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Abstract 

Aim of the research project 

Part 2 of the research project “Determination of uncertainties of radiation exposure assessment in 

the Wismut cohort” included the following tasks: (1) Quantification of uncertainty, (2) Definition of 

measurement models and development of an approach to correct for measurement error, (3) Design 

and implementation of a simulation study to compare the proposed approach with simulation 

extrapolation and regression calibration, and (4) Application to the data of the Wismut cohort 

without accounting for effect modifying variables and excluding workers who were employed in 

Wismut processing companies at any point during their working career. 

Preliminary work from part 1 

The project built on part 1 in which the working conditions in the Wismut company and procedures 

for estimating occupational exposure to radon progeny were described. Generalization error, 

assignment error, procedural measurement error, documentation error, parameter uncertainties, 

experts’ evaluation error, transfer error and approximation error were identified as potential sources 

of uncertainty in the Wismut cohort. In a preliminary evaluation, generalization error and parameter 

uncertainties were considered as particularly relevant. 

Background 

The Wismut cohort consists of a sample of 58 974 male employees from around 400 000 former 

employees of the Wismut company. The employees were exposed to various occupational exposures 

ranging from exposure to ionizing radiation through radon and its progeny, uranium dust and 

external gamma radiation to silica dust, arsenic and diesel exhaust. It constitutes one of the largest 

cohorts of uranium miners who were occupationally exposed to radon. When the cohort was 

established, individual exposure estimates for radon progeny were reconstructed through a Job 

Exposure Matrix (JEM) which provides information on the annual exposure for a hewer with 2000 

working hours. In the early years of exposure in the Wismut cohort (1946 – 1954/55), there were no 

systematic exposure assessment, and exposure values received in this period therefore had to be 

reconstructed retrospectively by experts. Due to a lack of exposure information, it was however 

impossible to reconstruct the exposure values for each object and year independently. Starting in 

1954/55, there was exposure monitoring for underground mining objects in the Wismut cohort 

based on measurements of radon gas concentration (1955/56 - 1965 in Saxony and 1955/56 - 1974 in 

Thuringia) and radon progeny concentration (1966 - 1990 in Saxony and 1975 - 1990 in Thuringia). In 

this exposure assessment period, measurements were taken in each year and object to estimate a 

mean annual radon gas concentration and radon progeny concentration, respectively. Radon gas or 

radon progeny estimates were multiplied by a working time factor, an activity weighting factor, and 

either an equilibrium factor (for radon gas concentration measurements) or a ventilation correction 

factor (for radon progeny concentration measurements). 

Challenges of the research project 

Estimating the association between time until death by lung cancer and cumulative radon progeny 

exposure in the Wismut cohort is challenging, because exposure is ongoing and time-dependent, 

rather than being a fixed point-exposure determined at study entry. Changes in the methods of 

exposure assessment create complex patterns of exposure uncertainty, where the type and 

magnitude of measurement error in the exposure history of a miner can vary over time. In a JEM, the 

same exposure level is assigned to all workers in a given year, object and activity. Measurement error 

in the estimation of this common exposure level will therefore affect all workers in that year, object 
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and activity in the same way. Moreover, individual exposure values for a worker are obtained by 

multiplying radon gas or radon progeny concentrations with several uncertain factors. Due to a lack 

of information, it was impossible to precisely estimate the values for these factors for each object 

and year, resulting in measurement errors that may simultaneously affect all years of a given mining 

object, or several mining objects, or both. It is important to account for these complex dependence 

structures as previous simulation studies show that shared measurement error components, 

particularly those in the retrospective assessment of exposure values for the earliest years of 

exposure, can lead to an attenuation of the exposure-response curve for high exposure values. This 

phenomenon, which is frequently observed in occupational cohort studies, can undermine the 

validity of risk estimates that ignore these complex patterns of measurement error. 

Previous studies addressing the problem of measurement error in radon exposure in the Wismut 

cohort and in other cohorts of uranium miners have made a number of simplifying assumptions. The 

authors of these studies often neglected the time-varying nature of cumulative exposure by 

assuming that the sum of the annual exposure values received during the entire working career of a 

miner is known at study entry. While it is common to make this assumption when treating the 

problem of exposure measurement error in occupational cohort studies, it impedes the modelling of 

measurement error on its natural level of occurrence, namely on the weekly, monthly or annual 

exposure values, rather than on the sum of exposure values received during the entire working 

career. Moreover, most of these studies used approaches to address exposure measurement error 

that make the simplifying assumption that measurement errors are unshared, i.e. that they are 

independent for different individuals and different exposure years of the same individual. By making 

this assumption, they neglect dependence structures in measurement errors arising in the estimation 

of exposure values through a JEM and are therefore not flexible enough to address the complex 

dependence structures in the measurement errors arising in the exposure assessment of the Wismut 

cohort. 

Methods 

Based on the preliminary evaluation made in part 1 of the research project, we derived a concept for 

the quantification of exposure uncertainty in the Wismut cohort. We mainly used information from 

the dosimetric reports from the Wismut company, estimates of exposure uncertainty in other 

cohorts of uranium miners and the information provided by Lehmann et al. (JEM1; 1998) and 

Lehmann (JEM 2; 2004) to derive estimates of exposure uncertainty for the Wismut cohort. To 

account for the complex measurement error components arising in the exposure assessment, we 

derived measurement error models for the different exposure assessment periods. Current 

approaches to account for measurement error lack the flexibility to account for these complex 

measurement error models. We chose a Bayesian hierarchical approach, which is based on the 

combination of sub models via conditional independence assumptions, as it provides a flexible and 

coherent framework for the treatment of complex phenomena which may be prone to multiple 

sources of uncertainty. Bayesian inference for these models was conducted using an object-oriented 

implementation of a Markov chain Monte Carlo algorithm in Python. In a simulation study, the 

performance of the proposed approach was compared to the more classical approaches simulation 

extrapolation and regression calibration. 

Results 

The proposed Bayesian hierarchical approach showed very good performance on simulated data with 

a relative bias of -2.98%, 6.76% and 3.50% in the different simulation scenarios and coverage rates 

that were very close to the nominal level of 95%. For the full Wismut cohort, we estimated an excess 

hazard ratio of 0.54 per 100 WLM with a 95% credible interval of [0.35, 0.81] compared to a naive 

excess hazard ratio of 0.33 per 100 WLM [0.27, 0.40] when measurement error is ignored. For the 
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cohort of workers hired in 1960 or later, the estimated excess hazard ratio was 1.80 per 100 WLM 

[0.70, 3.36] compared to a naive estimate of 1.44 per 100 WLM [0.73, 2.52]. These results are 

preliminary, as they do not yet account for all measurement models that are to be considered and 

their robustness still has to be confirmed in extensive sensitivity analyses. Moreover, they do not 

include data on workers who were employed in processing companies at any point during their 

working career. 

Discussion 

While the Bayesian hierarchical approach shows great flexibility accounting for complex patterns of 

measurement error, the results of the current work have to be interpreted with caution. Indeed, they 

rely on many assumptions on the magnitude and the structure of measurement error. It was not in 

the scope of this project to conduct extensive sensitivity analyses to assess the robustness of the 

results to assumptions on the structure and magnitude of measurement error in the Wismut cohort. 

Moreover, it seems essential to consider effect modifying variables in the association between radon 

exposure and lung cancer mortality in the full Wismut cohort. On the one hand, a previous 

simulation study (Hoffmann et al., 2018b) suggests that complex structures of measurement error 

may lead to apparent effect modification when the true model is linear without effect modification. 

On the other hand, if the true model includes effect modifying variables and a simple linear model 

without effect modification is assumed, this model misspecification may interfere with the correction 

of measurement error. Finally, it would be important to refine the model for the first exposure 

assessment periods in the Wismut cohort in future work as the measurement errors arising in this 

period were both, very complex and very large. 
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1 Introduction 

Exposure measurement error poses an important threat to the validity of statistical inference in 

occupational epidemiology. When it is not or only poorly accounted for, exposure measurement 

error can lead to biased risk estimates, a loss in statistical power and to a distortion of the exposure-

risk relationship (Carroll, 2005; Blair et al., 2011; Carroll et al., 2006). 

This project is concerned with the quantification and correction for exposure measurement error in 

the Wismut cohort. This cohort consists of a sample of 58 974 male employees from around 400 000 

former employees of the Wismut company. It constitutes one of the largest cohorts of uranium 

miners who were occupationally exposed to radon progeny. The employees were exposed to various 

occupational exposures ranging from exposure to ionizing radiation through radon and its progeny, 

uranium dust and external gamma radiation to silica dust, arsenic and diesel exhaust. When the 

cohort was established, individual exposure estimates for radon progeny were assessed through a 

Job Exposure Matrix (JEM) which provides information on the annual exposure for a hewer with 2000 

working hours. In the early years of exposure in the Wismut cohort (1946 – 1954/55), there were no 

systematic exposure assessment and exposure values received in this period therefore had to be 

reconstructed retrospectively by experts. Due to a lack of systematic exposure measurements, it was 

however impossible to reconstruct the exposure values for each object and year independently. 

Starting in 1954/55, there was exposure monitoring for underground mining objects in the Wismut 

cohort based on measurements of radon gas concentration (1955/56 - 1965 in Saxony and 1955/56 - 

1974 in Thuringia) and radon progeny concentration (1966 - 1990 in Saxony and 1975 - 1990 in 

Thuringia). In this exposure assessment period, measurements were taken in each year and object to 

estimate a mean annual radon gas concentration and radon progeny concentration, respectively. 

Radon gas or radon progeny concentrations were calculated using a working time factor, an activity 

weighting factor, and either an equilibrium factor (for radon gas concentration measurements) or a 

ventilation correction factor (for radon progeny concentration measurements). 

Estimating the association between time until death by lung cancer and cumulative radon exposure 

in the Wismut cohort is challenging, because cumulative radon exposure is ongoing and time-

dependent, rather than being a fixed point exposure determined at study entry. Changes in the 

methods of exposure assessment create complex patterns of exposure uncertainty, where the type 

and magnitude of measurement error in the exposure history of a miner can vary over time. In a 

JEM, the same exposure level is assigned to all workers in a given year, object and activity. 

Measurement error in the estimation of this common exposure level will therefore affect all workers 

in that year, object and activity in the same way. Moreover, individual exposure values for a worker 

are obtained using radon gas or radon progeny concentrations and several uncertain factors. Due to 

a lack of information, it was impossible to estimate the values for these factors for each object and 

year, resulting in measurement errors that may simultaneously affect all years of a given mining 

object, or several mining objects, or both. It is important to account for these complex dependence 

structures as previous simulation studies show that shared error components, particularly those in 

the retrospective assessment of exposure values for the earliest years of exposure, can lead to an 

attenuation of the exposure-response curve for high exposure values. This phenomenon, which is 

frequently observed in occupational cohort studies, can undermine the validity of risk estimates that 

ignore these complex patterns of measurement error. 

Current approaches to address exposure measurement error classically assume that errors are 

unshared, i.e. that they are independent for different individuals and different exposure years of the 

same individual. They are therefore not flexible enough to address the complex dependence 

structures in the errors arising in the exposure assessment of the Wismut cohort. Previous studies 

addressing the problem of measurement error in radon exposure in the Wismut cohort and in other 

cohorts of uranium miners have made a number of simplifying assumptions. The authors of these 

studies often neglected the time-varying nature of cumulative exposure by assuming that the sum of 

the annual exposure values received during the entire working career of a miner is known at study 



9 

entry. While it is common to make this assumption when treating the problem of exposure 

measurement error in occupational cohort studies, it impedes the modelling of measurement error 

on its natural level of occurrence, namely on the weekly, monthly or annual exposure values, rather 

than on the sum of these values. Moreover, they assumed that errors in an exposure assessment via 

JEMs can be described by unshared measurement error, thereby neglecting the dependence 

structures in measurement errors arising in the estimation of exposure values through a JEM. 

The current project builds on part 1 “Determination of uncertainties of radiation exposure 

assessment in the Wismut cohort” (Küchenhoff et al., 2018) in which the working conditions at the 

Wismut company and procedures for estimating occupational exposure to radon progeny were 

described. In Küchenhoff et al. (2018), generalization error, assignment error, procedural 

measurement error, documentation error, parameter uncertainties, experts’ evaluation error, 

transfer error and approximation error were identified as potential sources of uncertainty in the 

Wismut cohort. The aims of the current project are (1) Quantification of uncertainty, (2) Definition of 

measurement error models and development of an approach to correct for measurement error, (3) 

Design and implementation of a simulation study to compare the proposed approach with simulation 

extrapolation and regression calibration and (4) Application to the data of the Wismut cohort 

without accounting for effect modifying variables and excluding workers who were employed in 

processing companies at any point during their working career. 

Chapter 2 gives a short overview of the methods of exposure assessment in the Wismut cohort and 

then describes these exposure characteristics through a complex measurement model in which the 

type and magnitude of error vary depending on the exposure assessment period and the type of 

object. Chapter 3 first provides a detailed concept for the quantification of exposure uncertainty in 

the Wismut cohort and then shows the results of this quantification to the extent that it has been 

carried out in the scope of this project. Chapter 4 presents the Bayesian hierarchical approach that 

was chosen in this project to account for the complex patterns of exposure measurement error 

arising in the Wismut cohort. Chapter 5 describes the design and the result of a simulation study that 

was conducted to assess the performance of the proposed Bayesian hierarchical approach and to 

compare it with simulation extrapolation and regression calibration. Chapter 6 provides the results 

when accounting for measurement error on the data of the Wismut cohort and Chapter 7 discusses 

these results and proposes aspects that might be relevant for future projects aiming to account for 

exposure uncertainty in the Wismut cohort. 
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2 Measurement models in the Wismut cohort 

2.1 Exposure assessment in the Wismut cohort: the general approach 

The methods of exposure assessment in the Wismut cohort changed over the years. For all exposure 

years, individual exposure estimates were based on a JEM which provides information on the annual 

exposure values to radon progeny for a hewer with 2000 working hours (Küchenhoff et al., 2018). 

This JEM initially contained object specific exposure values (JEM 1; Lehmann et al., 1998) which were 

later adapted to provide shaft specific exposure estimates (JEM 2; Lehmann, 2004). Following 

Küchenhoff et al. (2018), we will use the notation: 

• object 𝑜 (the same naming and numbering of the objects as in Küchenhoff et al. (2018) is used: 

see Table 2 in Küchenhoff et al. (2018, pp. 15–18)) 

• reference object 𝑜0 

• year 𝑡 

• reference year 𝑡0 

• period 𝑝𝑡 or 𝑝(𝑡, 𝑜) (the respective periods are different for different parameters) 

• activity 𝑗 

• reference activity 𝑗0 

• true exposure 𝑋 

• observed exposure 𝑍 

In general, in the following sections, we first describe how the exposure to radon progeny for year 𝑡, 

object 𝑜 and a worker conducting activity 𝑗 𝐸(𝑡, 𝑜, 𝑗) is calculated for the different object types and 

time periods.  

To obtain exposure estimates for individual miners, this 𝐸(𝑡, 𝑜, 𝑗) is further multiplied by 𝑙(𝑖, 𝑡, 𝑜, 𝑗), 

reflecting the individual working history of miner 𝑖 to obtain the individual observed exposure 

𝑍𝑖(𝑡, 𝑜, 𝑗) = 𝐸(𝑡, 𝑜, 𝑗) ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗). If a miner worked in different objects and activities in a given year, 

the total true or observed exposure that he received in this given year is obtained by taking the sum 
over all objects and activities he worked in, 𝑋𝑖(𝑡) = ∑ 𝑋𝑖𝑜,𝑗 (𝑡, 𝑜, 𝑗) or 𝑍𝑖(𝑡) = ∑ 𝑍𝑖𝑜,𝑗 (𝑡, 𝑜, 𝑗), 

respectively. 

Based on the exposure assessment described in Chapter 4 of Küchenhoff et al. (2018), Figure 2.1 

shows the object structure in the Wismut and the corresponding measurement models, which we 

will explain in the following sections. Following Küchenhoff et al. (2018, p. 19), the frequency of 

occurrence is shown using the proportion of person work years (PPY), which is defined as 

PPY =
Number of person work years in specific subgroup

Total number of person work years in the Wismut cohort
. 

Note that the data set used at the beginning of this project for Figure 2.1 was a preliminary grouped 

data set due to data protection requirements. The main purpose of Figure 2.1 is to depict the 

structure of the objects and the corresponding measurement models and the values of the PPY are 

not final. 

We will distinguish the following measurement models according to different object types and 

different exposure assessment periods. For underground mining objects the exposure assessment 

can be divided into three periods (experts’ estimation, radon gas concentration measurements, 

radon progeny concentration measurements) and for processing companies into other two periods 

(experts’ estimation, radon gas concentration measurements). Unless otherwise stated, in the 

following we will always refer to the exposure assessment periods of underground mining objects. 

• M1a: Underground mining objects as well as exploration and development objects in Saxony in 

the first exposure assessment period (1946-1954/55) 
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• M1b: Underground mining objects as well as development objects in Thuringia in the first

exposure assessment period (1946-1954/55)

• M2: Underground mining objects in Saxony and Thuringia as well as development objects in

Saxony in the second exposure assessment period (1955/56-1965 in Saxony, 1955/56-1974 in

Thuringia)

• M3: Underground mining objects in Saxony and Thuringia as well as development objects in

Saxony in the third exposure assessment period (1966-1990 in Saxony, 1975-1990 in Thuringia)

• M4: Surface areas affiliated to mining objects and exploration objects in Thuringia (1946-1990)

• M5a: Processing companies in the first exposure assessment period for processing (1950-1962

for processing facilities, 1950-1960 for collieries)

• M5b: Processing companies in the second exposure assessment period for processing (1963-

1990 for processing facilities, 1961-1980 for collieries, 1959-1990 for RAS and RAF facilities)

• M6: Open pit mining objects (1946-1990)

Figure 2.1: Overview of the object structure in the Wismut cohort with the respective measurement models to 
describe exposure uncertainty and the PPY based on a preliminary grouped data set.  

For each of the different object types in the Wismut we will first describe the exposure assessment 

and then assign the corresponding measurement model. 

In principle we could account for uncertainty in all intervening quantities. However, for some 

quantities, for instance the mined vein area 𝐶(𝑡, 𝑜) and the uranium recovering rate 𝑟(𝑡, 𝑜), it would 

be infeasible to quantify the uncertainty. Also, it can be assumed that these quantities can be 

measured with sufficient precision to consider them as known without measurement error. Table 2.1 

depicts all quantities of the exposure assessment in the different object types of the Wismut, that we 

assume to be known without measurement error. 

To visualize the exposure assessment and the respective measurement model we will use directed 

acyclic graphs (DAGs; Jordan, 2004). With circles we represent unknown quantities and with boxes 

observed quantities. Arrows indicate the dependencies between the different quantities, where a 

single arrow shows a probabilistic, and double arrows show a deterministic dependency. In order to 

make it clear how the respective measurement models can be accounted for, we will always show a 

hierarchical model in which this measurement model is combined with a disease model. The latter 

describes how the right censored variable time until death by lung cancer, represented through 



12 

{Yi, δi}, is modelled as a function of true cumulative exposure of miner i until time t Xi
cum(t) in a

proportional hazards model. In this disease model, we assume a piecewise constant baseline hazard 

with parameters λ = (λ1, λ2, λ3, λ4) and the association between cumulative radon exposure and 

lung cancer mortality is quantified through the parameter β. For more details on the disease model, 

see Section 4.4.1. 

Table 2.1: Quantities of the different measurement models assumed to be known without 

measurement error. 

Measurement model Quantity assumed to be known without measurement error 

M1a 𝐶(𝑡, 𝑜): mined vein area 

M1a 𝑟(𝑡, 𝑜): relative uranium recovery rate 

M1a, M1b 𝐴(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜)): evaluation area of the reference object and 

respective reference year 

M1b 𝐴(𝑡, 𝑜): evaluation area 

M6 𝑑(𝑡, 𝑜): depth 

M1a, M1b, M2, M3, M4, 

M5a, M5b, M6 

𝑙(𝑖, 𝑡, 𝑜, 𝑗): individual working history of miner 𝑖 

2.2 Uncertainties in exposure assessment based on experts’ estimation in underground mining 

objects (1946 - 1954/55) 

In the exposure assessment of underground mining objects in the Wismut cohort (more precisely, for 

mining objects (PPY: 52%), development objects (PPY: 2%) and exploration objects (PPY: <1%)), it is 

possible to distinguish three different periods, which will be described in this and the following two 

sections: experts’ estimation (PPY: 11%), estimation based on radon gas concentration 

measurements (PPY: 18%; Section 2.3) and estimation based on radon progeny concentration 

measurements (PPY: 25%; Section 2.4). 

As systematic radon measurements for radiation protection in the Wismut only started in 1954 

(Küchenhoff et al., 2018, p. 34), exposure values before this year could not be based on direct 

measurements and therefore had to be reconstructed retrospectively by experts. This exposure 

assessment is described in detail by Lehmann et al. (1998) and Küchenhoff et al. (2018). 

In the following, we will summarize the most important sources of uncertainty in the exposure 

assessment in this period that were identified by Küchenhoff et al. (2018). 

2.2.1 General radon gas exposure assessment 

In the exposure assessment, the annual exposure to radon gas of a hewer in underground mining 

with 2000 working hours per year 𝐸∗(𝑡, 𝑜, 𝑗0(𝑜)) for the mining objects is assumed to be the sum of

basic exposure from old mining 𝐸𝐵(𝑜) for object 𝑜 and from mining activity 𝐸𝑀(𝑡, 𝑜, 𝑗0(𝑜)):

𝐸∗(𝑡, 𝑜, 𝑗0(𝑜)) = 𝐸
𝐵(𝑜) + 𝐸𝑀(𝑡, 𝑜, 𝑗0(𝑜)).

Basic exposure from old mining 

For all old mining objects, the value for the basic exposure from old mining 𝐸𝐵(𝑜) was calculated as a 

proportion 𝑏(𝑜) of the basic exposure to radon gas which had been estimated for object 003 

Schneeberg through measurements performed in 1937/1938 by Rajewski (Küchenhoff et al., 2018). 
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Based on a measurement of 22.5 Eman by Rajewski (Küchenhoff et al., 2018), an assumed 

equilibrium factor 𝑔(𝑡, 𝑜) of 0.6 (Lehmann et al., 1998) and a working time factor of 1.2, one obtains 

a value of 𝐸𝐵(003) = 12 ⋅ 22.5 ⋅ 0.6 ⋅ 1.2 = 194 WLM for object 003 Schneeberg. This value was 

based on 70 measurements (Küchenhoff et al., 2018). For all new ground-opening objects, the basic 

exposure from old mining was supposed to be 0. 

Exposure from mining activity 

The annual exposure to radon gas from mining activity 𝐸𝑀(𝑡, 𝑜, 𝑗0(𝑜)) in year 𝑡 and object 𝑜 for the 

reference activity 𝑗0(𝑜) in this object was calculated by multiplying the evaluation area 𝐴(𝑡, 𝑜) and 

the evaluation factor 𝑒(𝑜) for objects in Thuringia. For objects in Saxony, this product was further 

multiplied by the relative uranium recovering rate 𝑟(𝑡, 𝑜). 

For Saxony: 

𝐸𝑀(𝑡, 𝑜, 𝑗0(𝑜)) = 𝐴(𝑡, 𝑜) ⋅ 𝑒(𝑜) ⋅ 𝑟(𝑡, 𝑜) 

For Thuringia, there was no exposure from old mining, i.e. 𝐸∗(𝑡, 𝑜, 𝑗0(𝑜)) = 𝐸
𝑀(𝑡, 𝑜, 𝑗0(𝑜)), leading 

to the following equation: 

𝐸∗(𝑡, 𝑜, 𝑗0(𝑜)) = 𝐸
𝑀(𝑡, 𝑜, 𝑗0(𝑜)) = 𝐴(𝑡, 𝑜) ⋅ 𝑒(𝑜) 

The three main quantities intervening in the assessment of exposure values are therefore: 

• the evaluation area 𝐴(𝑡, 𝑜) as a measure for the size of the radon exit field 

• the evaluation factor 𝑒(𝑜) as a measure of the exposure to radon per unit of the mined area 

• the relative uranium recovery rate 𝑟(𝑡, 𝑜) (only for objects in Saxony) as a measure of the 

uranium content of the bedrock of object 𝑜 in relation to the reference object 009 Aue in the 

reference year 1955 

Evaluation area 𝑨(𝒕, 𝒐) in Saxony 

As the uranium mineralization in Saxony was bounded by vein structures, the evaluation area was 

approximated through the mined vein area 𝐶(𝑡, 𝑜) (Küchenhoff et al., 2018, p. 48). In the estimation 

of the evaluation area in Saxony, it was assumed that the vein area which had been mined in the 

previous years had a non-negligible influence on the evaluation area but there was some uncertainty 

on the extent of this influence (Lehmann et al., 1998, p. 66). In accordance with the loss in the first 

years, which was approximately 20%, it was assumed that the area mined in the previous years 

should be weighted by a factor 𝑝 = 0.2 in the estimation of the evaluation area 𝐴(𝑡, 𝑜) in Saxony. 

𝐴(𝑡, 𝑜) = 𝐶(𝑡, 𝑜) + 𝑝 ∑ 𝐶

𝑡−1

𝑠=1946

(𝑠, 𝑜) 

Evaluation area 𝑨(𝒕, 𝒐) in Thuringia 

As the uranium mineralization in Thuringia was not bounded by vein structures, the evaluation area 

was approximated through the void volume 𝑉(𝑡, 𝑜) (Küchenhoff et al., 2018, p. 48). The total void 

volume created before 1955 was unknown and had to be estimated through the total shaft output of 

object 𝑜 before 1955 𝐹(𝑜) = ∑ 𝐹1955
𝑢=1946 (𝑢, 𝑜) divided by the density of the bedrock ℎ(𝑜) (Lehmann 

et al., 1998, p. 118). In order to derive the void volume created in every year before 1955, the 

relative uranium recovery 𝑞(𝑡, 𝑜) of object 𝑜 in year 𝑡 has to be determined. To do this, the uranium 

recovery in year 𝑡 and object 𝑜 𝑅(𝑡, 𝑜) has to be divided by the total uranium recovery of object 𝑜 

between 1946 and 1955 𝑅(𝑜) = ∑ 𝑅1955
𝑢=1946 (𝑢, 𝑜) 

𝑞(𝑡, 𝑜) =
𝑅(𝑡, 𝑜)

∑ 𝑅1955
𝑢=1946 (𝑢, 𝑜)

=
𝑅(𝑡, 𝑜)

𝑅(𝑜)
. 

