungsgrenze ein spezieller, berechneter Wert einer Größe (z. B. Aktivität, Aktivitätskonzentration, spezifische Aktivität), die mit einem Messwert verglichen wird, um zu entscheiden, ob bei dieser Messung ein Beitrag dieser Größe vorliegt oder lediglich Nulleffekt gemessen wurde. Angaben zur Berechnung der Erkennungsgrenzen können z. B. den Messanleitungen der Leitstellen und der Norm DIN 25482 10 entnommen werden

Fall-Kontroll-Studie
In einer Fall-Kontroll-Studie wird untersucht, ob Personen mit einer bestimmten Krankheit (sog. Fälle) häufiger oder höher exponiert waren als vergleichbare Personen ohne diese Krankheit (sog. Kontrollen). Eingebettete Fall-Kontroll-Studie:

Fall-out
Aus der Atmosphäre auf die Erde in Form kleinster Teilchen abgelagertes radioaktives Material, das zum Beispiel bei Kernwaffenversuchen entstanden ist

Fernfeld
Räumlicher Bereich des elektromagnetischen Feldes einer Strahlungsquelle, in dem die Beträge der elektrischen bzw. magnetischen Feldstärke umgekehrt proportional mit der Entfernung abfallen (Strahlungsfeld in genügender Entfernung von der Quelle)

Frequenz
Anzahl der Schwingungen in einer Sekunde. Die Einheit ist Hertz (Hz)
Anhang

<table>
<thead>
<tr>
<th>Begriff</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gammastrahlung</td>
<td>Energieriche elektromagnetische Strahlung, die bei der radioaktiven Umwandlung von Atomkernen oder bei Kernreaktionen auftreten kann</td>
</tr>
<tr>
<td>Gammasubmersion</td>
<td>Strahlenexposition durch Gammastrahlung von radioaktiven Aerosolen und Gasen in der Atmosphäre</td>
</tr>
<tr>
<td>Ganzkörperdosis</td>
<td>Mittelwert der Äquivalentdosis über Kopf, Rumpf, Oberarme und Oberschenkel als Folge einer als homogen angenommenen Bestrahlung des ganzen Körpers</td>
</tr>
<tr>
<td>Globalstrahlung</td>
<td>Gesamtheit der aus dem oberen Halbraum auf eine horizontaler Ebene einfallenden direkten und diffusen Sonnenstrahlung</td>
</tr>
<tr>
<td>Gray</td>
<td>SI-Einheit der Energiedosis. 1 Gray (Gy) = 1 Joule pro Kilogramm</td>
</tr>
<tr>
<td>Hall-Sonde</td>
<td>Die Sonde beruht auf dem Hall-Effekt und dient zur Ausmessung statischer Magnetfelder</td>
</tr>
<tr>
<td>Hochfrequenz</td>
<td>Hochfrequente elektromagnetische Felder. Hier definiert als Frequenzen zwischen 100 kHz und 300 GHz (s. nichtionisierende Strahlung)</td>
</tr>
<tr>
<td>Hot spots</td>
<td>Räumlich eng begrenzte Bereiche mit besonders hoher Absorption elektromagnetischer Felder</td>
</tr>
<tr>
<td>Induktion</td>
<td>Vorgang, bei dem durch Änderung des von einem Leiter umschlossenen magnetischen Flusses elektrischer Strom (Wirbelstrom) in diesem Leiter erzeugt wird</td>
</tr>
<tr>
<td>Influenz</td>
<td>Vorgang, bei dem in einem Körper durch ein äußeres elektrisches Feld eine Ladungsverteilung stattfindet, so dass an seiner Oberfläche lokal Überschüsse an positiven und an negativen elektrischen Ladungen auftreten</td>
</tr>
<tr>
<td>Infrarotstrahlung</td>
<td>Optische Strahlung im Wellenlängenbereich von 780 nm - 1 mm</td>
</tr>
<tr>
<td>Ingestion</td>
<td>Allgemein: Nahrungsaufnahme Speziell: Aufnahme von radioaktiven Stoffen mit der Nahrung</td>
</tr>
<tr>
<td>Inhalation</td>
<td>Allgemein: Einatmung von Gasen Speziell: Aufnahme von radioaktiven Stoffen mit der Atemluft</td>
</tr>
<tr>
<td>Inkorporation</td>
<td>Allgemein: Aufnahme in den Körper Speziell: Aufnahme radioaktiver Stoffe in den menschlichen Körper</td>
</tr>
<tr>
<td>Interventionelle Radiologie</td>
<td>Verfahren, bei dem unter Durchleuchtungskontrolle Heilmaßnahmen, hauptsächlich die Aufdehnung verengter oder verschlossener Blutgefäße, durchgeführt werden</td>
</tr>
<tr>
<td>Ionisierende Strahlung</td>
<td>Elektromagnetische- oder Teilchenstrahlung (z. B. Alphastrahlung, Betastrahlung, Gammastrahlung, Röntgenstrahlung), welche die Bildung von Ionen bewirken können</td>
</tr>
<tr>
<td>Isotop</td>
<td>Atomart eines chemischen Elements mit gleichen chemischen Eigenschaften (gleicher Ordnungszahl), aber verschiedener Massenzahl</td>
</tr>
<tr>
<td>Kohortenstudie</td>
<td>Eine Untersuchung, in der eine Gruppe von Personen (Kohorte), deren Expositionbedingungen bekannt sind, über längere Zeit beobachtet wird. Die verschiedenen Expositionen werden mit dem Auftreten von Krankheiten in Verbindung gebracht</td>
</tr>
<tr>
<td>Kollektivdosis</td>
<td>Die Kollektivdosis ist das Produkt aus der Anzahl der Personen der exponierten Bevölkerungsgruppe und der mittleren Pro-Kopf-Dosis. Einheit der Kollektivdosis ist das Personen-Sievert</td>
</tr>
<tr>
<td>Kontamination</td>
<td>Speziell: Verunreinigung mit radioaktiven Stoffen</td>
</tr>
<tr>
<td>Kosmische Strahlung</td>
<td>Sehr energieriche Strahlung aus dem Weltraum</td>
</tr>
<tr>
<td>Linearer Energietransfer (LET)</td>
<td>Der Lineare Energietransfer (LET) ist ein Maß für die Dichte der Ionisierung bei ionisierenden Strahlen</td>
</tr>
<tr>
<td>Leukämie</td>
<td>Krebs der weißen Blutzellen; Ursache weitgehend unbekannt; Inzidenzhäufigkeit 40 - 50 Fälle je 1 Million Einwohner. Es gibt mehrere Typen mit unterschiedlichem Krankheitsverlauf und unterschiedlicher Heilungswahrscheinlichkeit</td>
</tr>
</tbody>
</table>
Machbarkeitsstudie In einer Machbarkeitsstudie wird untersucht, ob und unter welchen Bedingungen eine geplante aufwändige Untersuchung erfolgreich sein kann

Magnetfeld Zustand des Raumes, der sich durch Kraftwirkungen auf magnetische Dipole (Magnetnadeln) äußert

Magnetische Feldstärke Maß für die Stärke und Richtung des Magnetfeldes. Die Einheit ist Ampere pro Meter (A/m)

Magnetische Flussdichte Größe, die die Induktionswirkung des magnetischen Feldes beschreibt. Die Einheit ist Tesla (T). Magnetische Flussdichte und magnetische Feldstärke sind durch die Permeabilität μ (eine Materialkonstante) verbunden

Magnetische Induktion Magnetische Flussdichte; Maß für die Anzahl der magnetischen Feldlinien pro Fläche. Die Einheit ist Tesla (T)

Medianwert Derjenige Messwert aus einer Reihe unterhalb und oberhalb dessen jeweils 50% der Messwerte liegen

Nachweisgrenze In der Kernstrahlungsmeßtechnik ist die Nachweisgrenze ein spezieller, berechneter Wert einer Größe (z. B. Aktivität, Aktivitätskonzentration, spezifische Aktivität), der mit einem vorgegebenen Richtwert (zum Teil als geforderte Nachweisgrenze bezeichnet) verglichen werden soll, um zu entscheiden, ob ein Messverfahren für einen bestimmten Messzweck geeignet ist

Nahfeldexposition Räumlicher Bereich des elektromagnetischen Feldes zwischen der Strahlungsquelle und ihrem Fernfeld (elektromagnetisches Feld in unmittelbarer Nähe der Strahlungsquelle)

Nichtionisierende Strahlung Elektrische und magnetische Felder sowie elektromagnetische Felder mit Wellenlängen von 100 nm und darüber, die in der Regel keine Bildung von Ionen bewirken können

Nuklearmedizin Anwendung radioaktiver Stoffe am Menschen zu diagnostischen und therapeutischen Zwecken

Nuklid Durch Protonenzahl (Ordnungszahl) und Massenzahl charakterisierte Atomart

Organdosis Produkt aus der mittleren Energiedosis in einem Organ, Gewebe oder Körperteil und dem Strahlungs-Wichtungsfaktor nach Anlage VI Teil C der StrlSchV. Beim Vorliegen mehrerer Strahlungsarten und -energien ist die Organdosis die Summe der nach Anlage VI Teil B ermittelten Einzelbeiträge durch äußere oder innere Strahlenexposition

Ortdosis Äquivalentdosis für Weichteilgewebe, gemessen an einem bestimmten Ort

Ortdosisleistung Ortdosis pro Zeitintervall

Personendosis Die Personendosis ist in der Strahlenschutzverordnung definiert als Messgröße. Sie entspricht der Äquivalentdosis gemessen an einer repräsentativen Stelle der Oberfläche einer Person. Man unterscheidet die Tiefen-Personendosis Hp(10) in einer Messstiefe von 10 mm und die Oberflächen-Personendosis Hp(0,07) in einer Messstiefe von 0,07 mm

Perzentil Statistischer Wert, der von einem bestimmten Prozentsatz der Messergebnisse einer Stichprobe eingehalten wird (z. B. 95% Perzentil ist der Wert, der von nur 5% der Stichprobe überschritten wird)

Pyranometer Messgerät zur kontinuierlichen Aufnahme der Globalstrahlung

Querschnittsstudie Querschnittsstudien umfassen eine Auswahl von Personen aus einer Zielpopulation zu einem festen Zeitpunkt (Stichtag). Für die ausgewählten Personen wird der Krankheitsstatus und die gegenwärtige oder auch frühere Exposition gleichzeitig erhoben

Radioaktive Stoffe Stoffe, die ionisierende Strahlung spontan aussenden

Radioaktivität Eigenschaft bestimmter chemischer Elemente bzw. Nuklide, ohne äußere Einwirkung Teilchen- oder Gammastrahlung aus dem Atomkern auszusenden

Radioiod Radioaktive Iodisotope

Radionuklide Instabile Nuklide, die unter Aussendung von Strahlung in andere Nuklide zerfallen
4. Liste der verwendeten Abkürzungen

(List of abbreviations)

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ampere</td>
<td>Einheit der elektrischen Leistung</td>
</tr>
<tr>
<td>ÄS</td>
<td>Ärztliche und zahnärztliche Stellen</td>
<td>Positions prescribed for doctors and dentists</td>
</tr>
<tr>
<td>AMG</td>
<td>Arzneimittelgesetz</td>
<td>(Medical Preparations Act)</td>
</tr>
<tr>
<td>AtAV</td>
<td>Atomrechtliche Abfallverbringungsverordnung</td>
<td>(Waste Shipment Regulation)</td>
</tr>
<tr>
<td>AtG</td>
<td>Atomgesetz</td>
<td>(Atomic Energy Act)</td>
</tr>
</tbody>
</table>

Retina: Netzhaut des Auges; hier werden optische Signale in Nervensignale umgewandelt.