Finally, the void volume created in object 𝑜 in year 𝑡 is obtained as 
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𝑉(𝑡, 𝑜) =
∑ 𝐹1955
𝑢=1946 (𝑢, 𝑜)

ℎ(𝑜)
𝑞(𝑡, 𝑜) =

𝐹(𝑜)

ℎ(𝑜)
𝑞(𝑡, 𝑜) 

yielding the following formula to estimate the estimation area 𝐴(𝑡, 𝑜) of object 𝑜 in year 𝑡 for objects 

in Thuringia: 

𝐴(𝑡, 𝑜) = ∑ 𝑉

𝑡

𝑠=1946

(𝑠, 𝑜) =
∑ 𝐹1955
𝑢=1946 (𝑢, 𝑜)

ℎ(𝑜)

∑ 𝑅𝑡
𝑠=1946 (𝑠, 𝑜)

∑ 𝑅1955
𝑢=1946 (𝑢, 𝑜)

=
𝐹(𝑜)

ℎ(𝑜) ⋅ 𝑅(𝑜)
∑ 𝑅

𝑡

𝑠=1946

(𝑠, 𝑜). 

Evaluation factor 𝒆(𝒐) 

In order to determine an estimate of 𝐸𝑀(𝑡, 𝑜, 𝑗0(𝑜)), the evaluation area 𝐴(𝑡, 𝑜) has to be multiplied 

by a factor which quantifies the annual exposure to radon gas per unit of the mined area. To derive 

this factor, which is referred to as evaluation factor 𝑒(𝑜), measurements of radon gas concentration 

were used which had been obtained in 1955 in 006 Vogtland-Zobes, 009 Aue and 903 BB Schmirchau 

and in 1962 in 904 BB Paitzdorf, which were considered as reference objects for the estimation of 

𝑒(𝑜). To derive the evaluation factors 𝑒(𝑜) of these four objects, the arithmetic mean of the 

measurements in each object was multiplied by 12 and divided by the evaluation area 𝐴(𝑡, 𝑜) of the 

corresponding year and object. For all other objects in this exposure assessment period, values of 

𝑒(𝑜) were determined based on expert knowledge by considering the evaluation factors determined 

for the four reference objects and mine ventilation conditions and the uranium mineralization in 

comparison with the four reference objects. Thus, the evaluation factor for non-reference objects 

can be obtained by multiplying the evaluation factor of the respective reference object with a 

transfer factor for the evaluation factor 𝑡𝑒(𝑜). 

𝑒(𝑜) = 𝑒(𝑜0(𝑜)) ⋅ 𝑡𝑒(𝑜)

=
𝐶𝑅𝑛(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜)) ⋅ 12

𝐴(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜))
⋅ 𝑡𝑒(𝑜)

 

Relative uranium recovering rate 𝒓(𝒕, 𝒐) for objects in Saxony  

To obtain an assessment of the exposure value 𝐸𝑀(𝑡, 𝑜, 𝑗0(𝑜)) for objects in Saxony, the product 

between the evaluation area 𝐴(𝑡, 𝑜) and the evaluation factor 𝑒(𝑜) needs to be multiplied with a 

further quantity. This quantity is referred to as the relative uranium recovering rate 𝑟(𝑡, 𝑜) and 

measures the uranium content of the bedrock in comparison to the reference object 009 Aue in the 

reference year 1955 (Küchenhoff et al., 2018, p. 50). 

2.2.2 Exposure assessment for objects in Saxony 

As described previously and on pages 46 to 51 in Küchenhoff et al. (2018), in the years 1946 to 

1954/55 exposure to radon progeny for year 𝑡, object 𝑜 and a worker conducting activity 𝑗 in Saxony 

was estimated according to the following formula (parameter definitions are given on the next 

pages): 

𝐸(𝑡, 𝑜, 𝑗) = (𝐶𝑅𝑛(1937/1938,003) ⋅ 𝑏(𝑜) ⋅ 12 +

𝑟(𝑡, 𝑜) ⋅ 𝑒(𝑜) ⋅ 𝑡𝑒(𝑜) ⋅

𝐴(𝑡, 𝑜)) ⋅

𝑔(𝑝𝑡 , 𝑜) ⋅ 𝑤(𝑝𝑡) ⋅ 𝑓(𝑜, 𝑗)

= (𝐶𝑅𝑛(1937/1938,003) ⋅ 𝑏(𝑜) +

𝑟(𝑡, 𝑜) ⋅
𝐶𝑅𝑛(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜))

𝐴(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜))
⋅ 𝑡𝑒(𝑜) ⋅

(𝐶(𝑡, 𝑜) + 𝑝 ∑ 𝐶

𝑡−1

𝑠=1946

(𝑠, 𝑜))) ⋅

𝑔(𝑝𝑡 , 𝑜) ⋅ 𝑤(𝑝𝑡) ⋅ 𝑓(𝑜, 𝑗) ⋅ 12
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As described in Küchenhoff et al. (2018, p. 54), the radon exposure in exploration objects was lower 

than in underground mining objects since there was less ore contact. The exposure assessment 

depends on the region. For Saxonian exploration objects, the radon exposure was assessed by 

multiplying the radon progeny exposure of the respective reference underground mining object with 

the factor 𝑡𝐸. 

𝐸(𝑡, 𝑜, 𝑗) = 𝑡𝐸 ⋅ 𝐸(𝑡, 𝑜0(𝑜), 𝑗) 

For exploration objects in Saxony with new-ground opening reference underground mining objects 

the factor is 𝑡𝐸 = 0.1 and for those Saxonian exploration objects for which old underground mining 

objects were the reference object, the factor is 𝑡𝐸 = 0.2. For development objects in Saxony, the 

radon exposure was assessed the same way as the exposure in exploration objects in Saxony but 

with a different value of the factor 𝑡𝐸. Development objects in Saxony use the factor 𝑡𝐸 = 0.3. 

The exposure estimation for objects in Saxony in the first exposure assessment period is illustrated in 

the DAG shown in Figure 2.2. The transfer factor 𝑡𝐸 that is depicted in the DAG in Figure 2.2 is only 

relevant for exploration and development objects in Saxony. For underground mining objects that 

are no exploration or development objects, the transfer factor is set to 𝑡𝐸 = 1. 

For Saxonian underground mining, exploration and development objects in the first exposure 

assessment period, the parameters are defined as follows: 

• 𝑓(𝑜, 𝑗): activity weighting factor 

• 𝑏(𝑜): proportion of exposure from old mining in comparison to object 003 Schneeberg 

• 𝑤(𝑝𝑡): working time factor to adjust for the actual working time of a hewer 

• 𝑔(𝑝𝑡 , 𝑜): equilibrium factor as a measure of the disequilibrium of radon and its progeny, which is 

used to convert a measure of radon gas exposure to radon progeny exposure in working level 

months (WLM), which is the historical unit of radon exposure in cohorts of uranium miners and 

related to the potential alpha energy concentration (Marsh et al., 2012). 

• Measurements of radon gas 

• 𝐶𝑅𝑛(1937/1938,003): mean concentration measurement of radon gas for object 003 

Schneeberg in 1937/1938 intervening in the estimation of radon exposure due to old mining 

for all old mining objects 

• 𝐶𝑅𝑛(1955,006) and 𝐶𝑅𝑛(1955,009): mean concentration measurements of radon gas for 

objects 006 Vogtland-Zobes and 009 Aue in 1955 were used to estimate the evaluation 

factors 𝑒(𝑜) for these two objects 

• 𝑝: 20% of the cumulative mined area 𝐶(𝑠, 𝑜) in the previous years 𝑠 ∈ {1946,… , 𝑡 − 1} 

intervene in the calculation of the evaluation area 𝐴(𝑡, 𝑜) of year 𝑡 for objects in Saxony 

(Küchenhoff et al., 2018, p. 48) 

• 𝑡𝑒(𝑜): multiplicative factor to determine the evaluation factor of non-reference objects as a 

function of the reference objects (Küchenhoff et al., 2018, p. 50; Lehmann et al., 1998, p. 67) 

• 𝑡𝐸: multiplicative transfer factor to calculate the exposure to radon progeny for exploration and 

development objects based on the exposure of the reference mining object (only for exploration 

and development objects) 

• 𝐴(1955,006) and 𝐴(1955,009): evaluation area for objects 006 Vogtland-Zobes and 009 Aue in 

1955 were used to estimate the evaluation factors 𝑒(𝑜) for these two objects 

• 𝑟(𝑡, 𝑜): relative uranium recovery rate 

• 𝑅(𝑡, 𝑜): amount of uranium recovery 

• 𝐶(𝑡, 𝑜): mined vein area 

• 𝐴(𝑡, 𝑜): evaluation area 
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Figure 2.2: Exposure assessment in underground mining objects as well as in exploration and development 
objects in Saxony in the first exposure assessment period. 

2.2.3 Measurement model M1a for objects in Saxony 

For the uncertainties arising in the exposure estimation for underground mining, development and 

exploration objects in Saxony in the first exposure assessment period we assume measurement 

model M1a shown in Figure 2.3 in which the measurement error structure becomes evident. 

Basically, we use normal Latin letters for the observed parameters, while we use italic or Greek 

letters for the erroneous, latent parameters. For differentiation, the parameters affected by Berkson 

error are shown with an apostrophe, whereas the true mean parameters are shown without. 

We assume a classical measurement error for the mean radon gas concentration measurements 

𝐶𝑅𝑛(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜)) and 𝐶𝑅𝑛(1937/1938,003). For the remaining uncertain quantities 

intervening in the exposure assessment for objects in Saxony in the first exposure assessment period, 

we assume a classical and a Berkson error component.  

As mentioned in more detail in Section 3.1, many authors argue in favor of a multiplicative error 

component that follows a lognormal distribution for measurement error in radiation exposure in 

general, and in radon exposure in particular (Lubin et al., 1995b; Stram et al., 1999; Heid, 2002; Heid 

et al., 2002; Heid et al., 2004; Heidenreich et al., 2004; Lubin et al., 2005; Advisory Group on Ionising 

Radiation AGIR, 2009; Heidenreich et al., 2012; Allodji et al., 2012a,b,c). The multiplicative error 

structure moreover has the advantage of naturally respecting the non-negativity of true exposure 

values for observed exposure values that are non-negative. In the following, we will therefore 

assume multiplicative errors for all parameter uncertainties. Concerning the errors arising in mean 

radon gas and radon progeny concentrations, however, we will follow Küchenhoff et al. (2018) who 

assume an additive error structure whenever the measurements were the result of an averaging of 

measurements. 
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Figure 2.3: Hierarchical model combining a disease model with measurement model M1a to describe exposure 
uncertainty in underground mining objects as well as in exploration and development objects in Saxony in the 
first exposure assessment period. Due to the limited space and for a clearer presentation, no measurement 
error variances are shown here. 

Thus, for underground mining, development and exploration objects in Saxony in the first exposure 

assessment period, we assume the following measurement model, where the uncertainty in the 

transfer factor 𝑡𝐸 is only accounted for in exploration and development objects in Saxony. 

𝐶𝑅𝑛(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜)) = 𝒞𝑅𝑛(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜)) + 𝑈𝒞,𝑐(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜)) 

𝐶𝑅𝑛(1937/1938,003) = 𝒞𝑅𝑛(1937/1938,003) + 𝑈𝒞,𝑐(1937/1938,003) 

𝑓(𝑜, 𝑗) = 𝜑(𝑜, 𝑗) ⋅ 𝑈𝜑,𝑐(𝑜, 𝑗)

𝜑′(𝑡, 𝑜, 𝑗) = 𝜑(𝑜, 𝑗) ⋅ 𝑈𝜑′,𝐵(𝑡, 𝑜, 𝑗)
 

𝑤(𝑝𝑡) = 𝜔(𝑝𝑡) ⋅ 𝑈𝜔,𝑐(𝑝𝑡)

𝜔′(𝑡, 𝑜) = 𝜔(𝑝𝑡) ⋅ 𝑈𝜔′,𝐵(𝑡, 𝑜)
 

𝑔(𝑝𝑡 , 𝑜) = 𝛾(𝑝𝑡 , 𝑜) ⋅ 𝑈𝛾,𝑐(𝑝𝑡, 𝑜)

𝛾′(𝑡, 𝑜) = 𝛾(𝑝𝑡 , 𝑜) ⋅ 𝑈𝛾′,𝐵(𝑡, 𝑜)
 

𝑏(𝑜) = 𝒷(𝑜) ⋅ 𝑈𝒷,𝑐(𝑜)

𝒷′(𝑡, 𝑜) = 𝒷(𝑜) ⋅ 𝑈𝒷′,𝐵(𝑡, 𝑜)
 

𝑝 = 𝜋 ⋅ 𝑈𝜋,𝑐
𝜋′(𝑡, 𝑜) = 𝜋 ⋅ 𝑈𝜋′,𝐵(𝑡, 𝑜)

 

𝑡𝑒(𝑜) = 𝜏𝑒(𝑜) ⋅ 𝑈𝜏𝑒,𝑐(𝑜)

𝜏𝑒′(𝑡, 𝑜) = 𝜏𝑒(𝑜) ⋅ 𝑈𝜏𝑒′,𝐵(𝑡, 𝑜)
 

𝑡𝐸 = 𝜏𝐸 ⋅ 𝑈𝜏𝐸,𝑐
𝜏𝐸 ′(𝑡, 𝑜) = 𝜏𝐸 ⋅ 𝑈𝜏𝐸′,𝐵(𝑡, 𝑜)
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In summary, while the observed exposure 𝑍𝑖(𝑡, 𝑜, 𝑗) for miner 𝑖 in year 𝑡, object 𝑜 and with activity 𝑗 

in the first exposure assessment period for underground mining objects in Saxony was calculated as 

𝑍𝑖(𝑡, 𝑜, 𝑗) = (𝐶𝑅𝑛(1937/1938,003) ⋅ 𝑏(𝑜) +

𝑟(𝑡, 𝑜) ⋅
𝐶𝑅𝑛(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜))

𝐴(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜))
⋅ 𝑡𝑒(𝑜) ⋅

(𝐶(𝑡, 𝑜) + 𝑝 ∑ 𝐶

𝑡−1

𝑠=1946

(𝑠, 𝑜))) ⋅ 𝑡𝐸 ⋅

𝑔(𝑝𝑡 , 𝑜) ⋅ 𝑤(𝑝𝑡) ⋅ 𝑓(𝑜, 𝑗) ⋅ 12 ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗),

 

the true value 𝑋𝑖(𝑡, 𝑜, 𝑗) for this exposure depends on the unknown quantities defined in the 

previous equations in the following way: 

𝑋𝑖(𝑡, 𝑜, 𝑗) = (𝒞𝑅𝑛(1937/1938,003) ⋅ 𝒷′(𝑡, 𝑜) +

𝑟(𝑡, 𝑜) ⋅
𝒞𝑅𝑛(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜))

𝐴(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜))
⋅ 𝜏𝑒′(𝑡, 𝑜) ⋅

(𝐶(𝑡, 𝑜) + 𝜋′(𝑡, 𝑜) ∑ 𝐶

𝑡−1

𝑠=1946

(𝑠, 𝑜))) ⋅ 𝜏𝐸 ′(𝑡, 𝑜) ⋅

𝛾′(𝑡, 𝑜) ⋅ 𝜔′(𝑡, 𝑜) ⋅ 𝜑′(𝑡, 𝑜, 𝑗) ⋅ 12 ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗) + 𝑈𝐸,𝐵(𝑖, 𝑡)

 

where 𝑙(𝑖, 𝑡, 𝑜, 𝑗) reflects the individual working history of miner 𝑖. 

2.2.4 Exposure assessment for objects in Thuringia 

As described previously in this section and on pages 46 to 51 in Küchenhoff et al. (2018), in the years 

1946 to 1954/55 exposure to radon progeny for year 𝑡, object 𝑜 and a worker conducting activity 𝑗 in 

Thuringia was estimated according to the following formula: 

𝐸(𝑡, 𝑜, 𝑗) = (𝑒(𝑜) ⋅ 𝑡𝑒(𝑜)

⋅ 𝐴(𝑡, 𝑜)) ⋅

𝑔(𝑝𝑡 , 𝑜) ⋅ 𝑤(𝑝𝑡) ⋅ 𝑓(𝑜, 𝑗)

= (
𝐶𝑅𝑛(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜))

𝐴(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜))
⋅ 𝑡𝑒(𝑜)

⋅ (
𝐹(𝑜)

ℎ(𝑜) ⋅ 𝑅(𝑜)
∑ 𝑅

𝑡

𝑠=1946

(𝑠, 𝑜))) ⋅

𝑔(𝑝𝑡 , 𝑜) ⋅ 𝑤(𝑝𝑡) ⋅ 𝑓(𝑜, 𝑗) ⋅ 12

 

For exploration objects in Thuringia the radon exposure was set to the value of 1 WLM, since no 

exploitable uranium mineralization was found. This reconstruction of radon exposure is very similar 

to the exposure assessment of surface areas affiliated to mining objects and is thus included into 

Section 2.5. However, for development objects in Thuringia the radon exposure was assessed the 

same way as the exposure in development objects in Saxony with a value of 𝑡𝐸 = 0.3. 

The exposure estimation for underground mining and development objects in Thuringia in the first 

exposure assessment period is illustrated in the DAG shown in Figure 2.4. Similar to the exposure 

assessment in underground mining objects in Saxony, the transfer factor 𝑡𝐸 in Figure 2.4 is only 

relevant for development objects in Thuringia and is set to 𝑡𝐸 = 1 for the remaining underground 

mining objects in Thuringia. 
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Figure 2.4: Exposure assessment in underground mining objects as well as in development objects in Thuringia 
in the first exposure assessment period. 

For underground mining and development objects in Thuringia in the first exposure assessment 

period, the parameters are defined as follows: 

• 𝑓(𝑜, 𝑗): activity weighting factor 

• 𝑤(𝑝𝑡): working time factor 

• 𝑔(𝑝𝑡 , 𝑜): equilibrium factor 

• Measurements of radon gas 

• 𝐶𝑅𝑛(1955,903) and 𝐶𝑅𝑛(1962,904): mean concentration measurements of radon gas for 

objects 903 BB Schmirchau in 1955 and for 904 BB Paitzdorf in 1962 were used to estimate 

the evaluation factors 𝑒(𝑜) for these two objects 

• 𝑡𝑒(𝑜): multiplicative factor to determine the evaluation factor of non-reference objects as a 

function of the reference objects (Küchenhoff et al., 2018, p. 50; Lehmann et al., 1998, p. 67) 

• 𝑡𝐸: multiplicative transfer factor (only for development objects) 

• 𝐴(1955,903) and 𝐴(1962,904): evaluation area for objects 903 BB Schmirchau in 1955 and for 

904 BB Paitzdorf in 1962 were used to estimate the evaluation factors 𝑒(𝑜) for these two objects 

• ℎ(𝑜): density of the bedrock 

• 𝐹(𝑜): total shaft output 

• 𝑅(𝑡, 𝑜): amount of uranium recovery 

2.2.5 Measurement model M1b for objects in Thuringia 

As shown in Table 2.1, we assume the evaluation area 𝐴(𝑡, 𝑜) and the evaluation area of the 

respective reference object and year 𝐴(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜)) to be known without measurement error. 

Figure 2.5 shows the DAG for measurement model M1b assumed for underground mining and 

development objects in the first exposure assessment period in Thuringia. The measurement model 
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assumed for exploration objects in Thuringia is combined with the measurement model described in 

Section 2.5 for surface areas affiliated to mining objects. 

 

Figure 2.5: Hierarchical model combining a disease model with measurement model M1b to describe exposure 
uncertainty in underground mining objects as well as in development objects in Thuringia in the first exposure 
assessment period. Due to the limited space and for a clearer presentation, no measurement error variances are 
shown here. 

For measurement model M1b we assume an additive classical measurement error for the mean 

radon gas concentration measurement 𝐶𝑅𝑛(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜)) and both a multiplicative classical and 

a multiplicative Berkson error component for the remaining uncertain quantities. Similar to 

measurement model M1a, the transfer factor 𝑡𝐸 is only relevant for development objects in 

Thuringia. 

𝐶𝑅𝑛(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜)) = 𝒞𝑅𝑛(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜)) + 𝑈𝒞,𝑐(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜)) 

𝑓(𝑜, 𝑗) = 𝜑(𝑜, 𝑗) ⋅ 𝑈𝜑,𝑐(𝑜, 𝑗)

𝜑′(𝑡, 𝑜, 𝑗) = 𝜑(𝑜, 𝑗) ⋅ 𝑈𝜑′,𝐵(𝑡, 𝑜, 𝑗)
 

𝑤(𝑝𝑡) = 𝜔(𝑝𝑡) ⋅ 𝑈𝜔,𝑐(𝑝𝑡)

𝜔′(𝑡, 𝑜) = 𝜔(𝑝𝑡) ⋅ 𝑈𝜔′,𝐵(𝑡, 𝑜)
 

𝑔(𝑝𝑡 , 𝑜) = 𝛾(𝑝𝑡 , 𝑜) ⋅ 𝑈𝛾,𝑐(𝑝𝑡, 𝑜)

𝛾′(𝑡, 𝑜) = 𝛾(𝑝𝑡 , 𝑜) ⋅ 𝑈𝛾′,𝐵(𝑡, 𝑜)
 

𝑡𝑒(𝑜) = 𝜏𝑒(𝑜) ⋅ 𝑈𝜏𝑒,𝑐(𝑜)

𝜏𝑒′(𝑡, 𝑜) = 𝜏𝑒(𝑜) ⋅ 𝑈𝜏𝑒′,𝐵(𝑡, 𝑜)
 

𝑡𝐸 = 𝜏𝐸 ⋅ 𝑈𝜏𝐸,𝑐
𝜏𝐸 ′(𝑡, 𝑜) = 𝜏𝐸 ⋅ 𝑈𝜏𝐸′,𝐵(𝑡, 𝑜)

 



 21 

In summary, while the observed exposure 𝑍𝑖(𝑡, 𝑜, 𝑗) for miner 𝑖 in year 𝑡, object 𝑜 and with activity 𝑗 

in the first exposure assessment period for underground mining objects in Thuringia was calculated 

as 

𝑍𝑖(𝑡, 𝑜, 𝑗) = (
𝐶𝑅𝑛(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜))

𝐴(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜))
⋅ 𝑡𝑒(𝑜)

⋅ 𝐴(𝑡, 𝑜)) ⋅ 𝑡𝐸 ⋅

𝑔(𝑝𝑡 , 𝑜) ⋅ 𝑤(𝑝𝑡) ⋅ 𝑓(𝑜, 𝑗) ⋅ 12 ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗),

 

the true value 𝑋𝑖(𝑡, 𝑜, 𝑗) for this exposure depends on the unknown quantities defined in the 

previous equations in the following way: 

𝑋𝑖(𝑡, 𝑜, 𝑗) = (
𝒞𝑅𝑛(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜))

𝐴(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜))
⋅ 𝜏𝑒′(𝑡, 𝑜)

⋅ 𝐴(𝑡, 𝑜)) ⋅ 𝜏𝐸 ′(𝑡, 𝑜) ⋅

𝛾′(𝑡, 𝑜) ⋅ 𝜔′(𝑡, 𝑜) ⋅ 𝜑′(𝑡, 𝑜, 𝑗) ⋅ 12 ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗) + 𝑈𝐸,𝐵(𝑖, 𝑡)

 

where 𝑙(𝑖, 𝑡, 𝑜, 𝑗) reflects the individual working history of miner 𝑖. 

2.3 Uncertainties in the exposure assessment based on radon gas concentration measurements 

in underground mining objects (1955/56 - 1965 in Saxony, 1955/56 - 1974 in Thuringia) 

2.3.1 Exposure assessment 

The first measurements of radon gas concentration in the different mines started in 1955, with the 

number of measurements changing over the years (see Küchenhoff et al. (2018, pp. 34, 37)). The 

length of this second period of radon exposure assessment in the Wismut cohort differs between the 

regions since the radon progeny concentration measurements in Thuringia were deficient until 1974 

(Lehmann et al., 1998, p. 133). The second exposure assessment period with 18% PPY hence starts 

around 1955/1956 and lasts until 1965 for Saxonian objects and until 1974 for Thuringian objects. 

As described on page 52 in Küchenhoff et al. (2018), the mean radon gas concentration 𝐶𝑅𝑛(𝑡, 𝑜) ⋅ 12 

was used to approximate the annual exposure to radon gas for the reference activity of a hewer with 

2000 working hours per year. In order to transform this annual exposure to radon gas for 2000 

working hours to the annual exposure of radon progeny for the actual number of working hours, it is 

multiplied with the equilibrium factor 𝑔(𝑝𝑡 , 𝑜) and the working time factor 𝑤(𝑝𝑡). For those workers 

with other activities than the reference activity, the activity weighting factor 𝑓(𝑜, 𝑗) is applied. Thus, 

in the years 1954/55 - 1965 in Saxony and 1955/56 - 1974 in Thuringia, exposure to radon progeny 

for year 𝑡, object 𝑜 and a worker conducting activity 𝑗 was estimated according to the following 

formula: 

𝐸(𝑡, 𝑜, 𝑗) = 𝐶𝑅𝑛(𝑡, 𝑜) ⋅ 12 ⋅ 𝑓(𝑜, 𝑗) ⋅ 𝑤(𝑝𝑡) ⋅ 𝑔(𝑝𝑡 , 𝑜) 

Figure 2.6 illustrates the DAG for the radon exposure assessment in the second exposure assessment 

period. Similar to the exposure assessment in the first exposure assessment period, the transfer 

factor 𝑡𝐸 depicted in Figure 2.6 is set to 𝑡𝐸 = 1 for objects in the second exposure assessment period 

other than development objects. 

In the second exposure assessment period, the parameters are defined as follows: 

• 𝐶𝑅𝑛(𝑡, 𝑜): mean concentration of the radon gas measurements 

• 𝑓(𝑜, 𝑗): activity weighting factor 

• 𝑤(𝑝𝑡): working time factor 

• 𝑔(𝑝𝑡 , 𝑜): equilibrium factor 

• 𝑡𝐸: multiplicative transfer factor (only for development objects) 
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Figure 2.6: Exposure assessment in underground mining objects in Saxony and Thuringia as well as in 
development objects in the second exposure assessment period. 

2.3.2 Measurement model M2 

Figure 2.7 shows the DAG for measurement model M2 assumed for the second exposure assessment 

period. 

For the mean radon gas concentration we assume an additive classical measurement error and for 

the remaining uncertain quantities both, a multiplicative classical and a multiplicative Berkson error 

component. 

Similar to measurement models M1a and M1b, the transfer factor 𝑡𝐸 is only relevant for 

development objects in the second exposure assessment period. 