Risiko: Qualitative und/oder quantitative Charakterisierung eines Schadens hinsichtlich der Möglichkeit seines Eintreffens (Eintrittswahrscheinlichkeit) und der Tragweite der Schadenswirkung.

Risikokommunikation: Interaktiver (wechselseitiger) Prozess des Austausches von Informationen und Meinungen zu Risiken zwischen wissenschaftlichen Experten, Risikomanagern (Behörden) und der Öffentlichkeit (Betroffene, Interessensgruppen, etc.).

Sendeleistung: Die von einer Antenne abgestrahlte elektrische Leistung.

Sievert: SI-Einheit der Äquivalentdosis und der effektiven Dosis.
1 Sievert (Sv) = 100 Rem,
1 Sievert = 1.000 Millisievert (mSv) = 1.000.000 Mikrosievert (µSv).

Spezifische Absorptionsrate (SAR): Die auf die Masse eines Körpers bezogene absorbierte Strahlungsleistung. Die Einheit ist Watt pro Kilogramm (W/kg).

Stochastisch: Zufallsbedingt; stochastische Strahlenschäden sind solche, bei denen die Wahrscheinlichkeit des Auftretens von der Dosis abhängt, nicht jedoch deren Schwere (siehe auch deterministisch).

Strahlenbelastung: Siehe Strahlenexposition.

Strahlenexposition: Einwirkung ionisierender oder nichtionisierender Strahlung auf den menschlichen Körper oder Körperenteile.

Terrestriache Strahlung: Strahlung der natürlich radioaktiven Stoffe, die überall auf der Erde vorhanden sind.

Tritium (H-3): Radioaktives Isotop des Wasserstoffs, das Betastrahlung sehr niedriger Energie aussendet.

UVI, UV-Index: Maß für sonnenbrandwirksame solare Strahlung.
Der UV-Index beschreibt den am Boden erwarteten bzw. gemessenen Wert der sonnenbrandwirksamen UV-Strahlung und dient der Information der Bevölkerung über die Gefahren der solaren UV-Strahlung.

UV-Strahlung: Optische Strahlung im Wellenlängenbereich von 100 nm - 400 nm.

Vorfluter: Natürliches oder künstliches Gewässer (Wasserlauf), der Wasser und Abwasser aufnimmt und weiterleitet.

Wirbelstrom: Durch Induktion in einem leitfähigen Körper erzeugter elektrischer Strom.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>German Name</th>
<th>English Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVR</td>
<td>Atomversuchsreaktor</td>
<td>Nuclear test reactor</td>
</tr>
<tr>
<td>AVV</td>
<td>Allgemeine Verwaltungsvorschrift</td>
<td>General Administrative Provisions</td>
</tr>
<tr>
<td>B</td>
<td>Magnetische Flussdichte</td>
<td>Magnetic flux density</td>
</tr>
<tr>
<td>BAFA</td>
<td>Bundesamt für Wirtschaft und Ausfuhrkontrolle</td>
<td>Federal Office of Economics and Export Control</td>
</tr>
<tr>
<td>BDBOS</td>
<td>Bundesanstalt für den Digitalfunk der Behörden und Organisationen mit Sicherheitsaufgaben</td>
<td>Federal Agency for Digital Radio of Security Authorities and Organisations</td>
</tr>
<tr>
<td>BEMFV</td>
<td>Verordnung über das Nachweisverfahren zur Begrenzung elektromagnetischer Felder</td>
<td>Regulation on verification procedure for limitation of electromagnetic fields</td>
</tr>
<tr>
<td>BfArM</td>
<td>Bundesinstitut für Arzneimittel und Medizinprodukte</td>
<td>Federal Institute for Drugs and Medical Devices</td>
</tr>
<tr>
<td>BfG</td>
<td>Bundesanstalt für Gewässerkunde</td>
<td>Federal Institute of Hydrology</td>
</tr>
<tr>
<td>BfS</td>
<td>Bundesamt für Strahlenschutz</td>
<td>Federal Office for Radiation Protection</td>
</tr>
<tr>
<td>BGBI</td>
<td>Bundesgesetzblatt</td>
<td>Federal Law Gazette</td>
</tr>
<tr>
<td>BGR</td>
<td>Bundesanstalt für Geowissenschaften und Rohstoffe</td>
<td>Federal Institute for Geosciences and Natural Resources</td>
</tr>
<tr>
<td>BMBF</td>
<td>Bundesministerium für Bildung und Forschung</td>
<td>Federal Ministry of Accumulation and Research</td>
</tr>
<tr>
<td>BMG</td>
<td>Bundesministerium für Gesundheit</td>
<td>Federal Ministry of Physical Health</td>
</tr>
<tr>
<td>BMU</td>
<td>Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit</td>
<td>Federal Ministry of Environment, Nature Protection and Reactor Safety</td>
</tr>
<tr>
<td>BMVBS</td>
<td>Bundesministerium für Verkehr, Bau und Stadtentwicklung</td>
<td>Federal Ministry of Traffic, Building and Urban Development</td>
</tr>
<tr>
<td>BMWi</td>
<td>Bundesministerium für Wirtschaft und Technologie</td>
<td>Federal Ministry of Economy and Technology</td>
</tr>
<tr>
<td>BNetzA</td>
<td>Bundesnetzagentur</td>
<td>Federal Network Agency</td>
</tr>
<tr>
<td>Bq</td>
<td>Becquerel</td>
<td>Becquerel</td>
</tr>
<tr>
<td>Bq/m³</td>
<td>Becquerel pro Kubikmeter</td>
<td>Becquerel per cubic meter</td>
</tr>
<tr>
<td>BSH</td>
<td>Bundesamt für Seeschifffahrt und Hydrographie</td>
<td>Federal Office for Maritime Shipping and Hydrography</td>
</tr>
<tr>
<td>/d×p</td>
<td>Pro Tag und Person</td>
<td>Per day and person</td>
</tr>
<tr>
<td>DMF</td>
<td>Deutsches Mobilfunk-Forschungsprogramm</td>
<td>German Mobile Telecommunication Research Programme</td>
</tr>
<tr>
<td>DNS</td>
<td>Desoxyribonukleinsäure</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DRW</td>
<td>Diagnostische Referenzwerte</td>
<td>Diagnostic reference levels</td>
</tr>
<tr>
<td>DWD</td>
<td>Deutscher Wetterdienst</td>
<td>German Meteorological Service</td>
</tr>
<tr>
<td>DWR</td>
<td>Druckwasserreaktor</td>
<td>Pressurized Water Reactor</td>
</tr>
<tr>
<td>E</td>
<td>Elektrische Feldstärke</td>
<td>Electric field strength</td>
</tr>
<tr>
<td>EMF</td>
<td>Elektromagnetische Felder</td>
<td>Electromagnetic fields</td>
</tr>
<tr>
<td>EURATOM</td>
<td>Europäische Atomgemeinschaft</td>
<td>European Atomic Energy Community</td>
</tr>
<tr>
<td>EUREF</td>
<td>Europäische Referenzorganisation für qualitätsgesichertes Brustscreening und Diagnoseleistungen</td>
<td>European Reference Organisation for Quality Assured Breast Screening and Diagnostic Services</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>FFS</td>
<td>Fischereiforschungsschiff (Fisheries Research Vessel)</td>
<td></td>
</tr>
<tr>
<td>FM</td>
<td>Feuchtmasse (Wet weight)</td>
<td></td>
</tr>
<tr>
<td>GKV</td>
<td>Gesetzliche Krankenversicherung (legal medical insurance)</td>
<td></td>
</tr>
<tr>
<td>GSM</td>
<td>Globales Mobilfunksystem (Global System for Mobile Communications)</td>
<td></td>
</tr>
<tr>
<td>FZ</td>
<td>Forschungszentrum (Research Centre)</td>
<td></td>
</tr>
<tr>
<td>Gα</td>
<td>Gesamt-Alpha-Aktivität (Total Alpha Activity)</td>
<td></td>
</tr>
<tr>
<td>Gβ</td>
<td>Gesamt-Beta-Aktivität (Total Beta Activity)</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Magnetische Feldstärke (Magnetic field strength)</td>
<td></td>
</tr>
<tr>
<td>hED</td>
<td>Halbstunden-Erythemgewichtete UV-Dosiswerte (Halfhour-erythema-weighted UV dose values)</td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>Hochfrequenz, hochfrequente (High frequency)</td>
<td></td>
</tr>
<tr>
<td>HTR</td>
<td>Hochtemperaturreaktor (High Temperature Reactor)</td>
<td></td>
</tr>
<tr>
<td>HWZ</td>
<td>Halbwertszeit (Halflife)</td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
<td></td>
</tr>
<tr>
<td>IAEA</td>
<td>Internationale Atomenergie-Organisation (International Atomic Energy Agency (IAEA))</td>