𝐶𝑅𝑛(𝑡, 𝑜) = 𝒞𝑅𝑛(𝑡, 𝑜) + 𝑈𝒞,𝑐(𝑡, 𝑜) 

𝑓(𝑜, 𝑗) = 𝜑(𝑜, 𝑗) ⋅ 𝑈𝜑,𝑐(𝑜, 𝑗)

𝜑′(𝑡, 𝑜, 𝑗) = 𝜑(𝑜, 𝑗) ⋅ 𝑈𝜑′,𝐵(𝑡, 𝑜, 𝑗)
 

𝑤(𝑝𝑡) = 𝜔(𝑝𝑡) ⋅ 𝑈𝜔,𝑐(𝑝𝑡)

𝜔′(𝑡, 𝑜) = 𝜔(𝑝𝑡) ⋅ 𝑈𝜔′,𝐵(𝑡, 𝑜)
 

𝑔(𝑝𝑡 , 𝑜) = 𝛾(𝑝𝑡 , 𝑜) ⋅ 𝑈𝛾,𝑐(𝑝𝑡, 𝑜)

𝛾′(𝑡, 𝑜) = 𝛾(𝑝𝑡 , 𝑜) ⋅ 𝑈𝛾′,𝐵(𝑡, 𝑜)
 

𝑡𝐸 = 𝜏𝐸 ⋅ 𝑈𝜏𝐸,𝑐
𝜏𝐸 ′(𝑡, 𝑜) = 𝜏𝐸 ⋅ 𝑈𝜏𝐸′,𝐵(𝑡, 𝑜)

 

In summary, while the observed exposure 𝑍𝑖(𝑡, 𝑜, 𝑗) for miner 𝑖 in year 𝑡, object 𝑜 and with activity 𝑗 

in underground mining objects in the second exposure assessment period was calculated as 

𝑍𝑖(𝑡, 𝑜, 𝑗) = 𝐶𝑅𝑛(𝑡, 𝑜) ⋅ 12 ⋅ 𝑡𝐸 ⋅ 𝑔(𝑝𝑡 , 𝑜) ⋅ 𝑤(𝑝𝑡) ⋅ 𝑓(𝑜, 𝑗) ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗), 

the true value 𝑋𝑖(𝑡, 𝑜, 𝑗) for this exposure depends on the unknown quantities defined in the 

previous equations in the following way: 
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𝑋𝑖(𝑡, 𝑜, 𝑗) = 𝒞𝑅𝑛(𝑡, 𝑜) ⋅ 12 ⋅ 𝜏𝐸 ′(𝑡, 𝑜) ⋅ 𝛾′(𝑡, 𝑜) ⋅ 𝜔′(𝑡, 𝑜) ⋅ 𝜑′(𝑡, 𝑜, 𝑗) ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗) + 𝑈𝐸,𝐵(𝑖, 𝑡) 

where 𝑙(𝑖, 𝑡, 𝑜, 𝑗) reflects the individual working history of miner 𝑖. 

 

Figure 2.7: Hierarchical model combining a disease model with measurement model M2 to describe exposure 
uncertainty in underground mining objects in Saxony and Thuringia as well as in development objects in the 
second exposure assessment period. Due to the limited space and for a clearer presentation, no measurement 
error variances for 𝑡𝐸  and 𝜏′𝐸(𝑡) are shown here. 

2.4 Uncertainties in the exposure assessment based on radon progeny concentration 

measurements in underground mining objects (1966 - 1990 in Saxony, 1975 - 1990 in 

Thuringia) 

2.4.1 Exposure assessment 

In the third period of radon exposure assessment in the Wismut cohort (PPY: 25%), the radon 

progeny concentration in the different mines is measured directly. This third period lasts from 1966 

for objects in Saxony and from 1975 for objects in Thuringia until the end of the uranium mining in 

the Wismut in 1990. 

As described in Küchenhoff et al. (2018, p. 53), the mean radon progeny concentration 𝐶𝑅𝐷𝑃(𝑡, 𝑜) ⋅

12 was used to approximate the annual exposure to radon progeny for the reference activity of a 

hewer with 2000 working hours per year. Since these measurements only partially account for 

disruptions and deficits of the ventilation system, the ventilation correction factor 𝑐(𝑜) corrects for 

such disruptions. By multiplying with the working time factor, the annual exposure of radon progeny 

for the actual number of working hours is obtained. Again, to obtain the exposure for workers 

conducting other activities than the reference activity, the activity weighting factor 𝑓(𝑜, 𝑗) is applied. 

In summary, in the years 1966 - 1990 in Saxony and 1975 - 1990 in Thuringia, exposure to radon 

progeny for year 𝑡, object 𝑜 and a worker conducting activity 𝑗 was estimated according to the 

following formula: 

𝐸(𝑡, 𝑜, 𝑗) = 𝐶𝑅𝐷𝑃(𝑡, 𝑜) ⋅ 12 ⋅ 𝑓(𝑜, 𝑗) ⋅ 𝑤(𝑝𝑡) ⋅ 𝑐(𝑜). 
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The exposure assessment in the third exposure assessment period is shown in the DAG in Figure 2.8. 

As in the exposure assessment in the first and second exposure assessment period, the transfer 

factor 𝑡𝐸 in Figure 2.8 is only relevant for development objects in the third exposure assessment 

period and is set to 𝑡𝐸 = 1 for the remaining objects. 

 

Figure 2.8: Exposure assessment in underground mining objects in Saxony and Thuringia as well as in 
development objects in the third exposure assessment period.  

In the third exposure assessment period, the parameters are defined as follows: 

• 𝐶𝑅𝐷𝑃(𝑡, 𝑜): mean concentration of the radon progeny measurements 

• 𝑓(𝑜, 𝑗): activity weighting factor 

• 𝑤(𝑝𝑡): working time factor 

• 𝑐(𝑜): ventilation correction factor 

• 𝑡𝐸: multiplicative transfer factor (only for development objects) 

2.4.2 Measurement model M3 

Figure 2.9 shows the DAG for the measurement model M3 assumed for the third exposure 

assessment period. 

Similar to the second exposure assessment period, for the third exposure assessment period we 

assume an additive classical measurement error for the mean radon progeny concentration and a 

multiplicative classical as well as a multiplicative Berkson measurement error component for the 

remaining uncertain quantities in the exposure assessment. Similar to measurement models M1a, 

M1b and M2, the transfer factor 𝑡𝐸 is only relevant for development objects. 
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Figure 2.9: Hierarchical model combining a disease model with measurement model M3 to describe exposure 
uncertainty in underground mining objects in Saxony and Thuringia as well as in development objects in the 
third exposure assessment period. Due to the limited space and for a clearer presentation, no measurement 
error variances for 𝑡𝐸  and 𝜏′𝐸(𝑡) are shown here. 

𝐶𝑅𝐷𝑃(𝑡, 𝑜) = 𝒞𝑅𝐷𝑃(𝑡, 𝑜) + 𝑈𝒞,𝑐(𝑡, 𝑜) 

𝑓(𝑜, 𝑗) = 𝜑(𝑜, 𝑗) ⋅ 𝑈𝜑,𝑐(𝑜, 𝑗)

𝜑′(𝑡, 𝑜, 𝑗) = 𝜑(𝑜, 𝑗) ⋅ 𝑈𝜑′,𝐵(𝑡, 𝑜, 𝑗)
 

𝑤(𝑝𝑡) = 𝜔(𝑝𝑡) ⋅ 𝑈𝜔,𝑐(𝑝𝑡)

𝜔′(𝑡, 𝑜) = 𝜔(𝑝𝑡) ⋅ 𝑈𝜔′,𝐵(𝑡, 𝑜)
 

𝑐(𝑜) = 𝜍(𝑜) ⋅ 𝑈𝜍,𝑐(𝑜)

𝜍′(𝑡, 𝑜) = 𝜍(𝑜) ⋅ 𝑈𝜍′,𝐵(𝑡, 𝑜)
 

𝑡𝐸 = 𝜏𝐸 ⋅ 𝑈𝜏𝐸,𝑐
𝜏𝐸 ′(𝑡, 𝑜) = 𝜏𝐸 ⋅ 𝑈𝜏𝐸′,𝐵(𝑡, 𝑜)

 

In summary, while the observed exposure 𝑍𝑖(𝑡, 𝑜, 𝑗) for miner 𝑖 in year 𝑡, object 𝑜 and with activity 𝑗 

in underground mining objects in the third exposure assessment period was calculated as 

𝑍𝑖(𝑡, 𝑜, 𝑗) = 𝐶𝑅𝐷𝑃(𝑡, 𝑜) ⋅ 12 ⋅ 𝑡𝐸 ⋅ 𝑐(𝑜) ⋅ 𝑤(𝑝𝑡) ⋅ 𝑓(𝑜, 𝑗) ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗), 

the true value 𝑋𝑖(𝑡, 𝑜, 𝑗) for this exposure depends on the unknown quantities defined in the 

previous equations in the following way: 

𝑋𝑖(𝑡, 𝑜, 𝑗) = 𝒞𝑅𝐷𝑃(𝑡, 𝑜) ⋅ 12 ⋅ 𝜏𝐸 ′(𝑡, 𝑜) ⋅ 𝜍′(𝑡, 𝑜) ⋅ 𝜔′(𝑡, 𝑜) ⋅ 𝜑′(𝑡, 𝑜, 𝑗) ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗) + 𝑈𝐸,𝐵(𝑖, 𝑡) 

where 𝑙(𝑖, 𝑡, 𝑜, 𝑗) reflects the individual working history of miner 𝑖. 
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2.5 Uncertainties in the exposure assessment in surface areas affiliated to mining objects and in 

exploration objects in Thuringia 

2.5.1 Exposure assessment 

The surface areas affiliated to mining objects (PPY: 21%) were used as facilities for the handling and 

transport of waste rock and ore (Küchenhoff et al., 2018, p. 55). Since the workers in these surface 

areas were exposed to high dust concentrations, they were also included in the JEM (Lehmann et al., 

1998, p. 107). 

The mined uranium concentrations of the different objects as well as the exposure during the 

uranium ore loading was considered for the radon progeny exposure 𝐸(𝑝𝑡 , 𝑜). According to Lehmann 

et al. (1998), the value of this radon progeny exposure for surface areas affiliated to mining objects 

𝐸(𝑝𝑡 , 𝑜) was determined by experts. Here, radon progeny concentration does not depend on 𝑡, but 

rather on 𝑝𝑡, because these values were often estimated jointly for a period of time 𝑝𝑡, creating a 

dependence structure for several exposure years that is represented through 𝑝𝑡. Thus, all workers 

with reference activity in one respective object 𝑜 are assigned the same value of 𝐸(𝑝𝑡 , 𝑜) for all years 

belonging to 𝑝𝑡. The respective determined radon progeny exposure describes the exposure of a 

worker in ore milling, which is the reference activity for workers in surface areas affiliated to mining 

objects (Küchenhoff et al., 2018, p. 55). In order to obtain the annual radon exposure for other 

workers than those in ore milling, the radon progeny exposure has to be multiplied with an activity 

weighting factor 𝑓(𝑜, 𝑗). 

𝐸(𝑝𝑡 , 𝑜, 𝑗) = 𝐸(𝑝𝑡 , 𝑜) ⋅ 𝑓(𝑜, 𝑗) 

Note that the exposure assessment in exploration objects in Thuringia corresponds to the exposure 

assessment in surface areas affiliated to mining objects (Lehmann et al., 1998, p. 140).  

Figure 2.10 shows the DAG for the exposure assessment in surface areas affiliated to mining objects 

and in exploration objects in Thuringia. 

 

Figure 2.10: Exposure assessment in surface areas affiliated to mining objects and in exploration objects in 
Thuringia. 

For the exposure assessment in surface areas affiliated to mining objects and in exploration objects 

in Thuringia, the parameters are defined as follows: 
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• 𝐸(𝑝𝑡 , 𝑜): radon progeny exposure 

• 𝑓(𝑜, 𝑗): activity weighting factor 

2.5.2 Measurement model M4 

Since the assessment of radon exposure is very similar in surface areas affiliated to mining objects 

and in exploration objects in Thuringia (see Section 2.2.4), we use the same measurement model M4 

for both. Note though, that the activity weighting factor 𝑓(𝑜, 𝑗) is different for exploration objects in 

Thuringia than for surface areas affiliated to mining objects. The reference activity for exploration 

objects is a hewer, whereas the reference activity for surface areas is a worker in ore milling. 

Figure 2.11 shows the DAG for measurement model M4 assumed for surface areas affiliated to 

mining objects and for exploration objects in Thuringia. 

 

Figure 2.11: Hierarchical model combining a disease model with measurement model M4 to describe exposure 
uncertainty in surface areas affiliated to mining objects and in exploration objects in Thuringia. 

Here we assume a multiplicative classical measurement error for the radon progeny exposure 

𝐸(𝑝𝑡 , 𝑜) and both a multiplicative classical and a multiplicative Berkson error component for the 

activity weighting factor 𝑓(𝑜, 𝑗). 

𝐸(𝑝𝑡 , 𝑜) = ℰ(𝑝𝑡 , 𝑜) ⋅ 𝑈𝐸,𝑐(𝑝𝑡, 𝑜) 

𝑓(𝑜, 𝑗) = 𝜑(𝑜, 𝑗) ⋅ 𝑈𝜑,𝑐(𝑜, 𝑗)

𝜑′(𝑡, 𝑜, 𝑗) = 𝜑(𝑜, 𝑗) ⋅ 𝑈𝜑′,𝐵(𝑡, 𝑜, 𝑗)
 

In summary, while the observed exposure 𝑍𝑖(𝑡, 𝑜, 𝑗) for miner 𝑖 in year 𝑡, object 𝑜 and with activity 𝑗 

in surface areas affiliated to mining objects and in exploration objects in Thuringia was calculated as 

𝑍𝑖(𝑡, 𝑜, 𝑗) = 𝐸(𝑝𝑡 , 𝑜) ⋅ 𝑓(𝑜, 𝑗) ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗), 

the true value 𝑋𝑖(𝑡, 𝑜, 𝑗) for this exposure depends on the unknown quantities defined in the 

previous equations in the following way: 
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𝑋𝑖(𝑡, 𝑜, 𝑗) = ℰ(𝑝𝑡 , 𝑜) ⋅ 𝜑′(𝑡, 𝑜, 𝑗) ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗) + 𝑈𝐸,𝐵(𝑖, 𝑡) 

where 𝑙(𝑖, 𝑡, 𝑜, 𝑗) reflects the individual working history of miner 𝑖. 

2.6 Uncertainties in the exposure assessment in processing companies 

2.6.1 Exposure assessment 

As described in Küchenhoff et al. (2018, pp. 14, 27, 28), processing companies (PPY: 7%) had the task 

to process the mined ore. They can be divided into two different exposure assessment periods for 

processing (first period: 2% PPY; second period: 5% PPY) and into three different types: processing 

facilities, RAS and RAF facilities (RAS: radiometric automatic gradation; RAF: radiometric processing 

factory) and collieries (Lehmann et al., 1994, 1998). 

Contrary to mining activities, the radon exposure for workers in the processing companies was 

assessed on the basis of processing stages (Küchenhoff et al., 2018, p. 60). The activity specific radon 

exposure for 2000 working hours was determined by either assigning the activity to a processing 

stage or by the time-weighted mean exposure of several processing stages. Since the assignment of 

activities to processing stages is not directly evident from the available literature and since the 

reconstruction of this assignment was not feasible within this project, we will directly use the activity 

specific radon exposure for 2000 working hours, which is depicted in Lehmann et al. (1998, pp. 358–

369, 394–405). Since we use this activity specific exposure and not the exposure in the processing 

stages, no activity weighting factor is needed for most workers in processing companies. An 

exception are workers in the auxiliaries, managing staff and other personnel with frequently 

changing work places, whose exposure was determined as the weighted exposure of a colliery 

worker. Only for these activities the activity weighting factor 𝑓(𝑗) is applied (Lehmann et al., 1998, 

pp. 483–484). 

The radon exposure assessment for processing companies is different for the two exposure 

assessment periods for processing. In the first exposure assessment period for processing, there 

were only very few single radon gas measurements, so that the annual radon progeny exposure 

𝐸(𝑜0, 𝑗) had to be estimated retrospectively by experts (Lehmann et al., 1994). In the second 

exposure assessment period for processing, the exposure assessment was based on radon gas 

concentration measurements, which were multiplied with an equilibrium factor 𝑔 = 0.4 to obtain 

radon progeny concentrations (Küchenhoff et al., 2018, p. 60). Since there were only enough 

measurements for some objects, these objects were chosen as the reference objects. For processing 

facilities, the objects 101 Crossen and 102 Seelingstädt were the reference objects, the RAF facility of 

object 009 Aue (shaft 371) was the reference object for RAS and RAF facilities and the colliery 050 for 

collieries (Lehmann et al., 1994, Chapter 4). For non-reference objects, the annual exposure for 2000 

working hours is estimated by weighting the radon progeny exposure of the respective reference 

object 𝐸∗(𝑝(𝑡, 𝑜), 𝑜0, 𝑗) with an object weighting factor 𝑧(𝑜, 𝑗) (Küchenhoff et al., 2018, p. 62). 

Finally, to obtain the radon exposure for the actual annual working time, the working time factor 

𝑤(𝑝𝑡 , 𝑜) is needed, which varies depending on the time period and the type of processing object 

(Lehmann et al., 1994, p. 89). 

Thus, in summary the annual exposure to radon progeny in processing companies in the first 

exposure assessment period for processing was estimated according to the following formula: 

𝐸(𝑡, 𝑜, 𝑗) = 𝐸(𝑜0, 𝑗) ⋅ 𝑤(𝑝𝑡 , 𝑜) ⋅ 𝑧(𝑜, 𝑗) ⋅ 𝑓(𝑗) 

and for processing companies in the second exposure assessment period for processing according to 

the formula: 

𝐸(𝑡, 𝑜, 𝑗) = 𝐸∗(𝑝(𝑡, 𝑜), 𝑜0, 𝑗) ⋅ 𝑔 ⋅ 𝑤(𝑝𝑡 , 𝑜) ⋅ 𝑧(𝑜, 𝑗) ⋅ 𝑓(𝑗) 
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The exposure assessment in the first exposure assessment period for processing is illustrated with 

the DAG in Figure 2.12 and Figure 2.13 shows the DAG for the exposure assessment in the second 

exposure assessment period for processing. 

 

Figure 2.12: Exposure assessment in processing companies in the first exposure assessment period for 
processing. 

 

Figure 2.13: Exposure assessment in processing companies in the second exposure assessment period for 
processing. 
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For the exposure assessment in processing companies, the parameters are defined as follows: 

• 𝐸(𝑜0, 𝑗): annual exposure to radon progeny of a worker in a reference object with 2000 working 

hours in the first exposure assessment period for processing 

• 𝐸∗(𝑝(𝑡, 𝑜), 𝑜0, 𝑗): annual exposure to radon gas of a worker in a reference object with 2000 

working hours in the second exposure assessment period for processing 

• 𝑔: equilibrium factor (only relevant for the second exposure assessment period for processing) 

• 𝑤(𝑝𝑡 , 𝑜): working time factor 

• 𝑧(𝑜, 𝑗): object weighting factor 

• 𝑓(𝑗): activity weighting factor 

2.6.2 Measurement models M5a and M5b 

We distinguish the measurement models for processing companies into one model for the first 

exposure assessment period for processing (M5a) and one model for the second exposure 

assessment period for processing (M5b). Figures 2.14 and 2.15 show the DAGs for the measurement 

models for processing companies. 

Here we assume a multiplicative classical error for 𝐸(𝑜0, 𝑗) (first exposure assessment period for 

processing) or 𝐸∗(𝑝(𝑡, 𝑜), 𝑜0, 𝑗) (second exposure assessment period for processing) and 

multiplicative classical and Berkson error components for the activity, object weighting, working time 

and equilibrium factors. 

 

Figure 2.14: Hierarchical model combining a disease model with measurement model M5a to describe exposure 
uncertainty in processing companies in the first exposure assessment period for processing companies. 



 31 

 

Figure 2.15: Hierarchical model combining a disease model with measurement model M5b to describe exposure 
uncertainty in processing companies in the second exposure assessment period for processing companies. Due 
to the limited space and for a clearer presentation, no measurement error variances for 𝑔 and 𝛾′(𝑡, 𝑜) are 
shown here. 

First exposure assessment period for processing: 

𝐸(𝑜0, 𝑗) = ℰ(𝑜0, 𝑗) ⋅ 𝑈ℰ,𝑐(𝑜0, 𝑗) 

Second exposure assessment period for processing: 

𝐸∗(𝑝(𝑡, 𝑜), 𝑜0, 𝑗) = ℰ∗(𝑝(𝑡, 𝑜), 𝑜0, 𝑗) ⋅ 𝑈ℰ∗,𝑐(𝑝(𝑡, 𝑜), 𝑜0, 𝑗) 

Second exposure assessment period for processing: 

𝑔 = 𝛾 ⋅ 𝑈𝛾,𝑐
𝛾′(𝑡, 𝑜) = 𝛾 ⋅ 𝑈𝛾′,𝐵(𝑡, 𝑜)

 

First and second exposure assessment period for processing: 

𝑓(𝑗) = 𝜑(𝑗) ⋅ 𝑈𝜑,𝑐(𝑗)

𝜑′(𝑡, 𝑜, 𝑗) = 𝜑(𝑗) ⋅ 𝑈𝜑′,𝐵(𝑡, 𝑜, 𝑗)
 

𝑧(𝑜, 𝑗) = 𝜁(𝑜, 𝑗) ⋅ 𝑈𝜁,𝑐(𝑜, 𝑗)

𝜁′(𝑡, 𝑜, 𝑗) = 𝜁(𝑜, 𝑗) ⋅ 𝑈𝜁′,𝐵(𝑡, 𝑜, 𝑗)
 

𝑤(𝑝𝑡 , 𝑜) = 𝜔(𝑝𝑡 , 𝑜) ⋅ 𝑈𝜔,𝑐(𝑝𝑡 , 𝑜)

𝜔′(𝑡, 𝑜) = 𝜔(𝑝𝑡 , 𝑜) ⋅ 𝑈𝜔′,𝐵(𝑡, 𝑜)
 

In summary, the observed exposure 𝑍𝑖(𝑡, 𝑜, 𝑗) for miner 𝑖 in year 𝑡, object 𝑜 and with activity 𝑗 in 

processing companies was calculated as: 

First exposure assessment period for processing: 

𝑍𝑖(𝑡, 𝑜, 𝑗) = 𝐸(𝑜0, 𝑗) ⋅ 𝑤(𝑝𝑡 , 𝑜) ⋅ 𝑧(𝑜, 𝑗) ⋅ 𝑓(𝑗) ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗) 

Second exposure assessment period for processing: 
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𝑍𝑖(𝑡, 𝑜, 𝑗) = 𝐸∗(𝑝(𝑡, 𝑜), 𝑜0, 𝑗) ⋅ 𝑔 ⋅ 𝑤(𝑝𝑡 , 𝑜) ⋅ 𝑧(𝑜, 𝑗) ⋅ 𝑓(𝑗) ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗) 

The true values 𝑋𝑖(𝑡, 𝑜, 𝑗) for these exposures depend on the unknown quantities defined in the 

previous equations in the following way: 

First exposure assessment period for processing: 

𝑋𝑖(𝑡, 𝑜, 𝑗) = ℰ(𝑜0, 𝑗) ⋅ 𝜔′(𝑡, 𝑜) ⋅ 𝜁′(𝑡, 𝑜, 𝑗) ⋅ 𝜑′(𝑡, 𝑜, 𝑗) ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗) + 𝑈𝐸,𝐵(𝑖, 𝑡) 

Second exposure assessment period for processing: 

𝑋𝑖(𝑡, 𝑜, 𝑗) = ℰ∗(𝑝(𝑡, 𝑜), 𝑜0, 𝑗) ⋅ 𝛾′(𝑡, 𝑜) ⋅ 𝜔′(𝑡, 𝑜) ⋅ 𝜁′(𝑡, 𝑜, 𝑗) ⋅ 𝜑′(𝑡, 𝑜, 𝑗) ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗) + 𝑈𝐸,𝐵(𝑖, 𝑡) 

where 𝑙(𝑖, 𝑡, 𝑜, 𝑗) reflects the individual working history of miner 𝑖. 

2.7 Uncertainties in the exposure assessment in open pit mining objects 

2.7.1 Exposure assessment 

During the operation time of the Wismut there were no radon gas or radon progeny concentration 

measurements in open pit mining objects (PPY: 1%). Therefore, all exposure values for open pit 

mining objects are retrospective expert estimations which are based on measurements of radon gas 

in the object 300 Lichtenberg in 1994/1995 (Küchenhoff et al., 2018). These measurements were 

performed at ground level and in a depth of 130m (Lehmann et al., 1998, p. 146). 

Following Küchenhoff et al. (2018), the annual exposure to radon gas for 2000 working hours per 

year in open pit mining objects can be estimated by the sum of the basic radon gas concentration at 

ground level without mining activity and the radon gas concentration in the depth. The mean of the 
measurements at ground level in object 300 Lichtenberg in 1994/1995, 𝐶𝑅𝑛,0(1994/1995,300) = 30 

Bq/m3 was used as the basic radon gas concentration for all open pit mining objects. The radon 

exposure in the depth was reconstructed as follows. Firstly, the difference between the means of the 

radon gas concentration measurements in object 300 Lichtenberg in 1994/1995 in a depth of 130m 
(𝐶𝑅𝑛,130(1994/1995,300) = 80 Bq/m3) and the measurements at ground level was used to obtain 

the concentration without mining activity in a depth of 130m. Secondly, this difference was 

multiplied with the ratio between the depth 𝑑(𝑡, 𝑜) in year 𝑡 of object 𝑜 and the depth of 130m. At 

last, the resulting radon gas concentration in the depth without mining activity was multiplied with 

the evaluation factor in open pit mining objects, 𝑒(𝑝𝑡 , 𝑜), which evaluates the conditions in the 

object and year of interest compared to the reference object 300 Lichtenberg in the reference year 

1994/1995. In contrast to the evaluation factor for underground mining objects, the evaluation 

factor for open pit mining objects consists of six sub-factors: 

𝑒(𝑝𝑡 , 𝑜) = 𝑒1 ⋅ 𝑒2(𝑝𝑡, 𝑜) ⋅ 𝑒3(𝑝𝑡, 𝑜) ⋅ 𝑒4(𝑝𝑡, 𝑜) ⋅ 𝑒5(𝑝𝑡, 𝑜) ⋅ 𝑒6(𝑜) 

These sub-factors evaluate the following aspects of mining conditions: 

• 𝑒1: diggings 

• 𝑒2(𝑝𝑡, 𝑜): production 

• 𝑒3(𝑝𝑡, 𝑜): weather exchange 

• 𝑒4(𝑝𝑡, 𝑜): fire events 

• 𝑒5(𝑝𝑡, 𝑜): underground blowing ventilation 

• 𝑒6(𝑜): uranium mineralization 

Table 2.2 shows the values of the sub-factors for the different open pit mining objects and years.  
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Table 2.2: Evaluation sub-factors for evaluating the conditions in the open pit mining objects over 

time, adapted from Lehmann et al. (1998, Tables 5.4.2.2.3 and 5.4.2.3.1) 

 

Finally, to obtain the annual exposure to radon progeny for a miner working in an open pit mining 

object, the annual exposure to radon gas for 2000 working hours per year has to be multiplied with 

the equilibrium factor 𝑔, the working time factor 𝑤(𝑝𝑡) and the activity weighting factor 𝑓(𝑝𝑡 , 𝑗). To 

convert the resulting radon exposure in Bq/m3 to WLM, the factor 
12

3700
 is applied. Thus, the annual 

exposure to radon progeny for a miner working in an open pit mining object can be estimated as: 

𝐸(𝑡, 𝑜, 𝑗) =
12

3700
(𝐶𝑅𝑛,0(1994/1995,300)

+ (𝐶𝑅𝑛,130(1994/1995,300) − 𝐶𝑅𝑛,0(1994/1995,300))
𝑑(𝑡, 𝑜)

130
⋅ 𝑒(𝑝𝑡 , 𝑜))

⋅ 𝑔 ⋅ 𝑤(𝑝𝑡) ⋅ 𝑓(𝑝𝑡 , 𝑗)

 

Figure 2.16 illustrates the DAG for the exposure assessment in open pit mining objects.  