<td></td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer (Internationale Agentur für Krebsforschung)</td>
<td></td>
</tr>
<tr>
<td>ICNIRP</td>
<td>Internationale Kommission für den Schutz vor nichtionisierender Strahlung (International Commission on Non-Ionising Radiation Protection)</td>
<td></td>
</tr>
<tr>
<td>ICRP</td>
<td>Internationale Strahlenschutzkommission (International Commission on Radiological Protection)</td>
<td></td>
</tr>
<tr>
<td>IMIS</td>
<td>Integriertes Mess- und Informationssystem (Integrated Measuring and Information System)</td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>Infrarote Strahlung (Wellenlänge 780 nm - 1 mm) (Infrared Radiation (wave length 780 nm - 1 mm))</td>
<td></td>
</tr>
<tr>
<td>JAZ</td>
<td>Jahresaktivitätszufuhr (Annual Intake of Activity)</td>
<td></td>
</tr>
<tr>
<td>FZ</td>
<td>Kernforschungsanlage (Nuclear Research Facility)</td>
<td></td>
</tr>
<tr>
<td>KBV</td>
<td>Kassenärztliche Bundesvereinigung (National Association of Statutory Health Insurance Physicians)</td>
<td></td>
</tr>
<tr>
<td>KFW</td>
<td>Kernforschungszentrum (Nuclear Research Centre)</td>
<td></td>
</tr>
<tr>
<td>KKW</td>
<td>Kernkraftwerk (Nuclear Power Plant)</td>
<td></td>
</tr>
<tr>
<td>KNK</td>
<td>Kompakte natriumgekühlte Kernreaktoranlage (Compact Sodium cooled nuclear plant)</td>
<td></td>
</tr>
<tr>
<td>KTA</td>
<td>Kerntechnischer Ausschuss (Nuclear Safety Standards Commission)</td>
<td></td>
</tr>
<tr>
<td>LET</td>
<td>Linearer Energietransfer (Linear energy transfer)</td>
<td></td>
</tr>
<tr>
<td>LTE</td>
<td>Long Term Evolution</td>
<td></td>
</tr>
<tr>
<td>m³</td>
<td>Kubikmeter (Cubic metre)</td>
<td></td>
</tr>
<tr>
<td>MED</td>
<td>Minimale erythematogene Dosis (Hautrötung) (Minimal dose for erythema induction)</td>
<td></td>
</tr>
<tr>
<td>MRI</td>
<td>Max Rubner-Institut, Bundesforschungsinstitut für Ernährung und Lebensmittel (Federal Research Institute of Nutritron and Food)</td>
<td></td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Name</td>
<td>Englischer Name</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomographie</td>
<td>Magnetic Resonance Tomography</td>
</tr>
<tr>
<td>MSP</td>
<td>Mammographie-Screening-Programm</td>
<td>Mammography Screening Programme</td>
</tr>
<tr>
<td>mSv</td>
<td>Millisievert</td>
<td>Millisievert</td>
</tr>
<tr>
<td>MZFR</td>
<td>Mehrzweckforschungsreaktor</td>
<td>Multipurpose research reactor</td>
</tr>
<tr>
<td>NIR</td>
<td>Nichtionisierende Strahlung</td>
<td>Non-ionising radiation</td>
</tr>
<tr>
<td>NiSG</td>
<td>Gesetz zum Schutz vor nichtionisierender Strahlung</td>
<td>Act on Non-Ionising Radiation Protection</td>
</tr>
<tr>
<td>NWG</td>
<td>Nachweisgrenze, siehe auch Teil A -II- 2 Nachweisgrenzen bei radiometrischen Verfahren</td>
<td>Detection limit</td>
</tr>
<tr>
<td>nSv</td>
<td>Nanosievert</td>
<td>Nanosievert</td>
</tr>
<tr>
<td>ODL</td>
<td>Ortsdosisleistung</td>
<td>Ambient Dose Rate</td>
</tr>
<tr>
<td>PAS</td>
<td>Public Available Specification</td>
<td></td>
</tr>
<tr>
<td>PET</td>
<td>Positronen-Emissions-Tomographie</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>PTB</td>
<td>Physikalisch-Technische Bundesanstalt</td>
<td>National Metrology Institute</td>
</tr>
<tr>
<td>PTCA</td>
<td>Perkutane transluminale koronare Angioplastie</td>
<td>Percutaneous Transluminal Coronary Angioplasty</td>
</tr>
<tr>
<td>PKV</td>
<td>Verband der Privaten Krankenversicherung</td>
<td>Private Health Insurances</td>
</tr>
<tr>
<td>Rβi</td>
<td>Rest-Beta-Aktivität</td>
<td>Residual beta activity</td>
</tr>
<tr>
<td>REI</td>
<td>Richtlinie zur Emissions- und Immissionsüberwachung kerntechnischer Anlagen</td>
<td>Guideline Relating to Emission and Immission Monitoring of Nuclear Facilities</td>
</tr>
<tr>
<td>RMP</td>
<td>Routinemessprogramm</td>
<td>Routine Measuring Program</td>
</tr>
<tr>
<td>RöV</td>
<td>Röntgenverordnung</td>
<td>X-ray Ordinance</td>
</tr>
<tr>
<td>RTS</td>
<td>Runder Tisch Solarien</td>
<td>Roundtable solaria</td>
</tr>
<tr>
<td>S</td>
<td>Leistungsflussdichte</td>
<td>Power flux density</td>
</tr>
<tr>
<td>SAR</td>
<td>Spezifische Absorptionsrate</td>
<td>Specific absorption rate</td>
</tr>
<tr>
<td>SNR</td>
<td>Schneller natriumgekühlter Reaktor</td>
<td>Sodium-cooled reactor</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single-Photon-Emissionscomputertomographie</td>
<td>Single Photon Emission Computed Tomography</td>
</tr>
<tr>
<td>SSK</td>
<td>Strahlenschutzkommission</td>
<td>German Commission on Radiological Protection</td>
</tr>
<tr>
<td>StrSchV</td>
<td>Strahlenschutzverordnung</td>
<td>Radiation Protection Ordinance</td>
</tr>
<tr>
<td>StrVG</td>
<td>Strahlenschutzvorsorgegesetz</td>
<td>Precautionary Radiation Protection Act</td>
</tr>
<tr>
<td>SWR</td>
<td>Siedewasserreaktor</td>
<td>Boiling Water Reactor</td>
</tr>
<tr>
<td>Sv</td>
<td>Sievert</td>
<td>Sievert</td>
</tr>
<tr>
<td>T</td>
<td>Tesla</td>
<td>Tesla</td>
</tr>
<tr>
<td>TBL</td>
<td>Transportbehälterlager</td>
<td>Transport Container Repository</td>
</tr>
<tr>
<td>TM</td>
<td>Trockenmasse</td>
<td>Dry weight</td>
</tr>
</tbody>
</table>
UBA Umweltbundesamt
(Federal Environment Agency)

UMTS Universal Mobile Telecommunications System
(Universal Mobile Telecommunications System)

UNSCEAR Wissenschaftliches Komitee der Vereinten Nationen über die Wirkung von atomarer Strahlung
(United Nation’s Scientific Committee on the Effects of Atomic Radiation)

UV Ultraviolette Strahlung (Wellenlänge 100 - 400 nm)
(Ultraviolet Radiation (wavelength 100 - 400 nm)

V Volt
(Volt)

VO Verordnung
(Ordinance)

VOAS Verordnung über die Gewährleistung von Atomsicherheit und Strahlenschutz
(Ordinance on the Guarantee of Nuclear Safety and Radiation Protection)

vTI Johann Heinrich von Thünen-Institut
(Johann Heinrich von Thünen Institute)

W Watt
(Watt)

WAA Wiederaufarbeitungsanlage
(Reprocessing Plant)

WBA Wasserbehandlungsanlage
(Water Treatment Plant)

WHO Weltgesundheitsorganisation
(World Health Organization)

WWER Leichtwasser- Druckwasserreaktor sowjetischer Bauart
(Russian Type Light Water Pressurized Water Reactor)

Z0 Feldwellenwiderstand des leeren Raums
(Field characteristic impedance)

ZdB Zentralstelle des Bundes
(Central Federal Agency for the Surveillance of radioactivity)

Tabellenabkürzungen
(*Abbreviation in tables*)