Given that most evaluation sub-factors remained constant for many years and many objects and for 

the sake of simplicity, we combine 𝑒1, 𝑒3(𝑝𝑡 , 𝑜), 𝑒4(𝑝𝑡 , 𝑜), 𝑒5(𝑝𝑡 , 𝑜) and 𝑒6(𝑜) to a common sub-

factor 𝑒(𝑝𝑡 , 𝑜) and only consider production 𝑒2(𝑝𝑡, 𝑜) as an independent sub-factor. 

For the exposure assessment in open pit mining objects, the parameters are defined as follows: 

• 𝑓(𝑝𝑡 , 𝑗): activity weighting factor for open pit mining 

• 𝑤(𝑝𝑡): working time factor 

• 𝑔: equilibrium factor 

• 𝑒(𝑝𝑡 , 𝑜): evaluation factor in open pit mining objects combining the following sub-factors 

evaluating different aspects of mining conditions 

• 𝑒1: diggings 

• 𝑒3(𝑝𝑡, 𝑜): weather exchange 

• 𝑒4(𝑝𝑡, 𝑜): fire events 

• 𝑒5(𝑝𝑡, 𝑜): underground blowing ventilation 

• 𝑒6(𝑜): uranium mineralization 

• 𝑒2(𝑝𝑡, 𝑜): sub-factor production 

• Measurements of radon gas 

• 𝐶𝑅𝑛,0(1994/1995,300): mean concentration at ground level without mining activity for 

object 300 Lichtenberg in 1994/1995 
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• 𝐶𝑅𝑛,130(1994/1995,300): mean concentration of radon gas measurements in a depth of 

130m for object 300 Lichtenberg in 1994/1995 without mining activity 

• 𝑑(𝑡, 𝑜): depth 

 

Figure 2.16: Exposure assessment in open pit mining objects. 

2.7.2 Measurement model M6 

Figure 2.17 shows the DAG for measurement model M6 for open pit mining objects. 

We assume additive classical measurement errors for the mean concentration of radon gas 
measurements 𝐶𝑅𝑛,0(1994/1995,300) and 𝐶𝑅𝑛,130(1994/1995,300). As shown in Table 2.1, the 

depth 𝑑(𝑡, 𝑜) is assumed to be measured with sufficient precision to consider it as known without 

measurement error. For all other uncertain quantities intervening in the exposure estimation for 

workers in open pit mining objects, we assume a multiplicative classical measurement error as well 

as a multiplicative Berkson error component. 

𝐶𝑅𝑛,0(1994/1995,300) = 𝒞𝑅𝑛,0(1994/1995,300) + 𝑈𝒞,𝑐(1994/1995,300)

𝐶𝑅𝑛,130(1994/1995,300) = 𝒞𝑅𝑛,130(1994/1995,300) + 𝑈𝒞,𝑐(1994/1995,300)
 

𝑓(𝑝𝑡 , 𝑗) = 𝜑(𝑝𝑡 , 𝑗) ⋅ 𝑈𝜑,𝑐(𝑝𝑡, 𝑗)

𝜑′(𝑡, 𝑜, 𝑗) = 𝜑(𝑝𝑡 , 𝑗) ⋅ 𝑈𝜑′,𝐵(𝑡, 𝑜, 𝑗)
 

𝑤(𝑝𝑡) = 𝜔(𝑝𝑡) ⋅ 𝑈𝜔,𝑐(𝑝𝑡)

𝜔′(𝑡, 𝑜) = 𝜔(𝑝𝑡) ⋅ 𝑈𝜔′,𝐵(𝑡, 𝑜)
 

𝑔 = 𝛾 ⋅ 𝑈𝛾,𝑐
𝛾′(𝑡, 𝑜) = 𝛾 ⋅ 𝑈𝛾′,𝐵(𝑡, 𝑜)
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𝑒(𝑝𝑡 , 𝑜) = 𝜖(𝑝𝑡 , 𝑜) ⋅ 𝑈𝜖,𝑐(𝑝𝑡 , 𝑜)

𝜖′(𝑡, 𝑜) = 𝜖(𝑝𝑡 , 𝑜) ⋅ 𝑈𝜖′,𝐵(𝑡, 𝑜)

𝑒2(𝑝𝑡, 𝑜) = 𝜖2(𝑝𝑡, 𝑜) ⋅ 𝑈𝜖2,𝑐(𝑝𝑡, 𝑜)

𝜖′2(𝑡, 𝑜) = 𝜖2(𝑝𝑡, 𝑜) ⋅ 𝑈𝜖′2,𝐵(𝑡, 𝑜)

 

In summary, while the observed exposure 𝑍𝑖(𝑡, 𝑜, 𝑗) for miner 𝑖 in year 𝑡, object 𝑜 and with activity 𝑗 

in open pit mining objects was calculated as 

𝑍𝑖(𝑡, 𝑜, 𝑗) =
12

3700
(𝐶𝑅𝑛,0(1994/1995,300)

+ (𝐶𝑅𝑛,130(1994/1995,300) − 𝐶𝑅𝑛,0(1994/1995,300))
𝑑(𝑡, 𝑜)

130
⋅ 𝑒(𝑝𝑡 , 𝑜) ⋅ 𝑒2(𝑝𝑡 , 𝑜))

⋅ 𝑔 ⋅ 𝑤(𝑝𝑡) ⋅ 𝑓(𝑝𝑡 , 𝑗) ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗),

 

the true value 𝑋𝑖(𝑡, 𝑜, 𝑗) for this exposure depends on the unknown quantities defined in the 

previous equations in the following way: 

𝑋𝑖(𝑡, 𝑜, 𝑗) =
12

3700
(𝒞𝑅𝑛,0(1994/1995,300)

+ (𝒞𝑅𝑛,130(1994/1995,300) − 𝒞𝑅𝑛,0(1994/1995,300))
𝑑(𝑡, 𝑜)

130
⋅ 𝜖′(𝑡, 𝑜) ⋅ 𝜖2′(𝑡, 𝑜))

⋅ 𝛾′(𝑡, 𝑜) ⋅ 𝜔′(𝑡, 𝑜) ⋅ 𝜑′(𝑡, 𝑜, 𝑗) ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗) + 𝑈𝐸,𝐵(𝑖, 𝑡)

 

where 𝑙(𝑖, 𝑡, 𝑜, 𝑗) reflects the individual working history of miner 𝑖. 

 

Figure 2.17: Hierarchical model combining a disease model with measurement model M6 to describe exposure 
uncertainty in open pit mining objects. Due to the limited space and for a clearer presentation, no measurement 
error variances are shown here. 

2.8 Transfer of Job Exposure Matrix values 

In addition to the quantities assumed to be measured with error, which were described for the eight 

measurement models in the last sections, a further transfer error might arise. 
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We will denote this transfer factor as 𝑡𝐽𝐸𝑀. It occurs whenever it is assumed for years with missing 

radon progeny exposure values in the JEM that the values for these missing years are the same as 
those of other years or objects for which there are exposure values. The transfer error 𝑡𝐽𝐸𝑀 is added 

to the respective measurement models for all objects and years with continuation of radon exposure 

values from other years of the same object or the use of values from a different object to fill the gaps 

of years and objects with missing exposure values. 

Similar to other uncertain quantities, we assume a multiplicative classical and a multiplicative 

Berkson error component for the transfer error for filled gaps in the exposure assessment. 

𝑡𝐽𝐸𝑀 = 𝜏𝐽𝐸𝑀 ⋅ 𝑈𝜏𝐽𝐸𝑀,𝑐

𝜏′𝐽𝐸𝑀(𝑡, 𝑜) = 𝜏𝐽𝐸𝑀 ⋅ 𝑈𝜏′𝐽𝐸𝑀,𝐵(𝑡, 𝑜)
 

Note that due to space limitations, the transfer error for filled gaps in the exposure assessment 𝑡𝐽𝐸𝑀 

is not shown in any of the DAGs. Actually, it should be depicted in each DAG in the same way as 𝑡𝐸 in 
the DAGs for M1a, M1b, M2 and M3, so that the double arrow from 𝜏′𝐽𝐸𝑀(𝑡, 𝑜) points to 𝐸(𝑡, 𝑜, 𝑗). 

2.9 Characteristics of exposure uncertainty in the Wismut cohort 

Küchenhoff et al. (2018, p. 76) identify three major types of measurement error in radiation exposure 

assessment in the Wimut cohort: generalization error, assignment error and estimation error. The 

authors give a detailed description of the different sources of uncertainty in Küchenhoff et al. (2018, 

pp. 78–88). The resulting classification is summarized in Table 2.3. Küchenhoff et al. (2018, p. 114) 

categorize these sources of uncertainty either as having major relevance (generalization error and 

parameter uncertainties), medium relevance (assignment error, transfer error and documentation 

error) or as having minor relevance (experts’ evaluation error, procedural measurement error and 

approximation error). In the following, we will briefly introduce these different types of errors in this 

order of relevance. 

Table 2.3: Sources of uncertainty in exposure assessment in the Wismut cohort adapted from 

Küchenhoff et al. (2018, p. 77). 

Source of uncertainty Type 

Generalization error Spatial 

Temporal 

Assignment error Spatial 

Temporal 

Estimation error Procedural error 

Documentation error 

Parameter uncertainties 

Experts’ evaluation error 

Approximation error 

Transfer error 

2.9.1 Generalization error 

Generalization error occurs whenever a number of error-prone exposure measurements are 

averaged to determine the exposure estimate for a mining location. This type of error mainly 

occurred for radon gas and radon progeny concentration measurements, i.e.: 



 37 

• Radon gas concentration measurements 𝐶𝑅𝑛 

• Radon progeny concentration measurements 𝐶𝑅𝐷𝑃 

As pointed out by Küchenhoff et al. (2018, p. 79), generalization error can arise through temporal, 

spatial and activity generalization errors and it is best described by a classical measurement error 

component. For years in which there was exposure monitoring, this classical measurement error 

component will merely be shared between all workers of the same object 𝑜 as it affects all workers in 

this object in a similar way. For the years in which exposure assessment in the cohort was based on a 

retrospective estimation by experts (e.g. 1946 - 1954/55 for underground mining), on the other 

hand, the generalization errors arising in exposure assessment will not only be shared for all workers 

of the same objects 𝑜, but for all workers and all exposure years for which these exposure values 

were used: the classical measurement error component will therefore be shared both between and 

within workers. The same situation may arise when the exposure values assessed in a specific year 

are extrapolated to subsequent years. This extrapolation frequently occurred when exposure 

estimates were transferred to lead or to follow up times during the development of JEM 2. 

2.9.2 Parameter uncertainties 

The second source of error which was identified by Küchenhoff et al. (2018, p. 114) as having major 

relevance in the Wismut cohort are parameter uncertainties. The following parameters were 

involved in exposure assessment in the cohort: 

1. Mined vein area 𝐶(𝑡, 𝑜) 

2. Evaluation area 𝐴(𝑡, 𝑜) 

3. Depth 𝑑(𝑡, 𝑜) 

4. Total shaft output 𝐹(𝑡, 𝑜) 

5. Density of the bedrock ℎ(𝑜) 

6. Relative uranium recovery rate 𝑟(𝑡, 𝑜) 

7. Amount of uranium recovery 𝑅(𝑡, 𝑜) 

8. Void volume 𝑉(𝑡, 𝑜) 

9. Proportion of exposure from old mining in comparison to object 003 Schneeberg 𝑏(𝑜) 

10. Ventilation correction factor 𝑐(𝑜) 

11. Evaluation factors 𝑒(𝑝𝑡 , 𝑜) and 𝑒2(𝑝𝑡, 𝑜) 

12. Activity weighting factor 𝑓(𝑜, 𝑗) 

13. Equilibrium factor 𝑔(𝑝𝑡 , 𝑜) 

14. Working time factor 𝑤(𝑝𝑡) 

15. Processing stage specific object weighting factor 𝑧(𝑜, 𝑗) 

16. Proportion of mined vein area from previous years 𝑝 

Küchenhoff et al. (2018, p. 84) categorize these parameters either as parameters based on 

measurements (parameters 1 - 8 in the list given above) or as parameters based on aggregated 

evaluation of experts (parameters 9 - 15 in the list given above). 

While Küchenhoff et al. (2018, p. 84) describe the parameter uncertainties arising in the first group of 

parameters, which are based on measurements, as classical measurement error and the parameter 

uncertainties arising in the second group of parameters arising through the evaluation of experts as 

Berkson error, we propose here to consider both a classical and a Berkson component for both types 
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of parameter uncertainties. In this vein, we will consider that for each uncertain parameter 𝑝 

involved in exposure assessment in the Wismut cohort, we have a measurement process of the true 

parameter value 𝜋, which is prone to classical measurement error. Depending on the parameter and 

the situation, the classical error component in this measurement process can either be shared for all 

miners for whom this parameter intervened in exposure estimation, it can be shared between all 

miners in a given mining location 𝑜 and for all years of exposure assessment for these miners, or it 

can be only shared for all miners in a mining location 𝑜 for a given year. 

1. 𝑝 = 𝜋 ⋅ 𝑈𝜋,𝑐 

2. 𝑝(𝑜) = 𝜋(𝑜) ⋅ 𝑈𝜋,𝑐(𝑜) 

3. 𝑝(𝑡, 𝑜) = 𝜋(𝑡, 𝑜) ⋅ 𝑈𝜋,𝑐(𝑡, 𝑜) 

For the two first situations, there will be an additional component of Berkson error, which can be 

considered to be shared between workers in the same mining location 𝑜 for a given year 𝑡: 

for 1.: 𝜋′(𝑡, 𝑜) = 𝜋 ⋅ 𝑈𝜋′,𝐵(𝑡, 𝑜)

for 2.: 𝜋′(𝑡, 𝑜) = 𝜋(𝑜) ⋅ 𝑈𝜋′,𝐵(𝑡, 𝑜)
 

2.9.3 Assignment error 

Assignment error arises whenever exposure is not determined for each worker individually, but 

jointly for an entire group of workers. As there was no use of personnel dosimetry in the Wismut 

cohort, contrary to the French cohort of uranium miners (Allodji et al., 2012a), for instance, 

assignment error occurred for all workers and for all exposure assessment periods in the Wismut 

cohort. Assignment error describes how the individual exposure that miner 𝑖 received in year 𝑡, 

activity 𝑗 and object 𝑜, 𝑋𝑖(𝑡, 𝑜, 𝑗), deviates from the observed exposure to radon progeny for year 𝑡, 

object 𝑜, and activity 𝑗 𝑍(𝑡, 𝑜, 𝑗). Assignment error is best described by an additive Berkson error 

component because the true individual exposure values for the workers in a given group vary around 

the observed exposure value which was determined for this group and the resulting measurement 

error is independent of observed exposure. Küchenhoff et al. (2018, pp. 80–81) distinguish spatial, 

temporal, activity and working time assignment error in the Wismut cohort. 

2.9.4 Transfer error 

Transfer error occurs whenever missing exposure values were imputed based on exposure values 

either from another shaft or object or from another year in the same object in the absence of 

measurements, for instance during lead and follow-up times. Transfer errors can be seen as a special 

type of parameter uncertainty where the parameter to be estimated was a multiplicative constant 

which typically takes values between 0 and 2. Similar to other uncertain parameters, we will 

distinguish a Berkson and classical component for transfer errors and we will focus our attention on 

the following three transfer errors: 

• transfer error for the evaluation factor 𝑡𝑒 

• transfer error for the exposure of development and Saxonian exploration objects 𝑡𝐸 

• transfer error for filled gaps in the exposure assessment according to the JEM (Lehmann et al., 
1998; Lehmann, 2004) 𝑡𝐽𝐸𝑀 

2.9.5 Documentation error 

As pointed out by Küchenhoff et al. (2018, p. 83), documentation error may occur both in the 

documentation of measurements and in the documentation of individual occupational histories. In 

this sense, the following quantities could all be subject to documentation error: 

• Radon gas concentration measurements 𝐶𝑅𝑛 
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• Radon progeny concentration measurements 𝐶𝑅𝐷𝑃 

• Exposure histories for individual miners resulting in 𝑙(𝑖, 𝑡, 𝑜, 𝑗). 

While unintentional documentation error is best described by a classical measurement error 

component, intentional documentation error may lead to systematic measurement errors. 

2.9.6 Experts’ evaluation error 

Küchenhoff et al. (2018, pp. 85 - 86) distinguish three situations in which experts’ evaluation error 

may occur in exposure assessment in the Wismut cohort: Either when experts modified some 

measured exposure values based on their knowledge concerning the ventilation conditions in certain 

mining locations, when exposure values were derived as proportional exposure values from another 

shaft or object or when exposure estimates were exclusively determined based on expert knowledge 

in the absence of any exposure measurements. Here, we mainly assumed experts’ evaluation error 

for the latter case in which exposure estimates were determined through expert knowledge and it 

therefore applies for radon progeny exposure 𝐸 in the measurement model M4 assumed for surface 

areas affiliated to mining objects and for exploration objects in Thuringia. While Küchenhoff et al. 

(2018, p. 86) describe experts’ evaluation error through a Berkson error model, we will here consider 

this type of error as classical measurement error. Indeed, when exposure estimates are estimated 

based on expert knowledge, we are faced with a situation in which there is a true exposure value 

which is unknown and this unknown exposure value has to be estimated by experts. In this sense, the 

experts can be seen as a very imprecise measurement device and errors in the estimation process 

will affect the value of the observed exposure while being independent of the true exposure value, 

thereby satisfying the properties of a classical measurement error. 

2.9.7 Procedural measurement error 

Procedural measurement error occurs when exposure values are determined through measurement 

devices. In the Wismut cohort, we would expect procedural measurement error in particular for: 

• Mean radon gas concentration measurements 𝐶𝑅𝑛 

• Mean radon progeny concentration measurements 𝐶𝑅𝐷𝑃. 

However, these quantities were in general the result of the averaging of concentration 

measurements. Therefore, the resulting measurement error is adequately described through 

generalization error and modelling both generalization error and procedural measurement error 

would be redundant. As described by Küchenhoff et al. (2018, p. 81), procedural measurement error 

is best described as classical measurement error and four different types of procedural measurement 

errors can be distinguished: methodological errors, calibration errors, statistical errors and human 

errors. 

2.9.8 Approximation error 

Approximation error may either arise through the use of rounding during the exposure estimation 

process or through the use of estimation equations (Küchenhoff et al., 2018, p. 87). Contrary to 

Küchenhoff et al. (2018, p. 87), we will consider approximation due to rounding as Berkson error as 

the error arising in this rounding process is independent of the observed exposure value rather than 

being independent of true exposure. Indeed, for a given observed exposure value 𝑍, it is impossible 

to predict the precise value of the true exposure 𝑋. For an observed value 𝑍 of 5, for instance, it is 

impossible to predict the value of true exposure 𝑋 or the extent of measurement error. Given a true 

exposure value 𝑋, on the other hand, both the observed value and the extent of the rounding error 

are known perfectly. For instance, for a given true exposure value of 4.7349238, rounding to an 

entire value will lead to an observed exposure of 5 and an error of -0.2650762. For the situation 

where rounding is performed to entire values, approximation error due to rounding can therefore be 

described by an additive Berkson error model of the form 
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𝑋 = 𝑍 + 𝑈 

with 𝑈 independent of 𝑍. 

Concerning the use of estimation equations, it is more difficult to characterize the resulting 

uncertainty as either Berkson or classical measurement error. This uncertainty arises from the fact 

that models were used to reconstruct exposure estimates in the absence of direct measurements of 

the quantity of interest. Models are necessarily simplifications and approximations of more complex 

phenomena. The resulting uncertainty can therefore be conceived as model uncertainty. Küchenhoff 

et al. (2018) describe the error resulting from the use of estimation equations as Berkson error. 
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3 Quantification of the magnitude of measurement error 

In this chapter we will quantify the different measurement errors arising in the exposure assessment 

in the Wismut cohort. Firstly, we identify relevant literature sources and then describe the concept 

for the quantification of exposure uncertainty. In the third section we limit the effort and then 

quantify the different sources of uncertainty in the fourth section. Finally, the results of the 

quantification and the relevance of the different sources of uncertainty are discussed. 

3.1 Relevant literature sources for the quantification of exposure uncertainty in the Wismut 

cohort 

• Dosimetric reports of mining object 009 Aue for several years between 1961 and 1988 can be 

used for the quantification. The depicted information in the reports for 009 Aue varies depending 

on the year. Generally, the following three types of dosimetric reports can be differentiated. 

• For some years of object 009 Aue the dosimetric reports show the mean radon gas 

concentration for each shaft and level for both work place types mining and development. 

One example would be the year 1961. 

• The dosimetric reports of other years show the mean and the quantiles of radon gas and 

radon progeny concentration for each shaft and level for mining and development and state 

the shaft and level specific number of measurements. This is the case e.g. for year 1968 of 

object 009 Aue. 

• Some dosimetric reports only show the work place type specific mean radon progeny 

concentration and quantiles. This information is for example available for the years 1983 or 

1988. 

• Eigenwillig (2011) evaluates the radiation exposure assessment in the Wismut. Besides, the 

radon gas concentration measurements for object 009 Aue for 1955, 1956 and the first half of 

1957 are reported. 

• Lehmann et al. (1998) describe the exposure assessment in the Wismut cohort and depict the 

resulting JEM 1. This literature source also provides detailed information on radon gas and radon 

progeny concentration measurements and the assumed parameter values for the different years, 

objects and activities. 

• Lehmann (2004) extends the object specific JEM (JEM 1) in Lehmann et al. (1998) to a shaft 

specific JEM (JEM 2). While Lehmann (2004) is not strictly relevant for the quantification of 

measurement error in the Wismut cohort, it is very important for the characterization of 

measurement error in this cohort and therefore listed here. 

• Wismut GmbH (1999) is a detailed chronic of the Wismut company and reports among others 

changes in the object structure, the working conditions and the measurement of the radon gas 

and radon progeny concentration. The reported information about the mining losses over the 

years can be used for the quantification of the uncertainty in the proportion of mined vein area 

from previous years. 

• Eigenwillig and Ettenhuber (2000) give among other things an estimate for the procedural 

measurement error arising for the measurement devices commonly used in uranium mining. 

• Richter (1994) reports disruptions in the ventilation system as a frequent failure in underground 

mines that has not been correctly accounted for in the reported concentration values. 

• Zettwoog (1981) describes results of the first experiments performed on the use of individual 

dosimetry in uranium mines in France and provides information on the comparison of ambient 

measurements through radon grab sampling and personal dosimetry in these mines. 

• Allodji et al. (2012a) assess the extent of exposure uncertainty in the French cohort of uranium 

miners. They distinguish three distinct exposure assessment periods in this cohort, which are 
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characterized by a retrospective assessment of exposure values through a group of experts 

(1946-1955), by ambient measurements through scintillation flasks (1956-1982) and by personal 

dosimetry (1983-1999). The authors identify six sources of uncertainty, they assess the 

magnitude of these sources of uncertainty for the second and the third exposure assessment 

period and derive a combined measurement error variance for each period using a root sum 

square method. While the different sources of uncertainty arising in the error periods were of 

Berkson and classical and of shared and unshared nature, Allodji et al. (2012a) decide to consider 

all error occurring before 1983 in the French cohort of uranium miners as unshared Berkson 

error and all error occurring in the exposure assessment starting in 1983 as unshared classical 

measurement error. The authors consider all exposure uncertainty arising in the French cohort of 

uranium miners to be of a multiplicative nature and describe all exposure measurement errors 

by a lognormal distribution. 

• Allodji et al. (2012b) study the impact of the exposure measurement errors characterised and 

quantified by Allodji et al. (2012a) based on a simulation study conducted on the French cohort 

of uranium miners. In the absence of an extensive assessment of the extent of exposure 

measurement error for the first exposure assessment period, the authors decide based on advice 

from experts specialized in radiation monitoring from the Algade company that the extent of 

exposure uncertainty in this period can be described by a lognormal distribution with a standard 

deviation of log-transformed values of 0.936. 

• Schiager et al. (1981) characterize and quantify the extent of different sources of uncertainty 

arising in exposure monitoring of uranium miners in the United States. 

• Lubin et al. (1995b) assume a multiplicative and lognormal error model when describing 

measurement error in radon exposure in studies on residential radon. 

• Heid (2002) provides a justification for a multiplicative error model by arguing that many factors 

modifying radon concentration measurements affect a proportion rather than the absolute 

number of radon atoms in a given environment. Further evidence for a multiplicative error 

structure in radon measurements is provided in Heid et al. (2004) where the authors analyze 

data on the within- and between-laboratory-variability in an intercomparison study of 

laboratories in different European countries measuring radon gas concentrations in five houses 

and from three data sets with replicate radon concentration measurements based on alpha track 

detectors in German dwellings. 

3.2 Concept for the quantification of exposure uncertainty in the Wismut cohort 

In the following, we will describe the general concept for the quantification of exposure uncertainty 

in the Wismut cohort. Since there were neither a validation, calibration or replication study to obtain 

ancillary information to assess the nature and magnitude of measurement error, the quantification 

of exposure uncertainty in the Wismut cohort is not straightforward. It is particularly difficult to 

derive a concept for the quantification of measurement error for parameter uncertainties, because 

these are sometimes not based on any measurements, but rather on expert judgement. As a 

consequence, it was not possible to derive a convincing concept for some of the uncertain quantities 

(in particular for the parameter 𝑏(𝑜) quantifying the proportion of exposure from old mining in 

comparison to object 003 Schneeberg intervening in measurement model M1a and the classical error 

component for the activity weighting factor). In cases in which we describe several alternative 

quantification strategies, we chose to implement the strategy that appeared to be the most feasible 

and/or the most convincing strategy. 

3.2.1 Generalization error 

As described in Küchenhoff et al. (2018), generalization error arises through the usage of annual 

exposure estimation based on 𝐶𝑅𝑛 or 𝐶𝑅𝐷𝑃 instead of the actual annual shaft or level specific 

exposure. The standard deviation of this generalization error can be quantified with the help of 
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dosimetric reports of the Wismut. In Section 6.2.1 of Küchenhoff et al. (2018) the size of the 

generalization error is estimated by the variability of the annual exposure to radon progeny of a 

hewer in object 𝑜. On pages 98 and 99 in Küchenhoff et al. (2018) this is further approximated using 

the weighted sum of the variability of the mean radon gas or radon progeny concentration 

measurements at mining work places and at development work places. The only difference between 

radon gas and radon progeny concentration measurements is that for radon progeny concentration 

instead of the equilibrium factor 𝑔(𝑡, 𝑜) the correction factor for disruptions in the ventilation 

system 𝑐(𝑜) has to be used (Lehmann et al., 1998). We simplify the calculation of Küchenhoff et al. 

(2018) for the approximate size of the generalization error by not differentiating between mining or 

development work places for the mean radon gas or radon progeny concentration measurements. 

Also, since we are only interested in quantifying the generalization error for the radon gas or radon 

progeny concentration measurements, contrary to Küchenhoff et al. (2018) we omit the factors 12, 

𝑔(𝑡, 𝑜), 𝑐(𝑜) and 𝑤(𝑡, 𝑜) in the standard deviation calculation. 

The described calculation for the approximate size of the generalization error can be done for all 

years and objects for which the necessary information through e.g. dosimetric reports exist. As 

already mentioned in Section 3.1, only dosimetric reports for some years of object 009 Aue are 

available. 

3.2.2 Parameter uncertainties 

General considerations 

As described in Section 2.9.2, we assume for every uncertain parameter a Berkson and a classical 

measurement error component. The classical measurement error describes the precision of the 

measurement process of this uncertain parameter and the Berkson component describes the 

variability between several years and/or objects for which the same parameter value was assumed. 

A general strategy to quantify the Berkson component of an uncertain parameter is to quantify the 

variability of parameter values between years and between objects for the situation in which there 

were measurements of this parameter. As shown by Küchenhoff et al. (2018, p. 104), this strategy 

can for instance be used to assess the temporal variability in the equilibrium factor in object 009 Aue. 

The classical measurement error component of an uncertain parameter is more difficult to assess. 

The estimation of the most influential parameters in the Wismut cohort, i.e. the equilibrium factor, 

the ventilation correction factor, the working time factor and the activity weighting factor were at 

least partially based on expert knowledge and it is very difficult to quantify the precision of this 

expert knowledge because we cannot rely on a calibration sample in which the true parameter 

values and the parameter values estimated by the experts could be compared. In this situation, a 

general strategy to quantify the uncertainty with which these parameter estimates can be 

determined consists in expert prior elicitation (Kadane and Wolfson, 1998; O’Hagan et al., 2006; 

Oakley et al., 2010; Fischer et al., 2017; Wolfson and Bousquet, 2016). In an expert prior elicitation 

task, an expert is not only asked to provide an estimate of an unknown quantity but also a measure 

of his uncertainty on this estimate. In the French cohort of uranium miners, Hoffmann (2017) 

performed an expert prior elicitation task with three experts on the working conditions in French 

uranium mines to obtain information on the time workers spent in different levels of physical 

activity. Based on the elicited information, the authors derived an informative prior distribution on 

average breathing rate in the French cohort of uranium miners to account for dose uncertainty when 

analyzing the association between absorbed lung dose and lung cancer mortality in this cohort. 

Similarly, if we could contact experts on the working conditions in the Wismut cohort, it would be 

possible to make an expert prior elicitation with them. Alternatively, we could also ask experts to 

estimate values of parameters for which measurements exist, but that these experts do not know. In 

this situation we can determine the precision in expert knowledge by comparing the true parameter 

values (which are only known to us) and the values provided by the experts. Finally, we can use the 
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information which is available concerning the imprecision that was acceptable to the experts who 

were involved in the estimation of exposure values for the Wismut cohort. Lehmann et al. (1998, pp. 

123-124) provide such information concerning the evaluation factor. 

Evaluation factor 𝒆(𝒐) 

Evaluation factors occur both in M1a, M1b and in M6. As the evaluation factors in M1a and M1b are 

deterministic functions of other quantities, i.e. 𝜏𝑒(𝑡, 𝑜), 𝒞𝑅𝑛(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜)) and 

𝐴(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜), we do not need to quantify the uncertainty on the evaluation factor in these 

models directly. However, since we have some information on the evaluation factor in these models 

whereas we lack information for the evaluation factor in M6, it is advisable to use this information 

for the quantification of uncertainty for the evaluation factor in M6.  

In order to assess the Berkson component of the parameter uncertainty in the evaluation factor, we 

could calculate the ratio between the mean radon gas and radon progeny concentration, which was 

measured in the second and the third exposure assessment period, and the mined area in these 

years. If information on the mined area in these years was available, we could calculate the 

variability in these ratios for different years and objects for which the same evaluation factor was 

assumed in the exposure assessment in the first exposure assessment period. Unfortunately, there 

are no longer any records of the mined area, which is why this approach to quantifying the Berkson 

error component of the evaluation factor does not work.  

To assess the classical error component, we can use information provided by Lehmann et al. (1998, 

pp. 123-124) concerning the imprecision in the determination of the evaluation factor which was 

acceptable to the experts. 

Equilibrium factor 𝒈(𝒑𝒕, 𝒐) 

The values of the equilibrium factor which were assumed for different exposure years and the 

different objects are given in Table 10 in Küchenhoff et al. (2018, p. 45). When quantifying the 

uncertainty in the equilibrium factor we can distinguish a Berkson and a classical measurement error 

component. 

In order to quantify the Berkson component of the equilibrium factor, we can assess the variability of 

the equilibrium factor for situations in which this factor can be determined through measurements. 

In order to assess the temporal variability in the equilibrium factor, Küchenhoff et al. (2018, p. 104) 

estimate equilibrium factors for the years between 1966 and 1981 where radon gas and radon 

progeny concentrations were measured simultaneously in the object 009 Aue. Following this idea, it 

is possible to assess the variability between several objects and years for which the same value was 

assumed for the equilibrium factor (see Table 10 in Küchenhoff et al. (2018, p. 45)) by estimating the 

equilibrium factor for several objects and years based on the estimates for radon gas and radon 

progeny concentrations which are given in Lehmann et al. (1998, pp. 436–463). Besides, information 

on the variability in a given year and object is provided in the dosimetric report for the object 009 

Aue for the year 1962: This report states that for shaft 038 with measurements of 𝑔(𝑡, 𝑜) between 

11% and 55% an equilibrium factor of 25% was assumed. Similarly, for shaft 366 and 371 with 

measurements of 𝑔(𝑡, 𝑜) between 10% and 100% an equilibrium factor of 50% was assumed. 

The quantification of the classical component of the measurement error of the estimation of the 

equilibrium factor is more intricate than the quantification of its spatial and temporal variability. One 

possible strategy to assess the precision of the estimation of the equilibrium factor would be to use 

the dosimetric reports of years with shaft and level specific radon gas and radon progeny 

concentration measurements. For this possibility to quantify the equilibrium factor, only the 

dosimetric reports with radon gas and radon progeny concentration measurements for the years 

until 1973 and from 1987 to 1990 should be used. In the years between 1974 and 1986 there was a 

problem with the correct handling of the radon progeny concentration measurement devices, which 
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lead to incorrect concentration measurement values (Wismut GmbH, 1999, Chapter 1.8.2, p. 23). 

Thus, the calculation of the equilibrium factor for these years would be biased. The year 1968 of the 

Saxonian object 009 Aue is one example where the dosimetric report contains the radon gas and as 

well the radon progeny concentration. 

With radon gas and radon progeny measurements in the same shaft and at the same level it is 

possible to calculate the shaft and level specific equilibrium factors by 

equilibrium factor =
radon progeny concentration in WLM

radon gas concentration in Eman
. 

The standard deviation of the shaft and level specific equilibrium factors calculated respectively, can 

be used as an approximation of the precision of the estimation of the equilibrium factor. The 

described approach quantifies an additive error component but only needs the following slight 

adaption to quantify a multiplicative error component: Instead of simply taking the standard 

deviation of the shaft and level specific equilibrium factors, the standard deviation of the log-

transformed values is used to approximate the precision of the estimation of the equilibrium factor 

for a multiplicative error. 

Another possibility would be to base the quantification of the precision of the estimation of the 

equilibrium factor on values described in the literature for other cohorts of uranium miners. For the 

French cohort of uranium miners, Allodji et al. (2012a) describe the uncertainty in the approximation 

of the equilibrium factor by a lognormal distribution with a standard deviation of log-transformed 

values of 0.294 for the period between 1956-1977 and of 0.118 for the period 1978-1982. 

Working time factor 𝒘(𝒑𝒕) 

While there was information on the number of annual working hours in the literature for the 

exposure years between 1966 and 1990, this number had to be determined through interviews with 

experts for the exposure years between 1946 and 1965 (Küchenhoff et al., 2018, p. 44). Therefore we 

could theoretically assume that the classical measurement error component arising through the 

imprecision of parameter estimation only occurred in the exposure years between 1946 and 1965, 

while the Berkson component arising from the variability in the values for different years and 

different objects around a common parameter value was present for all exposure years. However, 

for the sake of simplicity and since it is unlikely to lead to noticeable changes in the estimation of the 

effect of radon exposure on the development of lung cancer, we assume a classical and a Berkson 

measurement error component on the working time factor for the entire time. 

Concerning the Berkson component, a theoretical possibility would be to rely on information in the 

French cohort of uranium miners. In this cohort, there were detailed transcripts of the number of 

hours the workers worked in the mines and we could assess the variability in these working hours to 

extrapolate this information to the Berkson component in the working time factor in the Wismut 

cohort. However, quantifying the Berkson component for the working time factor in this way would 

require access to internal documents on the French cohort of uranium miners and the effort of 

processing these additional documents was not in the scope of this project. In the absence of more 

information in the Wismut cohort concerning the classical error component, we can use information 

provided by Schiager et al. (1981) and Allodji et al. (2012a) for uranium mines in the United States 

and in France. 

Activity weighting factor 𝒇(𝒐, 𝒋) 

In the French and in the Czech cohort of uranium miners, there were exposure periods during which 

individual exposure measurements were obtained via personal dosimetry. If these individual 

measurements could be obtained, it would be possible to quantify the Berkson component in the 

activity weighting factor by assessing the ratio between the average exposure values for a given 

activity 𝑗 and the mean exposure of hewers for several years in the French and in the Czech cohort of 
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uranium miners. In the absence of information from these cohorts, we cannot use data from the 

Wismut cohort, because there were no periods of individual exposure measurements in the Wismut 

cohort. However, we could try to provide a range of plausible values for the activity weighting factor 

by considering the fact that this parameter can only take values between zero and one. As this last 

strategy would give us only very imprecise estimates on the magnitude of error we can assume when 

correcting for measurement error in the Wismut cohort, it seems more reasonable to make the 

assumption that the magnitude of uncertainty in the activity weighting factor is comparable to 

another parameter in the Wismut cohort for which we can quantify the magnitude of Berkson error. 

Ventilation correction factor 𝒄(𝒐) 

The ventilation correction factor 𝑐(𝑜) corrects the exposure values to account for disruptions and 

breakdowns of the ventilation system. The more disruptions there are, the higher becomes the radon 

exposure. If the measured radon progeny concentration values were too high, the Wismut company 

issued warnings, that sometimes lead to closure of the shaft. Some dosimetric reports of object 009 

Aue, for instance for 1968, give the number of warnings and closures of shafts. One possibility to 

quantify the Berkson component of the ventilation correction factor would be to use the variability 

of the warnings and closures in one object and year over the different levels and shafts. Note that 

the range of values of the ventilation correction factor and the range of values of the number of 

warnings and closures are quite different. However, this difference in the ranges of values is not a 

problem when quantifying a multiplicative error component. Another possibility would be to base 

the quantification on Richter (1994) where the reported exposure values are corrected by factors of 

1.3 to 1.7 to account for breakdowns in the ventilation system. 

Proportion of mined vein area from previous years 𝒑 

Lehmann et al. (1998) describe that the proportion 𝑝 of the mined vein area 𝐶(𝑠, 𝑜) from previous 

years (𝑠 < 𝑡) intervening in the calculation of the evaluation area 𝐴(𝑡, 𝑜) of year 𝑡 for objects in 

Saxony was assumed to be 0.2 since the average of the mining losses was about 20%. However, it can 

be assumed that the factor of 0.2 is prone to error since there was a variability over the years. In 

Wismut GmbH (1999, Chapter 2.2.2.1, p. 15) an overview of the proportions of losses over the years 

can be found. They vary between 0.62 in 1949 and 0.08 at the end of the uranium mining activity in 

the Wismut. Using these proportions of mining losses, it is possible to approximate the classical error 

component of the proportion 𝑝  of the mined vein area 𝐶(𝑠, 𝑜) from previous years (𝑠 < 𝑡) by the 

variability of the log-transformed values depicted in Wismut GmbH (1999, Chapter 2.2.2.1, p. 15). 

3.2.3 Assignment error 

Since the JEMs for the Wismut cohort use object (JEM 1; Lehmann et al. (1998)) or shaft specific (JEM 

2; Lehmann (2004)) exposure values instead of the individual exposure measurements for each 

miner, an assignment error occurs (Küchenhoff et al., 2018). 

As there were no individual exposure measurements in the Wismut cohort, it is impossible to directly 

quantify the assignment error. Due to this absence of individual exposure values, Küchenhoff et al. 

(2018, p. 102) propose to use the dosimetric reports of the Wismut as source for the quantification. 

They argue that the magnitude of spatial assignment error can be assessed by quantifying the 

variability of shaft/object specific exposure estimates since information on single measurements of 

radon gas and radon progeny concentration are missing in the available dosimetric reports. 

Küchenhoff et al. (2018) average the within-group variability of the site or object specific exposure 

values, whereby they assume equal numbers of measurements within each group whenever a more 

detailed information is not available (see equation on page 103 of Küchenhoff et al. (2018)). 

A second strategy to obtain an estimate of the magnitude of assignment error in the Wismut cohort 

is to determine the variability of individual exposure values for a given year and a given shaft/object 

in the French and in the Czech cohort of uranium miners for the years in which exposure to radon 
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progeny was assessed through individual dosimetry by personal alpha dosimeters, i.e. starting in 

1983 in the French cohort (Allodji et al., 2012a) and starting in 2000 in the last operating mine in the 

Czech republic (Marušiaková et al., 2011). 

A third strategy would be to return to the mining locations and to simultaneously measure with area 

dosimetry and personal dosimetry to quantify the magnitude of assignment error. Such 

measurements were performed by Zettwoog (1981) in French uranium mines, but he merely 

reported the overestimation of exposures through ambient measurements and not the variability of 

results and the data he collected are not available. Eigenwillig and Ettenhuber (2000) also mention 

data collected during 2 years of comparisons between ambient measurements and personnel 

dosimetry and state that these comparisons provided evidence that exposure estimates provided by 

ambient measurements exceeded the exposure estimates based on personal dosimetry by 10%. 

Details on the space, time and setting of this comparison or information on where the data of these 

comparisons could be found were not available. 

3.2.4 Transfer error 

To quantify the classical error component in the transfer error for the evaluation factor 𝜏𝑒, we can 

assess to what extent the exposure values in an object were similar to the exposure values of its 

reference object for years in which these exposure values were measured. However, the problem in 

this quantification strategy would be that we should not only calculate the variability in the exposure 

values, but we should also account for the evaluation area 𝐴(𝑡, 𝑜) for these latter years and we are 

lacking this information. 

To quantify the Berkson component in the transfer error for the exposure of development and 

exploration objects 𝜏𝐸, we could try to use information which could be available in the French and in 

the Czech cohort of uranium miners. In these cohorts, there could be exposure years where there 

was a systematic and prospective exposure assessment through ambient measurements or personal 

dosimetry in exploration and development objects. Based on this information, we could assess the 

variability in the ratio between these exploration and development objects and the corresponding 

mining objects and extrapolate these values to the Wismut cohort. 

Concerning the transfer error for filled gaps in the exposure assessment according to the JEM, it is 

possible to quantify both the Berkson and the classical error component by comparing the measured 

concentration values for the years in which there were measurements (Lehmann et al., 1998, p. 437). 

For the classical measurement error component, during these years, we can assess what error would 

have been made if we had replaced any of the available values by a measurement that was 

performed in any of the other years, i.e. for a given year 𝑡, we assume that the actual measured 

exposure value is the true exposure value 𝑋 and consider the values in the years before and after this 

year 𝑡 as potentially observed exposure value to assess the magnitude of classical measurement 

error for the transfer error for filled gaps in the exposure assessment.  

To assess the Berkson component which describes the variability in the transfer errors for several 

years for which the same value was assumed in the filling of the gaps, we can also use the measured 

exposure values for the years in which there were observed measurements. In this vein, we can 

quantify the variability around the mean exposure value for an object in which these exposure values 

were actually measured for several years. More precisely, we calculate the mean value of the yearly 

exposure values for a given object and determine the variability of the yearly measured exposures 

around this mean to mimic the Berkson error that would arise if we assumed a constant exposure 

value for several subsequent years of exposure in an object. Quantifying the transfer error when 

exposure values were transferred from one object to another object is not possible since we are 

lacking measurements for the latter objects. We could in theory just make the assumption that the 

measurements in the reference objects were as different from the measurements that would 

hypothetically been obtained in the objects these values were transferred to, but then we have to 
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answer the question why these values in particular were used to replace the unmeasured values. As 

a consequence, it seems to make more sense to use the standard deviations quantified for the 

temporal transfer error also for the latter situation. 

3.2.5 Documentation error 

In the absence of precise information on the magnitude of documentation error in the Wismut 

cohort, we can rely on information provided by Schiager et al. (1981) and Allodji et al. (2012a) on the 

magnitude of documentation error in uranium mines in the US and in France. 

3.2.6 Experts’ evaluation error 

Similar to documentation error, we can rely on information provided by Allodji et al. (2012a) on the 

magnitude of experts’ evaluation error in uranium mines in France. 

3.2.7 Procedural measurement error 

In order to quantify procedural measurement error in the Wismut cohort, the best option would be 

to return in the old mining locations and to perform again measurements with the same type of 

measurement devices that were used to determine the exposure values of the cohort. These 

measurements could then be compared with a gold standard, i.e. with a measurement device which 

is very precise and presents only negligible measurement error to derive the variance of this classical 

measurement error. Alternatively, we could also compare several measurements with the same 

error-prone measurement device. This would allow us to assess the retest reliability of this device 

and to derive the corresponding measurement error variance. 

In the absence of measurements which could inform us about the precision of the measurement 

devices in the Wismut cohort, it is possible to rely on external literature sources, which we described 

in Section 3.1, namely Schiager et al. (1981), Eigenwillig and Ettenhuber (2000), Zettwoog (1981) and 

Allodji et al. (2012a) who assess the extent of measurement error in the United States and in the 

French cohort of uranium miners, respectively. 

3.2.8 Approximation error 

Approximation error due to rounding 

In order to assess the extent of approximation error due to rounding, it is possible to compare the 

measured values in the archives of the Wismut cohort with the assumed values in the JEM. In 

general, the quantification of the magnitude of error arising through rounding is quite 

straightforward as it is merely a function of the number of digits to which rounding is performed. As 

described in Section 2.9.8, for the situation where rounding is performed to entire values (which was 

not always the case in the Wismut cohort), approximation error due to rounding can be described by 

an additive Berkson error model of the form 

𝑋 = 𝑍 + 𝑈 

with 𝑈 independent of 𝑍. 

Approximation error arising from the use of estimation equations 

Concerning approximation error arising from the use of estimation equations, Küchenhoff et al. 

(2018, p. 87) characterize the resulting exposure measurement error, which essentially arises from 

the fact that it was necessary to rely on models to reconstruct exposure values, as Berkson and 

classical measurement error. However, as mentioned in Section 2.9.8, it can be argued that this 

second type of approximation error is best understood as model uncertainty in exposure assessment. 

It is very likely that a group of experts would be able to think about several alternative models for the 

assessment of exposure values. In this sense, a way to quantify this type of approximation error 

would be to ask experts (either the original experts who were involved in the assessment of radon 
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exposure in the Wismut cohort or new experts, for instance dosimetrists who specialize in radon 

dosimetry in uranium mines) for alternative modelling strategies which could have been possible to 

reconstruct these individual exposure values and for estimations of the probability of each model to 

be the true model for exposure assessment. Once these alternative models are obtained, it would be 

possible to account for this type of approximation error for instance through Bayesian Model 

Averaging (Hoeting et al., 1999; Volinsky et al., 1997). 

3.3 Limiting the effort of exposure quantification in the Wismut cohort 

As it would be infeasible to quantify and account for all sources of uncertainty identified by 

Küchenhoff et al. (2018) in the scope of this project, it is necessary to make a number of choices to 

limit the efforts in the quantification process while simultaneously accounting for the sources of 

uncertainty that have an impact on risk estimation in the cohort. 

We made the following choices to limit the effort of exposure quantification in the Wismut cohort: 

• While it would have been possible to quantify each type of uncertainty as additive measurement 

error component and as multiplicative error component, we decided to focus on the 

quantification of multiplicative errors based on a broad consensus in the literature that 

measurement error in radiation exposure in general, and in radon exposure in particular, is best 

described by a multiplicative error component following a lognormal distribution (Lubin et al., 

1995b; Stram et al., 1999; Heid, 2002; Heid et al., 2002; Heid et al., 2004; Heidenreich et al., 

2004; Lubin et al., 2005; Advisory Group on Ionising Radiation AGIR, 2009; Heidenreich et al., 

2012; Allodji et al., 2012a,b,c). We also make this assumption for parameter uncertainty as a 

multiplicative error structure seems often reasonable and convenient when the true parameter 

can only take positive values. Ideally, this assumption of multiplicative errors should be 

complemented by extensive sensitivity analyses in which an additive error structure is assumed, 

but it was not in the scope of this project to perform these additional sensitivity analyses. 

• Similarly, even if with additional assumptions it would have been possible for some error 

components to assume different error variances for at least some of the different years and 

different objects in a given measurement model, in order to limit the effort of exposure 

quantification, we only determined one magnitude of error for each measurement model for 

each quantity and extrapolate this value for all years and objects. 

• As pointed out by Küchenhoff et al. (2018, p. 114) and confirmed in a simulation study on the 

impact of the different sources of uncertainty on a fictive data set of the Wismut cohort (results 

not shown), approximation error due to rounding only has a negligible effect on exposure 

estimates and on risk estimation in this cohort. Although it would be relatively easy to quantify 

this source of uncertainty (as described in Section 2.9.8, the magnitude of approximation error 

merely depends on the number of digits to which rounding is performed), we will not consider 

this type of error in detail in the following. 

• When it comes to the approximation error due to estimation equations, it seems very difficult to 

identify experts on the exposure conditions in the Wismut cohort, so it is difficult to determine 

alternative models to use in the assessment of exposure values. Moreover, it is not in the main 

scope of this project to account for model uncertainty. Therefore, it appears to be difficult from a 

methodological perspective to extent the approach that will be used to account for 

measurement error to model uncertainty arising from the fact that estimation equations were 

used to reconstruct exposure values and it appears to be more judicious to focus all efforts on 

the development of a suitable method to account for the complex structure of measurement 

error arising in this cohort. Thus, we will not consider the approximation error due to estimation 

equations in the quantification. 

• In accordance with Küchenhoff et al. (2018, p. 114), we believe, that documentation error is only 

of minor importance in the Wismut cohort. Additionally, it would be very difficult to account for 
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documentation error in working histories as these working histories are not easily accessible in 

the Wismut cohort. We therefore did not account for documentation error in the following. 

• Due to the lack of dosimetric reports for mining objects other than Aue, we will only perform the 

quantification of generalization error and assignment error for this object and extrapolate the 

magnitude of these two error components to all other mining locations. Additionally, the 

quantification of these two types of error is only possible for certain years, which means that we 

will also extrapolate the magnitude of these two error components over time for the years for 

which sufficient information for a quantification is not available. 

• We agree with Küchenhoff et al. (2018, p. 114) that procedural measurement error only rarely 

occurred in the exposure assessment in the Wismut cohort and that it is thus not relevant to 

account for this source of classical measurement error. As mentioned in Section 2.9.7, most 

measurements in the Wismut cohort were the result of the averaging of measured 

concentrations and the resulting measurement error is therefore better described through 

generalization error. As a result, we did not account for the uncertainty in the procedural error 

when accounting for measurement error in the Wismut cohort. 

• As it seemed very difficult and time-consuming to identify experts on the working conditions in 

the Wismut cohort, we decided not to elicit prior distributions based on expert knowledge to 

quantify parameter uncertainty, even though this seemed the most adequate option to quantify 

the classical measurement error component arising in parameter uncertainties. One parameter 

for which it was possible to quantify this classical measurement error component arising from 

the imprecision in the expert estimation process was the evaluation factor in the first exposure 

assessment period for underground mining objects. We will assume that the precision of the 

estimation of parameter values is comparable for all uncertain parameters and extrapolate from 

the magnitude of the classical error component as quantified in Section 3.4.2 to the classical 

error component for all other uncertain parameters for which additional data that could inform 

us on the magnitude of the classical measurement error component is absent. 

• In this work, we identified a number of different transfer factors. As we are lacking information 

to quantify the errors for all transfer factors except the transfer factor which occurred because 

years with missing exposure values in the JEM were filled by assuming that the exposure in these 

years was the same as in other years for which there were exposure values, we will quantify the 
error for this specific transfer factor 𝑡𝐽𝐸𝑀 and extrapolate its magnitude to all other transfer 

factors. 

3.4 Quantification of exposure uncertainty in the Wismut cohort 

3.4.1 Generalization error 

As described in Section 3.2, following Küchenhoff et al. (2018), the generalization error for years with 

suitable dosimetric reports can be quantified by the variability of the mean radon gas or radon 

progeny concentration measurements. For example, the dosimetric reports from object 009 Aue for 

the years 1961 and 1968 and Table 9 from Eigenwillig (2011, p. 112) for the year 1955 were suitable. 

We chose these years because they were the first years for the three different exposure assessment 

periods for which the necessary information was available. We use the value for 1961 for all objects 

and years in the second exposure assessment period for underground mining objects and for open 

pit mining objects. We use the value for 1968 for all objects and years in the third exposure 

assessment period for underground mining objects. 