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angaben nicht sinnvoll</td>
<td>(data not relevant)</td>
</tr>
<tr>
<td>a</td>
<td>Daten lagen nicht vor (data not available)</td>
</tr>
<tr>
<td>N</td>
<td>Zahl der Einzelmessungen (number of individual measurements)</td>
</tr>
<tr>
<td>nn</td>
<td>nicht nachgewiesen / nachweisbar (not detected / detectable)</td>
</tr>
<tr>
<td>-</td>
<td>Messung / Angabe nicht erforderlich (measurement / data not required)</td>
</tr>
</tbody>
</table>
| < | [vor Mittelwerten] enthält mindestens einen Messwert unterhalb der Nachweisgrenze
([preceding mean values] includes at least one value below detection limit) |
5. Gesetze, Verordnungen, Richtlinien, Empfehlungen, Erläuterungen und sonstige Regelungen zum Strahlenschutz - Auswahl

(Laws, ordinances, guidelines, recommendations, explanatory text and other regulations concerning radiation protection - assortment)

Gesetze

Verordnungen

27. UV-Schutz-Verordnung (UVSV) vom 20. Juli 2011 (BGBl. I S. 1412)

Allgemeine Verwaltungsvorschriften

 - Anhang 1: Messprogramm für den Normalbetrieb (Routinemessprogramm)
 - Anhang 2: Messprogramm für den Intensivbetrieb (Intensivmessprogramm)
 - Anhang 3: Bundeseinheitliche Deskriptorenliste (BEDL)

31. Allgemeine Verwaltungsvorschrift zu § 47 der Strahlenschutzverordnung (Ermittlung der Strahlenexposition durch die Ableitung radioaktiver Stoffe aus Anlagen oder Einrichtungen) vom 28. August 2012 (BAnz AT 05.092012B1)

Richtlinien

35. Richtlinie für die Bauartzulassung von Ionisationsrauchmeldern (IRM) vom 15. Februar 1992 (GMBl. 1992, S. 150)

46. Richtlinie zur Durchführung der RöV für die technische Prüfung von Röntgeneinrichtungen und genehmigungsbedürftigen Störstrahlern (SV-RL) vom 27. August 2003 (GMBI. S. 783), zuletzt geändert am 09.02.2010 (GMBI. 2010, S. 711)
47. Durchführung der Strahlenschutzverordnung (StrlSchV); Rahmenrichtlinie zu Überprüfungen nach § 66 Abs. 2 StrlSchV vom 11. Juni 2002 (GMBI. 2002, Nr. 30, S. 620)
53. Richtlinie Ärztliche und zahnärztliche Stellen (Qualitätsmaßnahmen bei medizinischen Anwendungen radioaktiver Stoffe und ionisierender Strahlung am Menschen) vom 1. März 2004

Empfehlungen, Erläuterungen
56. Durchführung der StrlSchV: Merkposten zu Antragsunterlagen in den Genehmigungsverfahren für Anlagen zur Erzeugung ionisierender Strahlen nach § 11 Abs. 1 und 2 StrlSchV (GMBI. 2004 S. 9)

Sicherheitsregeln des Kerntechnischen Ausschusses (KTA-Regeln)

69. KTA-Regel 1503.1 (Fassung 6/02): Überwachung der Ableitung gasförmiger und a Schwebstoffen gebundener radioaktiver Stoffe, Teil 1: Überwachung der Ableitung radioaktiver Stoffe mit der Kaminfortluft bei bestimmungsge-
mäßem Betrieb (BAnz Nr. 55 v. 20. März 2003)

72. KTA Regel 1508 (Fassung 9/88): Instrumentierung zur Ermittlung der Ausbreitung radioaktiver Stoffe in der Atmosphäre (BAnz Nr. 37 a vom 22. Februar 1989)

EU-Verordnungen, Richtlinien

74. Verordnung (EWG) Nr. 737/90 des Rates vom 22. März 1990 über die Einfuhrbedingungen für landwirtschaftliche Erzeugnisse mit Ursprung in Drittländern nach dem Unfall im Kernkraftwerk Tschernobyl (ABl. 1990, L 82 S 1)