For the year 1961 of object 009 Aue the size of the standard deviation of the additive generalization 

error occurring for the mean radon gas concentration 𝐶𝑅𝑛(1961,009) is calculated as 

√𝑉𝑎𝑟̂(𝑈𝒞,𝑐(1961,009)) ≈ 0.59. 
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With the dosimetric report for the year 1968 of object Aue, theoretically the calculation of the size of 

the generalization error would be possible in the exact same way as for the year 1961. However, 

since in 1968 object 009 Aue belongs to the third exposure assessment period with radon progeny 

concentration measurements, the mean radon progeny concentration measurements in 103 MeV/l 

first have to be divided by 130 to obtain the unit Eman. Thus, the size of the standard deviation of 

the additive generalization error for 𝐶𝑅𝐷𝑃(1968,009) can be approximated as 

√𝑉𝑎𝑟̂(𝑈𝒞,𝑐(1968,009)) ≈ 0.03. 

The dosimetric report of object 009 Aue in 1955 can be used to quantify the generalization error 

occurring in the mean radon gas concentration 𝐶𝑅𝑛(1955,009) after first dividing the shaft specific 

mean concentration measurements of radon gas by 3.7 in order to transform the unit from kBq/𝑚3 

to Eman. The standard deviation of the additive generalization error for object Aue in 1955 can be 

approximated as 

√𝑉𝑎𝑟̂(𝑈𝒞,𝑐(1955,009)) ≈ 5.29. 

The generalization error that was quantified so far, is the generalization error for mining activity. 

Another type of generalization error is the generalization error for the basic exposure from old 

mining 𝐶𝑅𝑛(1937/38,003) for objects in the first exposure assessment period in Saxony. The basic 

exposure from old mining is based on the measurements in 1937/38 of object 003 Schneeberg. Thus, 

the size of the generalization error for basic exposure from old mining can be quantified by using the 

radon gas concentrations from Table 4.1.2.1 on page 433 of Lehmann et al. (1998) without shaft 

‘Siebenschlehen’ (Küchenhoff et al., 2018). As the unit of the radon gas concentrations in Table 

4.1.2.1 is kBq/𝑚3, the mean concentration values have to be first divided by 3.7 in order to obtain 

the unit Eman. Then, the standard deviation of the additive generalization error for the basic 

exposure from old mining can be calculated as 

√𝑉𝑎𝑟̂(𝑈𝒞,𝑐(1937/38,003)) ≈ 6.56. 

3.4.2 Parameter uncertainties 

Evaluation factor 𝒆(𝒐) 

As described in Section 3.2.2, we used the information provided by Lehmann et al. (1998, pp. 123-

124) to assess the imprecision in the determination of the evaluation factor 𝑒(𝑜) in the exposure 

assessment in the first exposure assessment period for objects in Saxony which was acceptable to 

the experts: For the object BB Dittrichshütte and the object BB Hirschbach the uranium contents 

were 0.04% and 0.03%, respectively. The experts derived the same value for the evaluation factor for 

both mining locations by considering that both values were roughly half as large as the value for the 

uranium content for the object BB Schmirchau which was 0.083%. By doing so, they accepted a 

deviation of 33% for the object BB Hirschbach and we can conclude that this magnitude of error 

seemed normal to them. It can therefore be argued that the classical error component arising in the 

estimation of the evaluation factor can be described by a multiplicative error term following a 

lognormal distribution with a standard deviation of log-transformed values of 0.33 (Allodji et al., 

2012a). 

√𝑉𝑎𝑟̂(𝑈𝜖,𝑐) ≈ 0.33. 

We will use this value of 0.33 that was quantified for the classical error component of the evaluation 

factor for the classical error components for all uncertain parameters that cannot be quantified more 

accurately. 
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Equilibrium factor 𝒈(𝒑𝒕, 𝒐) 

The variability of the classical component of the equilibrium factor can be quantified with the help of 

parallel measuring of the shaft and level specific radon gas and radon progeny concentration in one 

specific year of a specific object. This information can be found in the dosimetric report for this year 

and object. Since only dosimetric reports are available for object 009 Aue, a quantification in this way 

can only be done for a few years for this object. Namely for the years for which both, radon gas and 

radon progeny measurements, are available. In the following the calculation is performed for the 

year 1968 of object 009 Aue. The measured radon gas concentration is given in 10−10Ci/l and the 

measured radon progeny concentration in 103MeV/l. Since the equilibrium factor can be calculated 

by dividing the radon progeny exposure in WLM by the radon gas concentration in Eman, the radon 

progeny concentrations in the dosimetric report have to be transformed from 103MeV/l to WLM by 

dividing them by 130. The unit 10−10Ci/l for radon gas measurements is basically the same as Eman. 

Thus, the equilibrium factors for object 009 Aue in 1968 can be calculated by 

𝑔(1968,009) =
radon progeny concentration in 103MeV/l

130 ⋅ radon gas concentration in 10−10Ci/l
. 

For the calculation the columns of the dosimetric report showing the shaft and level specific mean 

concentration values for mining and development were used. 

The multiplicative classical error component of the equilibrium factor for the year 1968 of object 009 

Aue is calculated on the log-transformed level and shaft specific equilibrium factors as 

√𝑉𝑎𝑟̂(𝑈𝛾,𝑐) ≈ √𝑉𝑎𝑟̂(𝑙𝑜𝑔(𝑔(1968,009)))

≈ 0.23.

 

As described in the concept in Section 3.2, the Berkson error component of the equilibrium factor 

can be quantified with the variability of the calculated equilibrium factors between the objects and 

over the different years for which the same value was assumed for the equilibrium factor (see Table 

10 in Küchenhoff et al. (2018, p. 45)). In Appendix 4.2.1 of Lehmann et al. (1998) the annual radon 

progeny concentrations in MeV/cm3 and the annual radon gas concentrations in Eman are shown for 

some objects and years. To calculate the equilibrium factor, the radon progeny exposure in WLM has 

to be divided by the radon gas concentration in Eman. Thus, we need to transform the annual radon 

progeny concentrations in Appendix 4.2.1 of Lehmann et al. (1998) from MeV/cm3 to WLM by 

dividing the values by 130. Hence, we calculate the equilibrium factor as 

𝑔(𝑡, 𝑜) =
radon progeny concentration in MeV/cm3

130 ⋅ radon gas concentration in Eman
. 

We use all objects and all years where both the mean radon gas concentration in Eman and the 

radon progeny concentration in MeV/cm3 are available. As for all of these possible years, all objects 

except for object 009 Aue assume an equilibrium factor of 0.3 according to Table 10 in Küchenhoff et 

al. (2018, p. 45), we omit the concentration measurements of all years of object 009 Aue. 

By log-transforming the calculated equilibrium factors of the remaining objects, we approximate the 

multiplicative Berkson error component of the equilibrium factor as 

√𝑉𝑎𝑟̂(𝑈𝛾′,𝐵) ≈ √𝑉𝑎𝑟̂(𝑙𝑜𝑔(𝑔(𝑡, 𝑜)))

≈ 0.69.

 

We will use this value of 0.69 that was quantified for the Berkson error component of the equilibrium 

factor for the Berkson error components for all uncertain parameters that cannot be quantified more 

accurately. 
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Working time factor 𝒘(𝒑𝒕) 

Following Schiager et al. (1981), Allodji et al. (2012a) describe the classical error component in the 

uncertainty in the estimation of the working time factor through a lognormal distribution with a 

standard deviation of log-transformed values of 0.04 before the mechanization of work in the mines. 

After the mechanization of work in the mines, Allodji et al. (2012a) estimate an increase in the 

uncertainty in the estimation of the working time factor which they translate by a lognormal 

distribution with a standard deviation of log-transformed values of 0.08. As described in Section 

3.2.2, a classical measurement error component arising through the imprecision of parameter 

estimation theoretically only occurred in the exposure years between 1946 and 1965. As these 

exposure years are more comparable to the period before the mechanization of work in the mines in 

the French cohort of uranium miners than to the period after the mechanization of work in the 

mines, we will make the assumption that the classical error component arising in the estimation of 

the working time factor for the entire employment period of the Wismut cohort can be described by 

a lognormal distribution with a standard deviation of log-transformed values of 0.04: 

√𝑉𝑎𝑟̂(𝑈𝜔,𝑐) ≈ 0.04. 

Ventilation correction factor 𝒄(𝒐) 

The Berkson component of the error for the ventilation correction factor 𝑐(𝑜) can be quantified 

using the number of warnings, closures and direct closures in the dosimetric report of object 009 Aue 

in 1968. We quantify the standard deviation of the multiplicative error of the ventilation correction 

factor as 

√𝑉𝑎𝑟̂(𝑈𝜍′,𝐵) ≈ √𝑉𝑎𝑟̂(𝑙𝑜𝑔(𝑛𝑤𝑎𝑟𝑛𝑖𝑛𝑔𝑠)) + 𝑉𝑎𝑟̂(𝑙𝑜𝑔(𝑛𝑐𝑙𝑜𝑠𝑢𝑟𝑒)) + 𝑉𝑎𝑟̂(𝑙𝑜𝑔(𝑛𝑑𝑖𝑟𝑒𝑐𝑡))

≈ 1.45.

 

Proportion of mined vein area from previous years 𝒑 

The classical error component of 𝑝 can be quantified using the values of the mining losses over the 

years in Wismut GmbH (1999, Chapter 2.2.2.1, p. 15). The size of the standard deviation of the 

multiplicative classical error can be obtained by the variability of the log-transformed proportions of 

losses as 

√𝑉𝑎𝑟̂(𝑈𝜋,𝑐) ≈ 0.79. 

3.4.3 Assignment error 

Following Küchenhoff et al. (2018), the magnitude of the additive assignment error can be calculated 

by averaging the within-group variability of the level and shaft specific concentration measurements. 

This is only possible for years for which dosimetric reports with the necessary information exist, 

which is the case for the year 1961. For object 009 Aue in 1961, Küchenhoff et al. (2018) estimate the 

size of the standard deviation of the assignment error arising on 𝐸(𝑡, 𝑜, 𝑗) as 

√𝑉𝑎𝑟̂(𝑈𝐸,𝐵(1961,009)) ≈ 13.95. 

We use this value for all years and objects in the Wismut cohort. 

3.4.4 Transfer error 

For the quantification of the classical measurement error component of the transfer error for filled 

gaps in the exposure assessment, we use the annual mean radon gas concentrations of object 009 

Aue for all years depicted in Table 4.2.1.2 in Lehmann et al. (1998, p. 437) until 1965, since starting 

from 1966 radon progeny concentration measurements were used for exposure assessment. To 



 54 

assess what error would have been made if instead of the measured concentration value in the 

respective year, the concentration value of the previous year or alternatively, the concentration 

value of the following year would have been used, we calculate the two ratios of 1) the 

concentration value from the previous year divided by the concentration value of the actual year and 

2) the concentration value from the following year divided by the concentration value of the actual 

year. Then, we use the standard deviation of the log-transformed ratios in order to approximate the 

multiplicative classical error component of the transfer factor for filled gaps in the exposure 

assessment in the second exposure assessment period as 

√𝑉𝑎𝑟̂(𝑈𝜏𝐽𝐸𝑀,𝑐) ≈ 0.37. 

The log-transformation in this calculation is necessary since we always parameterize the lognormal 

distribution as the mean and standard deviation of the underlying normal distribution of log-

transformed values. Note that taking the exposure values of previous years and following years leads 

to some degree of redundancy in this calculation, because the ratio of two values a and b that were 

measured in subsequent years enters once as 𝑎/𝑏 and then as 𝑏/𝑎 in this calculation. As described in 

the quantification concept in Section 3.2, we can approximate the Berkson error component of the 

transfer error for filled gaps in the exposure assessment, by the variability around the mean exposure 

value for an object in which the radon gas or radon progeny concentration values were actually 

measured separately for several years. We quantify the Berkson error component of this transfer 

error differently for measurement models M2, M3 and M4, by using either the radon gas 

concentrations (M2), the radon progeny concentrations (M3) or the radon exposures in WLM (M4) 

from object 009 Aue. Regardless of the used measurement model, we first calculate the mean values 

of the exposures for three consecutive years and then the ratios of the actual yearly exposures 

divided by these three-yearly mean exposure values. The multiplicative Berkson error component of 

the transfer factor for filled gaps in the exposure assessment can then be approximated by the 

standard deviation of the log-transformed ratios. 

For the multiplicative Berkson transfer error in M2 all mean radon gas concentration values from 

Table 4.2.1.2 Lehmann et al. (1998, pp. 436–441) until 1965 are used to obtain the standard 

deviation of 

√𝑉𝑎𝑟̂(𝑈𝜏′𝐽𝐸𝑀,𝐵) ≈ 0.33. 

For the quantification for M3 we use the radon progeny concentration values from Table 4.2.1.2 

Lehmann et al. (1998, pp. 436–441) starting from 1966, which are depicted in the unit MeV/cm3 and 

first need to be transformed to Eman by dividing them by 130 before the standard deviation of the 

multiplicative Berkson error for transfer factors in M3 can be approximated as 

√𝑉𝑎𝑟̂(𝑈𝜏′𝐽𝐸𝑀,𝐵) ≈ 0.13. 

The multiplicative Berkson error for the transfer factor in M4 is quantified with the exposure values 

in WLM from Table 2.1.1.9/1 in Lehmann et al. (1998, pp. 220-221) for the years 1955-1957 and 

1961-1988 as 

√𝑉𝑎𝑟̂(𝑈𝜏′𝐽𝐸𝑀,𝐵) ≈ 0.18. 

As described in Section 3.2.4, we use the standard deviations quantified for the temporal transfer 

error also for situations in which the exposure values measured in one object were transferred to 

another object since it would be very difficult to quantify the errors arising in this latter situation. 

Indeed, it is not clear which objects for which actual measurements exist would have been 

considered to be similar enough to transfer the measurements from one object to the other object 
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and just making the assumption that all objects are comparable might lead to an overestimation of 

this type of transfer error. 

3.4.5 Experts’ evaluation error 

Based on the advice from experts specialized in radiation monitoring, Allodji et al. (2012b) describe 

the exposure measurement error arising from the estimation of exposure values by experts through 

a lognormal distribution with a standard deviation of log-transformed values of 0.936. In the absence 

of additional information on the precision of exposure estimates performed by experts in the 

exposure assessment in the Wismut cohort, we can assume that exposure assessment was similar in 

the two cohorts and adapt the values determined by Allodji et al. (2012b) for the measurement error 
𝑈ℰ,𝑐 arising for the uncertainty in ℰ(𝑝𝑡 , 𝑜), ℰ(𝑜0, 𝑗) and ℰ∗(𝑝(𝑡, 𝑜), 𝑜0, 𝑗). 

3.5 Result of the quantification and relevance of the different sources of uncertainty 

When quantifying and accounting for uncertainty in exposure assessment in the Wismut cohort, to 

consider every aspect of this quantification would be very difficult and time-consuming for some 

sources of uncertainty (see Section 3.2 on the concept for the quantification). In this situation, it is 

important to find a trade-off between the relevance of a specific source of uncertainty in risk 

estimation and the effort that it takes to quantify and to account for this source of uncertainty. 

Concerning the relevance of the different sources of uncertainty in the Wismut cohort, we can 

deduce the following main points considering the relevance of the different sources of uncertainty: 

• In accordance with Küchenhoff et al. (2018, p. 114), we have seen in this project that 

generalization error and parameter uncertainties are the most relevant sources of uncertainty 

and it is very important to account for these sources of uncertainty in risk estimation. They do 

not only occur for a large proportion of person work years in the cohort, but due to the fact that 

both sources of uncertainty contain classical measurement error components which are shared 

for several workers of the same object and also potentially for several subsequent years of 

exposure, they can have a very large impact on risk estimation (Hoffmann et al., 2018b). 

• A parameter which deserves special attention is the proportion of the cumulative mined area in 

the previous years 𝑝. Indeed, there was a single estimation of this value 𝑝 of 20%, which affects 

all years and miners belonging to M1a (11% PPY) in the same way and Lehmann et al. (1998) 

underlines the difficulty in the determination of this parameter. 

• In accordance with Küchenhoff et al. (2018), assignment error appears to be of medium 

importance in the Wismut cohort. While it affects all exposure estimates in the cohort, it can be 

considered to only marginally affect risk estimation because of its pure unshared Berkson nature. 

To determine its exact influence on risk estimation, it is advisable to assess the impact of this 

type of error on risk estimation on simulated data with the exposure characteristics of the 

Wismut cohort. 

• Contrary to Küchenhoff et al. (2018, p. 114), we think that transfer errors and experts’ evaluation 

errors are of major importance in the Wismut cohort: Concerning transfer errors, we would 

suggest to consider these errors as special types of parameter uncertainties which can have a 

large influence on risk estimation. Concerning experts’ evaluation error, we would characterize 

this source of uncertainty as classical measurement error as it can be argued that experts can be 

seen as very imprecise measurement devices. Moreover, we expect that far more exposure 

values are affected by expert estimation than assumed by Küchenhoff et al. (2018). In our view, 

experts’ evaluation error is possibly present in a substantial proportion of person work years in 

the cohort. Based on the current information available on this type of error, which comes from 

the work of Allodji et al. (2012a), we would conclude in accordance with Küchenhoff et al. (2018) 

that there is a high degree of uncertainty in this expert estimation. 
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Table 3.1 gives for all uncertain parameters the values for the standard deviations with an 

explanation of how these values were obtained, as well as the respective measurement model where 

they occur and the assumed error type (additive or multiplicative and classical or Berkson).  

We use the quantified value of the measurement error variance of the generalization error for object 

009 Aue in 1961 and 1968 for all objects and years in M2 and M3, respectively. Since we are lacking 

any additional information to quantify the magnitude of error arising in the mean radon gas 

concentrations without mining activity at ground level and in a depth of 130m for objects 300 
Lichtenberg in 1994/1995 (𝒞𝑅𝑛,0(1994/95,300) and 𝒞𝑅𝑛,130(1994/95,300)) occurring in M6, we 

also use the quantified variance value of the generalization error for object 009 Aue in 1961 for these 
two mean radon gas concentrations. For all transfer errors 𝜏𝑒, 𝜏𝐸 and 𝜏𝐽𝐸𝑀, the quantified values of 

the transfer error 𝜏𝐽𝐸𝑀 are used. All classical error components of parameter uncertainties that could 

not be quantified more accurately, were assigned the value 0.33 from the quantification of the 

evaluation factor in Section 3.4.2, whereas all Berkson error components of parameter uncertainties 

that could not be quantified more accurately, were assigned the value 0.69 from the quantification of 

the equilibrium factor.  

The transfer of the error variances from one error component to another is defensible in this 

situation since we assume a multiplicative error structure where the magnitude of error remains 

comparable even if the uncertain parameter in itself shows a different magnitude. 
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Table 3.1: Uncertain parameters with the measurement models in which they occur, their assumed 

error types and the quantified standard deviations as well as the quantification approach. Due to 

lack of space, we abbreviated ‘classical error standard deviation’ to ‘classical standard deviation’ 

and ‘Berkson error standard deviation’ to ‘Berkson standard deviation’. 
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4 Developing a Bayesian hierarchical approach to correct for 
measurement error in the Wismut cohort 

4.1 Potential levels of complexity to describe exposure uncertainty in cohorts of uranium miners 

When accounting for exposure uncertainty in the Wismut cohort, it is advisable to consider different 

levels of complexity. As described in Chapter 2, the exposure characteristics in the Wismut cohort are 

highly heterogeneous and depend on the type of object (e.g. processing companies, surface areas, 

etc.) and the exposure assessment period, yielding a complex overall measurement error structure. A 

first possibility to reduce the complexity of the method is to reduce the cohort to homogeneous 

groups of workers. For instance, the working condition hewer in object 009 Aue starting in 1960 

represents a subsample of considerable size in the Wismut cohort with 50025 person work years 

corresponding to a proportion of person work years of 5.94%. By focusing on this subsample, we only 

need to account for the sources of exposure uncertainty present in measurement model M2 and M3 

(see Sections 2.3 and 2.4). Moreover, when focusing on hewers in the analysis, we do not have to 

account for the measurement error in the activity weighting factor as hewer is the reference 

category. Overall, there are less unknown quantities intervening in exposure estimation for such a 

subsample and focussing on a subsample makes it easier to comprehend the error structure and the 

functioning of the approaches to correct for measurement error. In this vein, we can increase the 

complexity by subsequently enlarging the subgroup of miners. In a next step, we can for instance 

focus on hewers after 1960 in all underground mining objects and then on all workers after 1960 in 

underground mining objects. By then considering all workers after 1960 in all types of objects and 

then all workers in all exposure years, it is possible to gradually increase the complexity of the 

analysis by moving from subsamples with a manageable size to the full cohort. Similarly, we can 

focus in our analysis on the subsample of workers who were employed in processing companies (see 

measurement model M5a und M5b described in Section 2.6) or on workers who were employed in 

surface areas affiliated to mining objects (see measurement model M4 described in Section 2.5). 

While this procedure makes it somewhat easier to manage the complexity in the Wismut cohort, it 

entails a number of problems and difficulties. Firstly, when estimating the association between radon 

exposure and lung cancer mortality in the Wismut cohort, we have to consider the entire working 

history of a miner and there are only few miners who spent their entire working history in one 

working condition. For instance, it is likely that only a fraction of the miners who worked as hewers in 

object 009 after 1960 spent all their person work years in this working condition. More importantly, 

even when focusing on a homogeneous subsample, we are still faced with exposure data that are 

prone to complex structures of measurement error. Measurement model M2, for instance, which 

describes the uncertainty in the exposure assessment for a hewer after 1960 in object 009 still 

assumes a combination of generalization error and parameter uncertainties entailing both a Berkson 

and a classical component and which can be shared between workers, within workers or both. In this 

sense, focusing on a subsample cannot fundamentally reduce the complexity of the assumed 

measurement models. 

An alternative approach to increase the complexity of the considered measurement error models is 

to consider simplifying assumptions which have been made in the literature when accounting for 

exposure uncertainty in occupational cohorts, and more specifically, in cohorts of uranium miners. 

Indeed, in the literature, one can find different approaches to describe exposure uncertainty in 

cohorts of uranium miners which vary in their level of complexity by making a number of simplifying 

assumptions. Table 4.1 provides an overview of these approaches with increasing complexity of the 

assumed measurement models. 

On level 1, Küchenhoff et al. (2007) and Bender et al. (2005) who are interested in the effect of 

Berkson measurement error in Cox proportional hazards models and the generation of survival times 

following Cox proportional hazards models, respectively, use data of the Wismut cohort and make 

the simplifying assumptions that errors arise on the cumulative exposure values and that exposure 
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uncertainty can be described by homogeneous measurement error which is either of Berkson or of 

classical type. 

Table 4.1: Different levels of complexity to describe exposure uncertainty in cohorts of uranium 

miners. 

 

On level 2, Allodji et al. (2012a,b,c) and Hoffmann et al. (2017) aim to correct the risk estimates in the 

French cohort of uranium miners and assume measurement error to arise on the yearly exposure 

values rather than on the cumulative exposure values as the radon exposure of an uranium miner is 

not a fixed point exposure at study entry, but ongoing during the miner’s entire working career. By 

considering radon exposure to be time-dependent, they can model the measurement errors on their 

natural level of occurrence and distinguish three periods of exposure assessment. Allodji et al. 

(2012a) assess exposure uncertainty in these three periods of exposure assessment and identify 

various sources of exposure uncertainty ranging from the precision of the measurement device to 

the approximation of the equilibrium factor and the estimation of working time. The authors suggest 

to make the simplifying assumption that these different sources of uncertainty can be combined to 

derive a global measurement error which they assume either to be unshared Berkson error for 

group-level exposure assessment or unshared classical measurement error for periods of individual 

exposure assessment. 

On level 3, Hoffmann et al. (2018b) argue against the simplifying assumption arising through the 

combination of different shared and unshared sources of uncertainty into a global unshared Berkson 

error as suggested by Allodji et al. (2012a) for the periods of group-level exposure assessment. In a 

simulation study based on the exposure characteristics of the French cohort of uranium miners, the 

authors show that a combination of shared and unshared Berkson and classical error components, 

which realistically reflects the sources of exposure uncertainty arising in a cohort of uranium miners, 

induces by far more bias in risk estimation and a more severe distortion of the exposure-response 

relationship than a pure unshared Berkson error component. When accounting for a combination of 

shared and unshared measurement error of classical and Berkson type in the French cohort of 

uranium miners, Hoffmann et al. (2018b) find that the excess hazard ratio (EHR) per 100 WLM is 

estimated to be 1.44 (95% credible interval: [0.66; 2.69]) compared to an estimated EHR per 100 
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WLM of 0.87 (95% credible interval: [0.49; 1.36]) and 0.90 (95% credible interval: [0.51; 1.41]) when 

ignoring measurement error and when solely accounting for unshared measurement error as 

suggested by Allodji et al. (2012a), respectively (results presented at the 40th Annual Conference of 

the International Society for Clinical Biostatistic in Leuven, Belgium in 2019). 

On level 4, Küchenhoff et al. (2018) assess exposure uncertainty in the Wismut cohort and distinguish 

different object types with varying exposure assessment, which lead to different measurement 

models. Moreover, they distinguish the following sources of uncertainty that are either of Berkson or 

classical type: generalization error, parameter uncertainties, assignment error, transfer error, 

documentation error, experts’ evaluation error, procedural measurement error and approximation 

error (Küchenhoff et al. 2018, p. 114). 

Based on the extensive characterization of exposure uncertainty performed by Küchenhoff et al. 

(2018), on level 5 we can further increase the complexity by applying the rationale that Hoffmann et 

al. (2018b) applied to the French cohort of uranium miners to the Wismut cohort by assuming that 

the sources of uncertainty identified by Küchenhoff et al. (2018) can be mixtures of Berkson and 

classical type and that the dependencies arising in the exposure assessment of the Wismut cohort 

can be best described as shared measurement error (see Chapter 2). While this combination leads to 

complex measurement error models that are challenging to implement in the Wismut cohort, it 

makes it possible to define measurement models that realistically reflect the exposure uncertainties 

arising in this cohort. Based on the results of Hoffmann et al. (2018b) it is likely that these complex 

measurement models induce more bias in risk estimation in the Wismut cohort than simple models 

that assume measurement errors to arise on the cumulative exposure during the entire working 

history of a miner (level 1) or models that assume unshared Berkson error for periods of group-

exposure assessment (level 2). In order to assess the impact of these simplifying assumptions on the 

Wismut cohort, we will compare the impact of measurement error and the estimated risk when 

assuming measurement models of varying degree of complexity in the simulation study described in 

Chapter 5 and in our analyses on the real data of the Wismut cohort. 

4.2 Requirements for a method to account for exposure uncertainty in the Wismut cohort 

In order to account for exposure uncertainty in the association between radon progeny and lung 

cancer mortality in the Wismut cohort, it is necessary to choose a method which is applicable for 

proportional hazards models. It is advisable to choose a method that is flexible enough to be applied 

for different types of proportional hazards models, in particular including both Cox models of the 

more classical structure ℎ𝑖(𝑡) = ℎ0(𝑡)exp(𝑋𝑖𝛽) and EHR models of the form ℎ𝑖(𝑡) = ℎ0(𝑡)(1 +

𝑋𝑖𝛽), which are more commonly used in radiation epidemiology. Additionally, it is important to be 

able to account for different risk models when modelling the association between radon exposure 

and lung cancer mortality, for instance to account for effect modification by the exposure rate, which 

has been identified as an important effect modifying variable in cohorts of uranium miners in general 

(Lubin et al., 1995a; Vacquier et al., 2008) and in the Wismut cohort in particular (Walsh et al., 2010). 

Based on the characterization of measurement error performed by Küchenhoff et al. (2018) and on 

the reflections exposed in the previous chapters, we see that the structure of measurement error in 

the Wismut cohort is very complex. As shown in the measurement models presented in Chapter 2, 

there are several distinct sources of uncertainty, which may vary as a function of year of exposure, 

the object and the activity of a worker in the Wismut cohort. The measurement models we 

presented in Chapter 2 reveal that there are several uncertain quantities that simultaneously 

intervene in the estimation of radon exposure for a worker. These uncertain quantities are prone to 

distinct types of measurement error: For most activities, objects and years of exposure, we are 

confronted with one or several types of generalization error, which are assumed to be of classical 

type and shared between workers and with an assignment error which is of Berkson type and 

unshared. Additionally, there are several uncertain parameters intervening in exposure estimation 

for a given activity, exposure year and object and each uncertain parameter can be assumed to 
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include both a Berkson and classical measurement error component, which are shared between 

workers which were employed in the same object and year. In light of these facts, it is important to 

apply a method for measurement error correction in the Wismut cohort, which provides enough 

flexibility to realistically reflect the combination of the different types of measurement error and 

their heterogeneity arising in the exposure estimation in this cohort. 

4.3 Approaches to account for measurement error in proportional hazards models 

A common phenomenon when analyzing survival data through proportional hazards models is right-

censoring, i.e. the failure time is not observed for every person 𝑖 in the data set. Therefore, the 

outcome variable can be described by 𝑌𝑖 = min(𝑇𝑖, 𝐶𝑖). 𝑌𝑖  is either the failure time 𝑇𝑖 or the time 

until censoring 𝐶𝑖. An additional indicator 𝛿𝑖, which is 1 if 𝑇𝑖 ≤ 𝐶𝑖  and 0 otherwise, provides the 

information of censoring or death for each person. 

The most common approach to model the association between right-censored failure time and 

covariates (here the exposure to radon progeny) is the proportional hazards model. This model 

describes the instantaneous hazard rate ℎ𝑖(𝑡) for person 𝑖 by: 

ℎ𝑖(𝑡) = ℎ0(𝑡)𝜑(𝑋𝑖 , 𝛽) 

where ℎ0(𝑡) is a baseline hazard which is equivalent to the instantaneous hazard rate for a person 

with no exposure to radon progeny. The function 𝜑(𝑋𝑖, 𝛽) is used to model the hazard ratio as a 

function of the exposure 𝑋𝑖, and describes the hazard ratio between two persons where one is 

exposed with an exposure value of 𝑋𝑖  and the other is not exposed. The original and widely used 

version of the proportional hazards model was proposed by Cox (1972), who assumes a log-linear 

relation, i.e. 𝜑(𝑋𝑖 , 𝛽) = exp(𝑋𝑖𝛽). The exponential function ensures positivity for all real numbers. 

Therefore, no further constrains for 𝛽 are necessary in contrast to other models like the Excess 

Relative Risk (ERR) model. A particularity of the proportional hazards model as proposed by Cox is 

that inference for this model can be conducted by relying on a partial, rather than a full likelihood 

(Cox, 1975). In this semi-parametric form of the proportional hazards model, no functional 

formulation for ℎ0(𝑡) is necessary. 

A problem occurs if the exposure is prone to measurement error. Then it is not possible to formulate 

the hazard function as a distinct product of the baseline hazard which is only dependent on time 𝑡 

and a term that depends only on the data and parameters to be estimated (Prentice, 1982; Buzas, 

1998; Yi and Lawless, 2007). Moreover, similar to logistic regression, measurement errors (classical as 

well as Berkson) can lead to a bias in the risk estimates in proportional hazards models (Kim et al., 

2006; Küchenhoff et al., 2007). In the case of a single covariate with non-differential additive classical 

measurement error following a normal distribution and rare failure events, Hughes (1993) shows 

that the bias is approximately equal to the bias in a linear regression with a continuous outcome 

variable, i.e. the estimated 𝛽 is attenuated by the factor 𝜎𝑥
2/(𝜎𝑥

2 + 𝜎𝑢
2) where 𝜎𝑢

2 is the the error 

variance. For a non-differential normally distributed additive classical error, Keogh et al. (2012) 

showed in a simulation study that non-linear associations between exposure and outcome appear 

more linear. 

To conduct statistical inference taking measurement error into account one starts, like in a standard 

approach, specifying a response model 𝑓(𝑌|𝑋, 𝜃). This model, also often denoted disease model in 

epidemiology, formulates the relation between the outcome 𝑌𝑖  and the exposure covariate 𝑋𝑖  

(Richardson and Gilks, 1993a,b; Buzas et al., 2014). To account for measurement error, one 

additionally has to specify a measurement model. In the case of a classical error, this model describes 

the distribution of the observed exposure conditional on its true value. For a Berkson error, it is the 

other way around, i.e. the distribution of the true value given the observed. Depending on the 

approach to correct for measurement error, it is necessary to specify an additional parametric model 

which describes the probability distribution of true (and unobserved) exposure in the general 

population. For these called structural methods, one must therefore assign a known family of 

distributions to 𝑋, also known as exposure model (Congdon, 2006). In functional methods, on the 
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other hand, this is not necessary because the exposure is either seen as unknown and fixed or it can 

be seen as random, but with minimal assumptions concerning the distribution to be assumed (Carroll 

et al., 2006). In the literature, there is evidence that structural methods outperform functional 

methods concerning the efficiency if the exposure model is specified correctly. If this is not the case, 

they may produce erroneous results (Yi et al., 2015; Buzas et al., 2014; Schafer and Purdy, 1996; 

Küchenhoff and Carroll, 1997; Carroll et al., 2004; Messer and Natarajan, 2008). An overview of 

different methods to account for measurement error will be presented as follows. Firstly, the two 

most popular functional approaches, regression calibration and simulation extrapolation (SIMEX), will 

be introduced. Afterwards, two structural approaches will be described: the likelihood-based and the 

Bayesian approach. 

4.3.1 Regression calibration 

Regression calibration is a very popular technique and easy to understand. The basic idea is to 

substitute the unobserved true exposure by a predicted value from a calibration function. The 

calibration function predicts the expected value of 𝑋𝑖  given the observed data point 𝑍𝑖  and other 

covariates 𝑉𝑖. Standard inference is then conducted with the replaced values which yields an 

unbiased estimate. The method has in general three steps (Carroll et al., 2006): 

1. Estimation of the calibration function 𝐸(𝑋|𝑍, 𝑉); 

2. Fit the disease model using 𝐸(𝑋|𝑍, 𝑉) instead of 𝑍; 

3. Calculate valid standard errors to account for the uncertainty in the first step. 

To calculate the expected value of 𝑋, it is in general assumed that 𝐸(𝑋|𝑍, 𝑉) is a function of 𝑍 and 

other covariates 𝑉. An example would be to assume a linear connection. The result would be a linear 

regression model: 

𝐸(𝑋𝑖(𝑡)|𝑍𝑖(𝑡), 𝑉𝑖1, … , 𝑉𝑖𝑝) = 𝛼0 + 𝛼1𝑍𝑖(𝑡) +∑𝛾𝑘

𝑝

𝑘=1

𝑉𝑖𝑘 . 

To use a model like this, a validation sample is needed where the true and observed covariates are 

measured (Thiébaut et al., 2007; Murad et al., 2016). This means that some true values of 𝑋 must be 

at hand. If this is not the case, other options exist. For example, one could use an unbiased 

instrument 𝑇 which is available for a subset of 𝑋 and regress in step 1 𝑇 on 𝑍 and 𝑉. Another option 

would be to use replicate data. To use this approach, 𝑘𝑖 replicates of each 𝑋𝑖  must be available. Then 

it is possible to calculate the covariance matrix of the errors and use a linear approximation of the 

expectation of the true exposure given the error-prone 𝑍 and the replicates. 

Regression calibration is a straightforward method. However, as stated by Carroll et al. (2006), ’No 

simple approximation can always be accurate’, the method has its limitations. As stated above, some 

additional information like a calibration sample, repeated measurements or an instrumental variable 

is necessary. Moreover, regression calibration could lead to biased estimates. In linear models, 

regression calibration results in an unbiased estimate, though this does not hold for non-linear 

models like logistic or Cox regression (Augustin et al., 2008; Liao et al., 2011; Bartlett and Keogh, 

2016; Althubaiti and Donev, 2016). Wang et al. (1997) provide the asymptotic theory for regression 

calibration in proportional hazards models. They also show that regression calibration, despite the 

inconsistency, yields a good finite sample performance for classical measurement error and non-

time-varying covariates in the presence of a considerable validation sample. However, in complex 

settings, the estimators calculated by regression calibration can be even more biased than using a 

simple estimator which ignores the measurement error (Küchenhoff and Carroll, 1997). 

In a last step in regression calibration, it is needed to adjust the standard errors of the estimates. The 

method uses two disjoint steps. In the first step, it calculates the conditional expectations of the true 

exposure given the error-prone measurement and other covariates. In the second step, these 
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expectations are used as a plug-in estimate for the true values 𝑋𝑖. This means that the uncertainty 

stemming from the estimation in the first step will be ignored. Therefore, one will get wrong 

standard errors and confidence intervals. Several authors proposed to apply bootstrap techniques, to 

remedy this problem (Carroll et al., 1996; Augustin et al., 2008; Spiegelman et al., 2011; Buonaccorsi 

et al., 2015). As an alternative, it is possible to use sandwich methods. 

Allodji et al. (2012c) implement two variants of regression calibration, which he refers to as 

“substitution method” and “estimation calibration method”, in a simulation study to study their 

performance when accounting for multiplicative exposure measurement error when analyzing the 

association between radon exposure and lung cancer mortality in the French cohort of uranium 

miners through Poisson regression. 

4.3.2 Simulation extrapolation (SIMEX) 

Simulation extrapolation (SIMEX) was originally proposed by Cook and Stefanski (1994). The basic 

idea is to model a functional relation between the estimated coefficient in a model and the 

measurement error. SIMEX is, as regression calibration, only approximately unbiased. Carroll et al. 

(1996) and Carroll and Stefanski (1997) provide the asymptotic theory behind the method (assuming 

classical additive normal distributed error). SIMEX has two different parts. The first part is a 

simulation step. It is required that the measurement error variance 𝜎𝑢
2 is known or estimated well 

enough. Define for 𝜆𝑠𝑖𝑚 ≥ 0: 

𝑍𝑏,𝑖(𝜆𝑠𝑖𝑚) = 𝑍𝑖 +√𝜆𝑠𝑖𝑚 𝑈𝑏,𝑖, 𝑖 = 1,… , 𝑛, 𝑏 = 1,… , 𝐵 

where 𝑈𝑏,𝑖 follows a normal distribution with zero mean. One can draw pseudo-random numbers 

since the variance 𝜎𝑢
2 of 𝑈𝑏,𝑖 is known. The term (1 + 𝜆𝑠𝑖𝑚) inflates the variance of the error term by 

a multiplicative factor. For 𝜆𝑠𝑖𝑚 = 0, the generated errors get multiplied by a factor of zero. Hence, 
only the observed exposure remains. For 𝜆𝑠𝑖𝑚 → −1, the mean squared error (MSE) of 𝑍𝑏,𝑖(𝜆𝑠𝑖𝑚), 

i.e. MSE(𝑍𝑏,𝑖(𝜆𝑠𝑖𝑚)) = 𝐸([𝑍𝑏,𝑖(𝜆𝑠𝑖𝑚) − 𝑋𝑖]
2|𝑋𝑖), converges to zero, which can be seen as a key 

property (Carroll et al., 2006). For the simulation part, one simulates 𝐵 times 𝑍𝑏,𝑖(𝜆𝑠𝑖𝑚) and conducts 

the naive estimation procedure for a fixed value of 𝜆𝑠𝑖𝑚 which results in 𝐵 estimates 𝜃𝑏(𝜆𝑠𝑖𝑚). 

Afterwards one calculates the mean over all estimates: 

𝜃(𝜆𝑠𝑖𝑚) =
1

𝐵
∑𝜃𝑏

𝐵

𝑏=1

(𝜆𝑠𝑖𝑚). 

This is done for a fine grid of 𝑘 values 𝜆𝑠𝑖𝑚 ≥ 0. Since one has to sample and estimate a model 𝐵 × 𝑘 

times, the simulation step can be computationally expensive depending on the situation. After the 

simulation step, an extrapolation step follows. Here, the values of 𝜃(𝜆𝑠𝑖𝑚) get extrapolated back to 

𝜆𝑠𝑖𝑚 = −1. This leads to the simex estimator 𝜃simex. The performance of this estimator may heavily 

depend on the considered extrapolation function (Misumi et al., 2018). To get valid standard errors, 

it is again possible to use bootstrap techniques or a sandwich estimator (Cook and Stefanski, 1994; 

Carroll et al., 1996, 2006). 

Several extensions for SIMEX for more or less special cases were developed. Nolte (2007) developed 

the M-SIMEX which can be used to account for multiplicative measurement error without using a log-

transformation to get an additive error structure. Oh et al. (2018) used a SIMEX algorithm to correct 

for a multiplicative measurement error in the failure time outcome. In the field of radiation 

epidemiology, Masiuk et al. (2016) propose a version of SIMEX to account for classical additive and 

Berkson multiplicative errors in the association between thyroid doses caused by the Chernobyl 

accident and thyroid cancer in a cohort study in Ukraine. Allodji et al. (2012c) assess the performance 

of SIMEX when accounting for multiplicative Berkson and classical measurement error in Poisson 

regression in their simulation study based on the French cohort of uranium miners and Allodji et al. 

(2015) and Misumi et al. (2018) apply SIMEX when studying the association between radiation doses 
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and cancer incidence in the Life Span Study (LSS) of atomic bomb survivors in Hiroshima and 

Nagasaki through Poisson regression. 

4.3.3 Likelihood-based approaches 

After the presentation of two functional methods we switch to structural methods. These methods 

have the advantage that they can be applied to more general problems, lead to fully consistent 

estimators and more efficiency, i.e. smaller standard errors (Schafer and Purdy, 1996; Küchenhoff 

and Carroll, 1997; Messer and Natarajan, 2008). The resulting likelihood-based confidence intervals 

are more reliable than intervals obtained from SIMEX or regression calibration (Buzas et al., 2014), in 

particular for non-linear models (Carroll et al., 2006; Higdon and Schafer, 2001). These advantages 

are bought by stronger assumptions about the distribution of the exposure 𝑋 (Carroll et al., 2006). 

Therefore, the method relies heavily on a correct specification of the exposure model (for classical 

measurement error) (Li and Lin, 2003; Gustafson, 2004). If this model is misspecified, the likelihood 

approach may be biased (see e.g. Li and Lin (2003)). 

To account for measurement error in a likelihood-based approach, one has to combine the disease, 

the measurement and the exposure model (for classical error) to a joint likelihood. In the case of a 

classical measurement error, the likelihood can be formulated as 

𝑓(𝑌, 𝑍|𝜃) = ∫ 𝑓(𝑌, 𝑍, 𝑋|𝜃)𝑑𝑥 = ∫ 𝑓(𝑦|𝑋, 𝜃)𝑓(𝑍|𝑋, 𝜃)𝑓(𝑋, 𝜃)𝑑𝑥 

and for Berkson error with a modification: 

𝑓(𝑌, 𝑍|𝜃) = ∫ 𝑓(𝑌, 𝑍, 𝑋|𝜃)𝑑𝑥 = ∫ 𝑓(𝑦|𝑋, 𝜃)𝑓(𝑋|𝑍, 𝜃)𝑑𝑥 

To obtain 𝑓(𝑌, 𝑍|𝜃), one has to evaluate an integral. For some cases, this can be done analytically, 

e.g. if all distributions are normal (Schafer and Purdy, 1996). In other cases, reasonable 

approximations exist. However, for most problems numerical methods must be used which leads to a 

high computational burden (Hu et al., 1998; Messer and Natarajan, 2008; Guolo and Brazzale, 2008; 

Buonaccorsi, 2010; Torabi, 2013). 

4.3.4 Bayesian approaches 

Starting from the likelihood-based approach, the Bayesian approach is not far away. As before, one 

starts by formulating a disease, a measurement and possibly an exposure model (for classical error). 

The difference lies in the view of parameters: In the likelihood approach, these parameters are 

unknown but fixed. In the Bayesian approach, they are assumed to be random. Therefore, one has to 

assign a prior distribution to each parameter. This could be an advantage in some situations: One can 

easily incorporate additional information about the parameters in a natural way. Moreover, the 

Bayesian approach gives an easy opportunity to take external information into account, e.g. from 

other studies (Carroll et al., 2006). If no additional information is available, one can use non-

informative or flat priors, even though this may lead to non-identifiability issues in particular cases. 

As described before, the integral in the likelihood-based approach could lead to a heavy 

computational burden. From a Bayesian point of view, the standard method of integrating over 

unknown quantities is the Markov chain Monte Carlo (MCMC) algorithm. Another possibility is 

Integrated Nested Laplace Approximation (INLA). Hereafter, both methods are briefly described. 

The general aim of Bayesian inference is to connect the information from the data with the 

information from the priors to obtain the posterior distribution. An analytical calculation of the 

posterior distribution is only possible in very simple cases. But with the development of MCMC, in 

particular of the Metropolis-Hastings (MH) algorithm and the Gibbs sampler, it was possible to do 

inference with virtually any complex model (Metropolis et al., 1953; Hastings, 1970; Geman and 

Geman, 1984; Brooks et al., 2011). MCMC algorithms are numerical methods to sample from the 

posterior distribution. The algorithm creates a Markov chain which converges to the posterior 

distribution as stationary distribution. After convergence to the stationary distribution, the resulting 

values can be seen as draws from the posterior. If the chain runs long enough, the posterior is 
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sufficiently approximated. MCMC methods provide a rather general framework doing inference. This 

gives more freedom to focus on the development of accurate and realistic models without thinking 

too much about its computational feasibility in the first place. Richardson and Gilks (1993a) introduce 

a framework on how measurement models can be incorporated in a Bayesian manner by using Gibbs 

sampling to obtain posterior distributions. See for example Bartell et al. (2017) for a Bayesian 

approach to incorporate external information and Berkson error into an epidemiologic exposure-

response analyses. 

MCMC could approximate the posterior arbitrarily exact if computational resources and time would 

be infinite. However, in reality we want to obtain parameter estimates in finite time and MCMC 

sampling can become very time-consuming, especially in cases where the space of latent variables is 

very high-dimensional. With this in mind, Rue et al. (2009) propose INLA for structured additive 

regression models. This method approximates the marginal posteriors of the parameters of interest 

in a non parametric way. However, INLA relies heavily on normally distributed priors concerning the 

unknown quantities. Martins and Rue (2012) further developed the method for distributions which 

are not directly normal but near-normal (see Martins and Rue (2012) for more details). Muff et al. 

(2015) developed the INLA approach further to deal with measurement errors (classical and Berkson) 

and Muff et al. (2017) used INLA to deal with a combination of Berkson and classical measurement 

error with survival data. However, a quasi-normal assumption is always mandatory which limits the 

application to general problems. 

The combination of the Bayesian hierarchical approach with MCMC provide greater flexibility than 

the structural approaches and likelihood based approaches. Hoffmann et al. (2017) use a Bayesian 

hierarchical approach to account for unshared heteroscedastic Berkson and classical measurement 

error when analyzing the association between radon exposure and lung cancer mortality in the 

French cohort of uranium miners through proportional hazards models. After studying the impact of 

more complex error structures with Berkson and classical measurement error components which can 

be shared and unshared in this cohort, Hoffmann et al. (2018b) suggest to use a Bayesian hierarchical 

approach to account for these complex error structures. 

4.4 A Bayesian hierarchical approach to account for measurement error 

As described in Sections 4.3.3 and 4.3.4, Bayesian hierarchical approaches are very flexible when it 

comes to the correction of measurement error. With the complex error structures in mind as 

presented in Chapter 2, hierarchical models allow to distinguish various levels of information 

(Greenland, 2000). Thus, it is possible to design a large and complex model by defining a disease 

model, a measurement model and (in case of classical measurement error) an exposure model and 

linking them by conditional independence assumptions (Richardson, 1996; Richardson et al., 2002; 

Ferrari et al., 2008). In contrast to many frequentist approaches, the definition of complex disease 

models including proportional hazards models to estimate EHRs is straightforward in a Bayesian 

hierarchical approach. Hereafter, we first describe the approach for very simple measurement error 

models (Berkson and classical homoscedastic) and then for the more complex and more realistic 

measurement model M2 (as defined in Section 2.3). 

4.4.1 The disease model 

We model lung cancer mortality in the Wismut cohort by assuming a disease model, which describes 

the association between the right-censored variable time until death by lung cancer 𝑌𝑖  of miner 𝑖, 𝑖 ∈

{1,… , 𝑛} and the true cumulative radon exposure of miner 𝑖 𝑋𝑖
𝑐𝑢𝑚(𝑡) at time 𝑡. Traditionally, the 

association between radiation exposure and cancer mortality is described through grouped Poisson 

regression models in radiation epidemiology. It can be shown that in the case of a piecewise 

exponential survival distribution and categorical covariates, using a grouped Poisson regression 

modelling approach is equivalent to the analysis of survival times via proportional hazards models 

(Laird and Olivier, 1981). However, this approach involves the categorisation of continuous exposure 
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values and leads to the loss of information on the variance in each stratum as exposure values are 

typically averaged over the person-years in a stratum. More importantly, it is known in the literature 

that the categorisation of a continuous covariate with non-differential measurement error will in 

many cases lead to differential misclassification (Flegal et al., 1991). Finally, a Poisson regression 

modelling approach would impede the modelling of the individual. For these reasons, we chose to 

describe the association between radon exposure and lung cancer mortality in the Wismut cohort 

through proportional hazards models. In these models, the instantaneous hazard rate of death by 

lung cancer of miner 𝑖 at age 𝑡, ℎ𝑖(𝑡) is modeled through the following EHR model: 

ℎ𝑖(𝑡) = ℎ0(𝑡)(1 + 𝛽𝑋𝑖
cum(𝑡)). 

To account for the complex patterns of exposure uncertainty in the Wismut cohort, we combine this 

disease model with different measurement models, which describe different types and magnitudes 

of error according to period of exposure and the type of objects (underground objects, open pit 

objects and surface areas associated to mining objects) in order to reflect changes in the methods of 

exposure assessment. In order to avoid the so-called time-dependent bias in survival analysis which 

arises whenever the future exposure status of an individual is analysed as being known from the 

beginning of follow-up (Walraven et al., 2004; Beyersmann et al., 2008; Wolkewitz et al., 2012; 

Barnett et al., 2011), we partition the follow-up time of the miners in the Wismut cohort in intervals 

at which the cumulative exposure was constant. By doing so, we create additional rows in the data 

set that we will refer to as “pseudo miners” where each time period at which cumulative exposure of 

a miner remained constant is represented as an independent row in the data set (Therneau and 

Grambsch, 2000; Therneau and Crowson, 2013). This data format is also referred to as long format as 

opposed to a wide format in which each worker is represented as one row and the information on 

yearly exposure values are given through additional columns. 

4.4.2 Incorporating a single measurement error 

In this section, we describe how a single homoscedastic measurement error (classical or Berkson) can 

be modeled via a Bayesian approach. To incorporate a classical measurement error, it is necessary to 

define three submodels: a disease model, a measurement model and an exposure model (Richardson 

and Gilks, 1993a). The models can be written in the following general forms: 

[𝑌|𝑋, 𝜃𝑑] (disease model)

[𝑍|𝑋, 𝜃𝑚] (measurement model)

[𝑋|𝜃𝑒] (exposure model)

 

where 𝑌 is the outcome, 𝑋 is the true and unknown exposure and 𝑍 an error-prone version of 𝑋. 

𝜃𝑑 , 𝜃𝑚 and 𝜃𝑒 are additional model parameters for each submodel. 

In a Bayesian hierarchical framework, these models can be linked by using conditional independence 

assumptions. We are interested in the joint posterior distribution [𝛉|𝑌, 𝑍] with 𝛉 = (𝜃𝑑 , 𝜃𝑚, 𝜃𝑒). The 

joint posterior distribution is the conditional distribution of the unknown parameters of interest 𝛉 

(and possibly the latent exposure 𝑋) given the observed data, i.e. the outcome 𝑌 and the error-prone 

version of the exposure 𝑍. The corresponding joint posterior distribution is given by: 

[𝛉, X|𝑌, 𝑍]  ∝ [𝜃𝑑][𝜃𝑚][𝜃𝑒][𝑋|𝜃𝑒][𝑍|𝑋, 𝜃𝑚][𝑌|𝑋, 𝜃𝑑] 

where the first three terms are the prior distributions for the unknown parameters in the different 

models. 

When the aim is to describe a Berkson error structure, only two submodels have to be specified: 

[𝑌|𝑋, 𝜃𝑑] (disease model)

[𝑋|𝑍, 𝜃𝑚] (measurement model)
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Figure 4.1: DAG for a single time-invariant classical measurement error. 

 

Figure 4.2: DAG for a single time-invariant measurement error of Berkson type. 

It is not necessary to formulate an exposure model itself since the distribution of 𝑋 is implicitly 

defined in the measurement model. For an illustration of the different models, it is possible, to 

represent them as a DAG (Jordan, 2004). Figure 4.1 shows the DAG for a classical measurement 

model and Figure 4.2 for Berkson error. 

Since the true exposure 𝑋 is not observable, the posterior distribution is derived by integrating over 

𝑋. In this vein, the posterior is given by 
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[𝛉|𝑌, 𝑍] = ∫[
𝑋

𝛉, 𝑋|𝑌, 𝑍] 𝑑𝑋

∝ ∫[
𝑋

𝛉, 𝑋, 𝑌, 𝑍] 𝑑𝑋
 

Due to the integral over the unknown 𝑋, a closed form can be derived only in very simple cases and 

the integral could be approximated numerically. However, since the integral is often high-

dimensional and numerical integration scales very poorly due to the curse of dimensionality (Hastie 

et al., 2009), it is necessary to use another approach. MCMC techniques provide enough flexibility 

and scale much better with the dimension of 𝑋 and are therefore a good choice. Section 4.5 provides 

a more comprehensive description of the used technique. Since MCMC can be easily generalized to 

more complex models, we continue with more complex error structures. 