6. Liste ausgewählter Radionuklide
(List of selected radionuclides)

<table>
<thead>
<tr>
<th>Ordnungszahl Z</th>
<th>Element</th>
<th>Radionuklid</th>
<th>Halbwertszeit</th>
<th>Strahlungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wasserstoff</td>
<td>H-3</td>
<td>12,3 a</td>
<td>β⁻</td>
</tr>
<tr>
<td>4</td>
<td>Beryllium</td>
<td>Be-7</td>
<td>53,3 d</td>
<td>ε, γ</td>
</tr>
<tr>
<td>6</td>
<td>Kohlenstoff</td>
<td>C-14</td>
<td>5730 a</td>
<td>β⁻</td>
</tr>
<tr>
<td>9</td>
<td>Fluor</td>
<td>F-18</td>
<td>1,83 h</td>
<td>β⁺</td>
</tr>
<tr>
<td>Ordnungszahl Z</td>
<td>Element</td>
<td>Radionuklid</td>
<td>Halbwertszeit</td>
<td>Strahlungsart</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>11</td>
<td>Natrium</td>
<td>Na-22</td>
<td>2,6 a</td>
<td>β⁺, γ</td>
</tr>
<tr>
<td>14</td>
<td>Silizium</td>
<td>Si-32</td>
<td>172 a</td>
<td>β⁻</td>
</tr>
<tr>
<td>15</td>
<td>Phosphor</td>
<td>P-32</td>
<td>14,3 d</td>
<td>β⁻</td>
</tr>
<tr>
<td>16</td>
<td>Schwefel</td>
<td>S-35</td>
<td>87,5 d</td>
<td>β⁻</td>
</tr>
<tr>
<td>18</td>
<td>Argon</td>
<td>Ar-41</td>
<td>1,83 h</td>
<td>β⁻, γ</td>
</tr>
<tr>
<td>19</td>
<td>Kalium</td>
<td>K-40</td>
<td>1,28 x 10⁸ a</td>
<td>β⁻, ε, β⁺, γ</td>
</tr>
<tr>
<td>20</td>
<td>Calcium</td>
<td>Ca-45</td>
<td>163 d</td>
<td>β⁻, γ</td>
</tr>
<tr>
<td>24</td>
<td>Chrom</td>
<td>Cr-51</td>
<td>27,7 d</td>
<td>ε, γ</td>
</tr>
<tr>
<td>25</td>
<td>Mangan</td>
<td>Mn-54</td>
<td>312,2 d</td>
<td>ε, γ</td>
</tr>
<tr>
<td>26</td>
<td>Eisen</td>
<td>Fe-59</td>
<td>44,5 d</td>
<td>β⁻, γ</td>
</tr>
<tr>
<td>27</td>
<td>Kobalt</td>
<td>Co-57</td>
<td>272 d</td>
<td>ε, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Co-58</td>
<td>70,9 d</td>
<td>ε, β⁺, γ</td>
</tr>
<tr>
<td>28</td>
<td>Nickel</td>
<td>Ni-63</td>
<td>100 a</td>
<td>β⁻</td>
</tr>
<tr>
<td>30</td>
<td>Zink</td>
<td>Zn-65</td>
<td>244 d</td>
<td>ε, β⁺, γ</td>
</tr>
<tr>
<td>34</td>
<td>Selen</td>
<td>Se-75</td>
<td>120 d</td>
<td>ε, γ</td>
</tr>
<tr>
<td>36</td>
<td>Krypton</td>
<td>Kr-85</td>
<td>10,8 a</td>
<td>β⁻, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kr-85 m</td>
<td>4,48 h</td>
<td>β⁺, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kr-87</td>
<td>76,3 m</td>
<td>β⁻, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kr-88</td>
<td>2,84 h</td>
<td>β⁻, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kr-89</td>
<td>3,18 m</td>
<td>β⁻, γ</td>
</tr>
<tr>
<td>37</td>
<td>Rubidium</td>
<td>Rb-87</td>
<td>4,8 x 10¹⁰ a</td>
<td>β⁻</td>
</tr>
<tr>
<td>38</td>
<td>Strontium</td>
<td>Sr-89</td>
<td>50,5 d</td>
<td>β⁻, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sr-90</td>
<td>28,6 a</td>
<td>β⁻</td>
</tr>
<tr>
<td>39</td>
<td>Yttrium</td>
<td>Y-90</td>
<td>64,1 h</td>
<td>β⁻</td>
</tr>
<tr>
<td>40</td>
<td>Zirkon</td>
<td>Zr-95</td>
<td>64 d</td>
<td>β⁻, γ</td>
</tr>
<tr>
<td>41</td>
<td>Niob</td>
<td>Nb-95</td>
<td>35 d</td>
<td>β⁻, γ</td>
</tr>
<tr>
<td>42</td>
<td>Molybdän</td>
<td>Mo-99</td>
<td>66,0 h</td>
<td>β⁻, γ</td>
</tr>
<tr>
<td>43</td>
<td>Technetium</td>
<td>Tc-99</td>
<td>2,1 x 10⁵ a</td>
<td>β⁻</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tc-99m</td>
<td>6,0 h</td>
<td>γ</td>
</tr>
<tr>
<td>44</td>
<td>Ruthenium</td>
<td>Ru-103</td>
<td>39,4 d</td>
<td>β⁻, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ru-106</td>
<td>374 d</td>
<td>β⁻</td>
</tr>
<tr>
<td>46</td>
<td>Palladium</td>
<td>Pd-103</td>
<td>16,96 d</td>
<td>ε, γ</td>
</tr>
<tr>
<td>47</td>
<td>Silber</td>
<td>Ag-108m</td>
<td>418 a</td>
<td>ε, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ag-110m</td>
<td>250 d</td>
<td>β⁻, γ, Iγ</td>
</tr>
<tr>
<td>48</td>
<td>Cadmium</td>
<td>Cd-109</td>
<td>463 d</td>
<td>ε</td>
</tr>
<tr>
<td>49</td>
<td>Indium</td>
<td>In-111</td>
<td>2,81 d</td>
<td>ε, γ</td>
</tr>
<tr>
<td>51</td>
<td>Antimon</td>
<td>Sb-124</td>
<td>60,3 d</td>
<td>β⁺, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sb-125</td>
<td>2,77 a</td>
<td>β⁺, γ</td>
</tr>
<tr>
<td>52</td>
<td>Tellur</td>
<td>Te-123m</td>
<td>120 d</td>
<td>Iγ</td>
</tr>
<tr>
<td>53</td>
<td>Iod</td>
<td>I-123</td>
<td>13,2 h</td>
<td>ε, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I-125</td>
<td>59,4 d</td>
<td>ε, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I-129</td>
<td>1,57 x 10⁷ a</td>
<td>β⁻, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I-131</td>
<td>8,02 d</td>
<td>β⁻, γ</td>
</tr>
<tr>
<td>54</td>
<td>Xenon</td>
<td>Xe-131m</td>
<td>11,9 d</td>
<td>Iγ</td>
</tr>
<tr>
<td>Ordnungszahl Z</td>
<td>Element</td>
<td>Radionuklid</td>
<td>Halbwertszeit</td>
<td>Strahlungsart</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>54</td>
<td>Xenon</td>
<td>Xe-133</td>
<td>5,25 d</td>
<td>β^-,γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xe-133m</td>
<td>2,19 d</td>
<td>γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xe-135</td>
<td>9,1 h</td>
<td>β^-,γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xe-135m</td>
<td>15,3 m</td>
<td>γ, β^-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xe-137</td>
<td>3,83 m</td>
<td>β^-,γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xe-138</td>
<td>14,1 m</td>
<td>β^-,γ</td>
</tr>
<tr>
<td>55</td>
<td>Cäsium</td>
<td>Cs-134</td>
<td>2,06 a</td>
<td>β^-,γ, β^+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cs-137</td>
<td>30,2 a</td>
<td>β^-</td>
</tr>
<tr>
<td>56</td>
<td>Barium</td>
<td>Ba-140</td>
<td>12,8 d</td>
<td>β^-,γ</td>
</tr>
<tr>
<td>57</td>
<td>Lanthan</td>
<td>La-140</td>
<td>40,3 h</td>
<td>β^-,γ</td>
</tr>
<tr>
<td>58</td>
<td>Cer</td>
<td>Ce-141</td>
<td>32,5 d</td>
<td>β^-,γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ce-144</td>
<td>285 d</td>
<td>β^-,γ</td>
</tr>
<tr>
<td>61</td>
<td>Promethium</td>
<td>Pm-147</td>
<td>2,62 a</td>
<td>β^-,γ</td>
</tr>
<tr>
<td>63</td>
<td>Europium</td>
<td>Eu-152</td>
<td>13,3 a</td>
<td>ϵ, β^+, β^-, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eu-154</td>
<td>8,8 a</td>
<td>β^-, ϵ, γ</td>
</tr>
<tr>
<td>64</td>
<td>Gadolinium</td>
<td>Gd-153</td>
<td>239 d</td>
<td>ϵ, γ</td>
</tr>
<tr>
<td>73</td>
<td>Tantal</td>
<td>Ta-182</td>
<td>114 d</td>
<td>β^-,γ</td>
</tr>
<tr>
<td>77</td>
<td>Iridium</td>
<td>Ir-192</td>
<td>73,8 d</td>
<td>β^-,ϵ, γ</td>
</tr>
<tr>
<td>81</td>
<td>Thallium</td>
<td>Ti-201</td>
<td>73,1 h</td>
<td>ϵ, γ</td>
</tr>
<tr>
<td>82</td>
<td>Blei</td>
<td>Pb-210</td>
<td>22,3 a</td>
<td>β^-,γ, α</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pb-214</td>
<td>26,8 m</td>
<td>β^-,γ</td>
</tr>
<tr>
<td>83</td>
<td>Wismut</td>
<td>Bi-214</td>
<td>19,9 m</td>
<td>β^-, α, γ</td>
</tr>
<tr>
<td>84</td>
<td>Polonium</td>
<td>Po-210</td>
<td>138 d</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Po-214</td>
<td>164 μs</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Po-218</td>
<td>3,05 m</td>
<td>α</td>
</tr>
<tr>
<td>86</td>
<td>Radon</td>
<td>Rn-219</td>
<td>3,96 s</td>
<td>α, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rn-220</td>
<td>55,6 s</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rn-222</td>
<td>3,83 d</td>
<td>α</td>
</tr>
<tr>
<td>88</td>
<td>Radium</td>
<td>Ra-224</td>
<td>3,66 d</td>
<td>α, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ra-226</td>
<td>1600 a</td>
<td>α, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ra-228</td>
<td>5,75 a</td>
<td>β^-</td>
</tr>
<tr>
<td>90</td>
<td>Thorium</td>
<td>Th-228</td>
<td>1,91 a</td>
<td>α, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th-230</td>
<td>$7,54\times10^9$ a</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th-232</td>
<td>$1,41\times10^{10}$ a</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th-234</td>
<td>24,1 d</td>
<td>β^-,γ</td>
</tr>
<tr>
<td>91</td>
<td>Protactinium</td>
<td>Pa-234</td>
<td>6,7 h</td>
<td>β^-,γ</td>
</tr>
<tr>
<td>92</td>
<td>Uran</td>
<td>U-233</td>
<td>$1,59\times10^5$ a</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U-234</td>
<td>$2,46\times10^5$ a</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U-235</td>
<td>$7,04\times10^5$ a</td>
<td>α, γ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U-238</td>
<td>$4,47\times10^5$ a</td>
<td>α</td>
</tr>
<tr>
<td>93</td>
<td>Neptunium</td>
<td>Np-239</td>
<td>2,36 d</td>
<td>β^-,γ</td>
</tr>
<tr>
<td>94</td>
<td>Plutonium</td>
<td>Pu-238</td>
<td>87,7 a</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pu-239 *)</td>
<td>$2,41\times10^4$ a</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pu-240 *)</td>
<td>6563 a</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pu-241</td>
<td>14,4 a</td>
<td>β^-,α</td>
</tr>
<tr>
<td>95</td>
<td>Americium</td>
<td>Am-241</td>
<td>432 a</td>
<td>α, γ</td>
</tr>
<tr>
<td>Ordnungszahl Z</td>
<td>Element</td>
<td>Radionuklid</td>
<td>Halbwertszeit</td>
<td>Strahlungsart</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>96</td>
<td>Curium</td>
<td>Cm-242</td>
<td>163 d</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cm-244</td>
<td>18,1 a</td>
<td>α</td>
</tr>
</tbody>
</table>

+ entnommen aus:

\[
\begin{align*}
\mu s &= \text{Mikrosekunden} \\
\text{s} &= \text{Sekunden} \\
\text{m} &= \text{Minuten} \\
\text{h} &= \text{Stunden} \\
\text{d} &= \text{Tage} \\
\text{a} &= \text{Jahre}
\end{align*}
\]

\[
\begin{align*}
\varepsilon &= \text{Elektroneneinfang} \\
\gamma &= \text{Gammastrahlung} \\
\beta^+ &= \text{Positronen} \\
\beta^- &= \text{Elektronen} \\
\gamma &= \text{Isomerenzerfall} \\
\alpha &= \text{Helium-Kerne}
\end{align*}
\]