4.4.3 Incorporating more complex measurement error structures: M2 

The error structures in the Wismut cohort are much more complex than the simple pure Berkson or 

classical measurement error models which were described in the previous section. Therefore, it is 

required to use more sophisticated models. By using the Bayesian hierarchical approach this can be 

done in a straightforward manner. 

 

 

Figure 4.3: Hierarchical model combining a disease model with measurement model M2 to describe exposure 
uncertainty in underground mining objects in Saxony and Thuringia as well as in development objects in the 
second exposure assessment period. Due to the limited space and for a clearer presentation, no measurement 
error variances for 𝑡𝐸  and 𝜏𝐸(𝑡) are shown here. Likewise, we omit the assignment error as we will omit it in the 
following presentation. 
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Since the Wismut cohort exhibits many different error structures depending on the methods of 

exposure assessment, it is not possible to use a single measurement model for all periods of 

exposure assessment. Hereafter, only measurement error model M2 will be described exemplarily. 

The full DAG is depicted in Figure 4.3. Note that this is an extended version of the DAG from Section 

2.3: While the DAG in Figure 2.7 only depicted the disease and the measurement model, in Figure 4.3 

we additionally show the exposure model describing the distribution of the various latent variables 

occurring in M2. 

As can be seen in the DAG, the model consists of several parts where each error-prone quantity 

exhibits its own measurement and exposure model. The outcome 𝑌𝑖  for individual 𝑖 depends on a 

time-varying covariate 𝑋𝑖
𝑐𝑢𝑚(𝑡). For more details on the challenges associated with the time-varying 

nature of 𝑋𝑖
𝑐𝑢𝑚(𝑡), see Section 4.6.2. The model includes the following unknown quantities (which 

are all in circles in the DAG): 

• Parameters to be estimated (marked in orange in the DAG): 
𝛽, 𝜆, 𝛼𝜔 , 𝛽𝜔, 𝛼𝛾 , 𝛽𝛾 , 𝛼𝜑 , 𝛽𝜑, 𝜇𝒞 , 𝜎𝒞 where 𝛽 and 𝜆 are the parameters of the disease model and 

the rest are parameters of the exposure model. We omit 𝜏𝐸 for brevity. 

• Latent variables: 

𝜑(𝑜, 𝑗), 𝜑′(𝑡, 𝑜, 𝑗), 𝛾(𝑝𝑡 , 𝑜), 𝛾′(𝑡, 𝑜), 𝜔(𝑝𝑡), 𝜔′(𝑡, 𝑜), 𝜏𝐸 ′(𝑡), 𝜏𝐸 , 𝒞𝑅𝑛(𝑡, 𝑜), 𝑋𝑖(𝑡) 

We have two parameters for the exposure model of each of the factors (e.g. 𝛼𝜔 and 𝛽𝜔 for 𝜔). These 

parameters depend on the assumed exposure distribution. In the case of a Beta distribution, these 
parameters are 𝛼(⋅) and 𝛽(⋅) and 𝜇(⋅) and 𝜎(⋅) for the normal and the lognormal distribution. 

The joint posterior can be expressed as 

[𝜃, 𝑋| ⋅] =  [𝛽][𝜆][𝛼𝜔][𝛽𝜔][𝛼𝛾][𝛽𝛾][𝛼𝜑][𝛽𝜑][𝜇𝒞][𝜎𝒞] ×

∏[

𝑖,𝑡

𝑌𝑖|𝜆, 𝛽, 𝑋𝑖
𝑐𝑢𝑚(𝑡)] ×

∏[

𝑖,𝑡

𝑋𝑖(𝑡)|𝒞𝑅𝑛(𝑡, 𝑜), 𝜑′(𝑡, 𝑜, 𝑗), 𝛾′(𝑡, 𝑜), 𝜔′(𝑡, 𝑜), 𝜏𝐸 ′(𝑡), 𝑙(𝑖, 𝑡, 𝑜, 𝑗)] ×

∏[

𝑡,𝑜

𝜔′(𝑡, 𝑜)|𝜎𝜔′,𝐵
2 , 𝜔(𝑝𝑡)]∏[

𝑝𝑡

𝑤(𝑝𝑡)|𝜎𝜔,𝑐
2 , 𝜔(𝑝𝑡)]∏[

𝑝𝑡

𝜔(𝑝𝑡)|𝛼𝜔, 𝛽𝜔] ×

∏[

𝑡,𝑜

𝛾′(𝑡, 𝑜)|𝜎𝛾′,𝐵
2 , 𝛾(𝑝𝑡 , 𝑜)]∏[

𝑝𝑡,𝑜

𝑔(𝑝𝑡 , 𝑜)|𝜎𝛾,𝑐
2 , 𝛾(𝑝𝑡 , 𝑜)]∏[

𝑝𝑡,𝑜

𝛾(𝑝𝑡 , 𝑜)|𝛼𝛾 , 𝛽𝛾] ×

∏[

𝑡,𝑜,𝑗

𝜑′(𝑡, 𝑜, 𝑗)|𝜎𝜑′,𝐵
2 , 𝜑(𝑜, 𝑗)]∏[

𝑜,𝑗

𝑓(𝑜, 𝑗)|𝜎𝜑,𝑐
2 , 𝜑(𝑜, 𝑗)]∏[

𝑜,𝑗

𝜑(𝑜, 𝑗)|𝛼𝜑, 𝛽𝜑] ×

∏[

𝑡,𝑜

C𝑅𝑛(𝑡, 𝑜)|𝜎𝒞,𝑐
2 , 𝒞𝑅𝑛(𝑡, 𝑜)]∏[

𝑡,𝑜

𝒞𝑅𝑛(𝑡, 𝑜)|𝜇𝒞 , 𝜎𝒞]

 

where we use the notation [𝜃, 𝑋| ⋅] to write the distribution of 𝜃 and the latent true exposure 𝑋 

conditioned on everything else. For brevity, we omit 𝑙(𝑖, 𝑡, 𝑜, 𝑗) and 𝜏𝐸 ′(𝑡) in the following when we 

refer to measurement model M2. We are therefore left with four constituent factors representing 

the latent true exposure. The joint posterior has no closed solution. Therefore, MCMC methods seem 

to be a proper way to conduct inference. The following two sections describe how MCMC works in 

general and how it is implemented in the context of a given error structure. 

4.5 Conducting Bayesian inference through Markov Chain Monte Carlo (MCMC) methods 

As described before, the posterior distribution cannot be derived in a closed form in the most 

practical settings. Therefore, it is necessary, to use computational methods for an adequate 

approximation. The possibly most flexible way to do this are MCMC methods. By using an MCMC 

algorithm, it is possible to draw samples from a complex distribution without knowing the 
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normalizing constant which requires in general the calculation of a potential high-dimensional 

integral (Brooks, 2003; Green et al., 2015). 

MCMC algorithms generate a discrete-time Markov chain. A Markov chain is a collection of random 

variables 𝑆t (states) where an index t = 1,2,… t,t+1, … defines a natural ordering, i.e. represents 

equally distant time points (note that we use a non-cursive to indicate the index of a Markov chain in 

contrast to 𝑡 which indicatees the actual time domain). The variables satisfy the Markov property 

which states that the conditional distribution of the future state 𝑆t+1 only depends on the previous 

state 𝑆t+1, but not on the states before 𝑆t i.e. [𝑆t+1|𝑆t, 𝑆t-1, 𝑆t-2, . . . , 𝑆1, 𝑆0] = [𝑆t+1|𝑆t], where 𝑆k refers 

to the state of the chain at time 𝑘 and 𝑆0 refers to the initial state of the chain. Under certain 

conditions, a Markov chain converges to a stationary distribution. See for instance Roberts and Smith 

(1994) or Robert and Casella (2004). The realizations from the chain can be seen as draws from this 

stationary distribution. In the context of Bayesian inference, this distribution is the joint posterior 

distribution of the model. MCMC methods provide a generic approach to conduct Bayesian inference 

and various algorithms exist to generate a Markov chain which exhibits the posterior as stationary 

distribution. The first algorithms stem from the statistical physics literature (Besag and Green, 1993; 

Metropolis, 1987; Landau and Binder, 2014; Robert and Casella, 2011), and research projects 

involving the development of the atomic bomb and the first nuclear reactors (Andrieu et al., 2004; 

Shonkwiler and Mendivil, 2009). 

In contrast to many other numerical techniques, such as rejection sampling, in MCMC, after 

convergence every realization can be seen as a sample from the posterior distribution whereas in 

rejection sampling often multiple trials are necessary to obtain only one realization from the target 

distribution. 

However, one has to face other problems. The generated samples from the Markov chain can exhibit 

a high autocorrelation. This means the iterative draws are highly correlated and the effective sample 

size gets reduced. Another point is the convergence behavior of the Markov chain to the target 

distribution. There are no diagnostic tools which guarantee that the chain has converged to its 

stationary distribution, but only detection tools showing divergence. The most common way was 

proposed by Gelman and Rubin (1992). Here, multiple Markov chains are generated with dispersed 

starting values. Afterwards, they are compared with respect to their variability within and between 

the chains. After dropping a sufficient high burn-in (ignoring the first values of the chain until 

convergence is achieved), a calculated ratio should be close to one. This also means that all chains 

visit the whole of the sample space of interest. 

The by far most popular MCMC method is the MH algorithm, which will be presented in the 

following. 

4.5.1 The Metropolis-Hastings algorithm 

When conducting Bayesian inference via the MH algorithm, one has to specify a proposal distribution 

[𝛉|𝛉t-1] according to which new values 𝛉cand are drawn given the current state 𝛉t-1. The full 

algorithm is given as follows. 

Specify proposal distribution [𝛉|𝛉t-1] 

Initialize all variables 𝛉𝟎 

for t = 1: #iterations do 

Generate a candidate [𝜽cand|𝜽t-1] 

Calculate acceptance rate ρ: 

𝜌(𝜽t-1, 𝜽cand) = min {
[𝜽cand|𝑋t-1, 𝑌]

[𝜽t-1|𝑋t-1, 𝑌]

[𝜽t-1|𝜽cand]

[𝜽cand|𝜽t-1]
, 1} 

Accept 𝜽cand as new state 𝜽t with probability ρ 

Otherwise set 𝜽t =𝜽t-1 
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end 

Discard the first 𝑀 iterations as burn-in. 

As before, we use 𝑍 to denote the observed exposure and 𝑌 to denote the disease outcome. The 

algorithm proposes new values in each iteration 𝑡. These new values get accepted as a new state of 

the Markov chain with probability 𝜌. If the proposed value gets rejected, the new state is set to the 

old value of 𝛉. For the calculation of 𝜌, it is necessary to calculate the product of two ratios: 

[𝛉cand|𝑌, 𝑍]/[𝛉t-1|𝑌, 𝑍] and [𝛉𝑡−1|𝛉cand]/[𝛉cand|𝛉t-1]. This product ensures, that the chain converges 

to the desired distribution. The acceptance rate (the proportion of accepted states of all proposed 

states) and therefore the successful design of the algorithm depends heavily on the appropriate 

choice of the proposal distribution. This proposal distribution must be known analytically (up to a 

unknown constant which cancels out in the ratio). Furthermore, it should be possible to propose 

values in a time-efficient way. In the case of a symmetric proposal distribution the latter part of the 

product collapses to one. Therefore, only the ratio of the posterior distribution evaluated at 𝛉cand 

and 𝛉t-1 remains and the algorithm degenerates to the Metropolis algorithm. 

The performance of the algorithm depends heavily on the acceptance rate. Therefore, it is 

reasonable, to monitor this rate. Moreover, it can be used to guide the calibration of the proposal 

distribution, for instance, by increasing or by reducing its variability. There are different 

recommendations concerning the optimal acceptance rate with a general consensus that this 

quantity should be around 0.40. There are two alternative strategies to attain an optimal acceptance 

rate. One can either use the algorithm after an initial calibration phase or use an adaptive version of 

the algorithm. 

It is not necessary to update all components of 𝛉 at once. Instead it can be convenient to split 𝛉 in 

smaller components (𝜃1, 𝜃2, … ) and to update these components one by one (Gilks et al., 1996; 

Andrieu et al., 2010). 

4.5.2 Deriving estimators from the posterior distribution 

After the algorithm generated a sufficient long Markov chain and after dropping an adequate 

number of initial samples as burn-in, the realizations can be seen as a large sample from the 

posterior distribution and represents therefore a good approximation. Deriving estimators for 

various quantities from this sample can be done in a straightforward manner. For example, for a 

point estimate one can choose the mean or the median as a robust alternative. Estimates for other 

quantities like the variance or a credible interval can also be substituted with their empirical 

analogues. For instance, the empirical 0.025 and 0.975 quantiles give a good estimate of the 95% 

credible interval of the posterior distribution. 

4.6 Implementation of an efficient MCMC algorithm 

After describing the general procedure of the MH algorithm, this concept will be used now to picture 

how concrete updates in the context of the Wismut cohort look like. In a first step, an exemplary 

update of the MH algorithm for a simple model as outlined in Section 4.4.1 will be described. In this 

simple case, we assume that neither the relation in the disease model nor the exposure variable itself 

is time-dependent. After this simplified example, we will describe the update for measurement 

model M2 from Section 4.4.2. 

4.6.1 Update in a Bayesian hierarchical model with a single classical measurement error 

Looking back to Section 4.4 shows that the parameters are given by 𝛉 = (𝜃𝑑 , 𝜃𝑚, 𝜃𝑒). For ease of 

readability, the joint posterior is stated again: 

[𝛉, X|𝑌, 𝑍] = [𝜃𝑑][𝜃𝑚][𝜃𝑒][𝑋|𝜃𝑒][𝑍|𝑋, 𝜃𝑚][𝑌|𝑋, 𝜃𝑑] 
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As stated before, the update of 𝛉 = (𝜃𝑑 , 𝜃𝑚, 𝜃𝑒) can be done one after another. To show how the 

update works in the context of the MH algorithm we assume to be at t-1 and we want do an update 

at time point t. Therefore, the state of the Markov chain before the update is given by 

𝛉t-1 = (𝜃𝑑,t-1, 𝜃𝑚,t-1, 𝜃𝑒,t-1). 

Since 𝑋 is not observable, it is necessary to treat it as a latent variable which is like the parameters an 

unknown quantity. Therefore, it must be updated in each iteration step of the algorithm as well as 

the parameters 𝛉. 

Update of the parameters of the disease model 

For an update of 𝜃𝑑,t-1 to 𝜃𝑑,t, only the parts of the joint posterior are relevant, where 𝜃𝑑,𝑡−1 is 

actually present. The rest of the parameters (𝜃𝑚, 𝜃𝑒) do not influence 𝜃𝑑 meaning they can be seen 

as a constant and can therefore be ignored. Be doing so we are using the so-called full conditional of 

𝜃𝑑. This full conditional is given by 

[𝜃𝑑|𝑋, 𝑌] ∝ [𝜃𝑑][𝑌|𝑋, 𝜃𝑑]. 

Therefore, after proposing a new value 𝜃𝑑,cand given the current state 𝜃𝑑,𝑡−1 would be accepted with 

probability 

𝜌(𝜃𝑑,t-1, 𝜃cand) = min {
[𝜃𝑑,cand|𝑋t-1, 𝑌]

[𝜃𝑑,t-1|𝑋t-1, 𝑌]

[𝜃𝑑,t-1|𝜃𝑑,cand]

[𝜃𝑑,cand|𝜃𝑑,t-1]
, 1} 

where 𝑋t-1 is the current state of the latent variable. The term 
[𝜃𝑑,𝑡−1|𝜃𝑑,cand]

[𝜃𝑑,cand|𝜃𝑑,t-1]
 is a ratio of two 

probabilities: the nominator is the likelihood of obtaining 𝜃𝑑,t-1 given 𝜃𝑑,cand. The denominator 

evaluates the same in the opposite direction. As stated before, this term is not necessary in a 

symmetric proposal distribution, because it cancels out. This circumstance can also be exploited in 

the implementation, to accelerate the calculation of the ratio. After calculation of 𝜌, the new state is 
set to 𝜃𝑑,𝑡 = 𝜃𝑑,cand with probability 𝜌 or 𝜃𝑑,𝑡 = 𝜃𝑑,𝑡−1 with probability 1 − 𝜌. 

After updating the state from 𝜃𝑑,t-1 to 𝜃𝑑,t, this new state is used for the update of the other 

parameters (and the latent true exposure variable). Therefore, the new intermediate parameter 

vector is given by 

𝛉̃ = (𝜃𝑑,t, 𝜃𝑚,t-1, 𝜃𝑒,t-1). 

This new state can again be used to update the other parts of 𝛉̃ until all updates are done. After 

updating the parameters to state 𝛉t, the latent true exposure variable 𝑋 must be updated too. After 

a full update at time point t, this procedure can be repeated for t+1. 

Update latent true exposure variable 𝑿 

The update for 𝑋 can be done in the same manner. Mathematically, it can be treated as a parameter. 

The full conditional is given by: 

[X|𝛉, 𝑌, 𝑍] ∝ [𝑋|𝜃𝑒][𝑍, |𝑋, 𝜃𝑚][𝑌|𝑋, 𝜃𝑑] 

For the update of 𝑋 one needs again a proposal distribution to draw a candidate 𝑋cand given 𝑋t-1. The 

acceptance rate is calculated as follows: 

𝜌(𝑋t-1, 𝑋cand) = min {
[𝑋cand|𝛉t, 𝑌, 𝑍]

[𝑋t-1|𝛉t, 𝑌, 𝑍]

[𝑋t-1|𝑋cand]

[𝑋cand|𝑋t-1]
, 1} 

4.6.2 Update in a Bayesian hierarchical model with the complex measurement model M2 for 𝜷 

The updates for the more complex model M2 basically work the same way with the notable 

difference that the latent unknown exposure is a combination of different unknown factors (in 

measurement model M2, 𝑋 is a product of these factors multiplied by 12). Therefore, instead of one 

latent variable 𝑋, each of the constituent parts (𝜑′(𝑡, 𝑜, 𝑗), 𝛾′(𝑝𝑡 , 𝑜), 𝜔′(𝑡, 𝑜) and 𝒞𝑅𝑛(𝑡, 𝑜) for M2) 
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has to be updated in each iteration besides the other parameters. For simplicity, we slightly modified 

the uncertainty structure described for M2 in 2.3.2 by not including the uncertain quantity 𝜏𝐸 ′. We 

show how the update for one of the factors of the latent variable is made in Appendix A 1 since we 

are faced with various technical challenges which we will elaborate in more detail there. Here, we 

show how the update for the parameter of major interest, 𝛽, works for the given individual exposure 

of every worker and year. For this update, we assume to have the latent exposure for each worker 𝑖 

and time 𝑡. The full conditional for 𝛽 is given by: 

[𝛽|𝜆, 𝑋𝑐𝑢𝑚] ∝ [𝛽]∏[

𝑖,𝑡

𝑌𝑖|𝜆, 𝛽, 𝑋𝑖
𝑐𝑢𝑚(𝑡)] 

The rest of the joint posterior is independent of 𝛽 and can therefore be neglected. Given the current 

state 𝛽𝑡−1, a new state 𝛽cand is drawn from the proposal distribution. This candidate will be accepted 

with probability 

𝜌(𝛽t-1, 𝛽cand) = min {
[𝛽cand|𝜆, 𝑋t

𝑐𝑢𝑚]

[𝛽t-1|𝜆, 𝑋t
𝑐𝑢𝑚]

[𝛽t-1|𝛽cand]

[𝛽cand|𝛽t-1]
, 1} 

Here we face some challanges: The disease model links the outcome 𝑌 to the cumulative exposure 

𝑋𝑐𝑢𝑚 while in the measurement model and exposure model are defined in terms of uncumulative 

exposures. Hence, before the update of 𝛽 and 𝜆 can be done, it is necessary to cumulate 𝑋(𝑡) for 

each person 𝑖. A small example shows how 𝑋𝑐𝑢𝑚 could look like: 

𝑋𝑐𝑢𝑚 =

(

 
 
 
 
 
 
 
 

𝑋1(1)

𝑋1(1) + 𝑋1(2)
𝑋1(1) + 𝑋1(2) + 𝑋1(3)
𝑋1(1) + 𝑋1(2) + 𝑋1(3) + 𝑋1(4)
𝑋1(1) + 𝑋1(2) + 𝑋1(3) + 𝑋1(4) + 𝑋1(5)
𝑋2(1)
𝑋2(1) + 𝑋2(2)
𝑋3(1)

𝑋3(1) + 𝑋3(2)
𝑋3(1) + 𝑋3(2) + 𝑋3(3) )

 
 
 
 
 
 
 
 

 

Here the first person worked for five years, the second two and the third worked for three years. 

Therefore, in each iteration, after the update of the latent variables, it is necessary to cumulate 𝑋(𝑡) 

again to obtain the cumulative exposure vector 𝑋𝑐𝑢𝑚 . 

The exposure is high-dimensional. Besides, there are many other unknown quantities, which are also 

high-dimensional. Despite the computational advantages of MCMC, this can lead to a high 

autocorrelation in the generated Markov chain. Therefore, a large number of iterations is required 

implying a high computational effort. 

4.6.3 Implementation of the algorithm 

To conduct Bayesian inference in the aforementioned manner, we choose to implement the MCMC 

algorithm in an object-oriented fashion to benefit from the greater flexibility through a modular 

design. This allows us to adjust parts of a module without having to modify the other parts of the 

code. Moreover, it allows to tweak the algorithm at specific positions, e.g. implementing an 

alternative solution for better numerical stability. Finally, an object-oriented implementation has the 

benefit that the program code is naturally divided into several functional files that are self-contained 

and show a clear dependence structure that can be visualized in a class diagramm. We also choose a 

test-driven development approach (Janzen and Saiedian, 2005). In this test-driven development 

approach, all functionalities of the algorithm are tested by unit tests to ensure their correctness. This 

leads to much less ’black-box errors’ which are hard to detect. The object-oriented programming 

language Python3 provides many modules, to meet our requirements: 
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• Numpy provides functionalities for fast computation, especially array-like data structures. 

• scipy.stats provides various statistical methods, e.g. random number generators for various 

distributions. 

• pandas was used for efficient data management. 

• scipy.sparse implements objects and methods for sparse matrix objects which can speed up 

matrix operations by exploiting the fact that the majority of the matrix contains zeros and can 

therefore be ignored. 

• pandas is used for efficient data management. 

• unittest provides a good unit test framework. 

An editable version of the code is provided. 

4.6.4 Required input 

Data frame 

In order to run the algorithm for M2, the user has to provide a data frame with the information of 

the Wismut cohort in long format. This means that each miner is represented by one row for every 

year with the obtained radon exposure. Each row also has to contain the info whether the follow-up 

period of the miner ended in the considered year (either due to censoring or due to death of lung 

cancer). Table 4.2 shows all variables that need to be provided by the user and their names in the 

data frame, as well as their analogues in M2 (see the DAG in Figure 2.7). In order to apply the 

algorithm to the Wismut cohort, information about the mean concentration of the radon gas 

measurements, the working time factor, the equilibrium factor and the activity weighting factor are 

needed. The necessary information for the working time and the equilibrium factors is available in 

Tables 9 and 10 of Küchenhoff et al. (2018, pp. 44-45) and the values for the activity weighting factor 

can be found in Table 2.3.1.1 in Lehmann et al. (1998, pp. 256–266). The working time and the 

equilibrium factors each consist of only a few different values depending on the time period and for 

each of the two factors a shared measurement error is assumed for all years with the same value. 

Therefore, the data frame needs variables indicating the respective periods for which the working 

time factor values and the equilibrium factor values are the same. In this sense, the variables 

‘w_period’ and ‘g_period’ can be derived based on the information given in Tables 9 and 10 in 

Küchenhoff et al. (2018, pp. 44-45), respectively. The mean radon gas or radon progeny 

concentration measurements can be obtained from Lehmann et al. (1998) and Lehmann (2004). 

Note that the implementation of the algorithm does not require the user to specify the observed 

values of the exposure 𝑍𝑖(𝑡) and the cumulative exposure 𝑍𝑖
𝑐𝑢𝑚(𝑡) directly when correcting for 

measurement errors. Instead, the exposure of miner 𝑖 at time 𝑡, 𝑋𝑖(𝑡), is derived from the 

constituent parts of 𝑋𝑖(𝑡) according to the formula of model M2, i.e. 𝜑′(𝑡, 𝑜, 𝑗), 𝛾′(𝑝𝑡 , 𝑜), 𝜔′(𝑡, 𝑜) 

and 𝒞𝑅𝑛(𝑡, 𝑜). 

Due to the flexibility of the implemented algorithm, it is straightforward to apply the algorithm for 

other causes of death and for other exposures in the Wismut cohort. To do so, it is not necessary to 

change the algorithm but only to modify the input variables. If the measurement error characteristics 

are not the same for this exposure, the user can also modify the information provided through the 

uncertainty characteristics file (see next paragraph "Uncertainty characteristics"). In order to apply 

the algorithm to estimate the association between long-lived radionuclides and leukemia mortality, 

for instance, the user simply has to 1) define a measurement model describing how long-lived 

radionuclides were assessed in the cohort, 2) provide the names of the observed values of the 

uncertain quantities intervening in this measurement model and 3) define the variables stop and 

delta as a function of the time points during the history of the worker at which exposure to long-lived 

radionuclides changed and at the time at which the worker was either censored (delta = 0) or died of 
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leukemia (delta = 1). This example assumes, that the error structure for long-lived radionuclides is 

the same as in M2. 

Table 4.2: Variables that need to be provided by the user. 

variable M2 name in the data frame 

year 𝑡 year 

object 𝑜 object 

activity 𝑗 activity 

miner’s age at the beginning of the time interval  start 

miner’s age at the end of the time interval  stop 

indicator for death due to lung cancer 𝛿𝑖  delta 

observed mean concentration of the radon gas 

measurements 
𝐶𝑅𝑛(𝑡, 𝑜) C_Rn_obs 

observed working time factor 𝑤(𝑝𝑡) w_classical 

working time factor period  w_period 

observed equilibrium factor 𝑔(𝑝𝑡 , 𝑜) g_classical 

equilibrium factor period  g_period 

observed activity weighting factor 𝑓(𝑜, 𝑗) f_classical 

Uncertainty characteristics 

The error structure in each measurement model can be specified through a certain number of 

attributes, which we denote as uncertainty characteristics. The implemented algorithm requires a file 

which provides information on these uncertainty characteristics. The file has to be in the form of a 

python-dictionary. Therefore, it has to contain key-value-pairs representing the different 

characteristics of the error structure. In particular, the file has to take the form of a nested dictionary 

consisting of various sub-dictionaries. The first level takes as keys the model and its model specific 

names of uncertain factors as sub-keys for the sub-dictionary. With the term ‘(uncertain) factor’ we 

refer to the constituent parts of a measurement model which are used to calculate the exposure 𝑋 

(for measurement model M2, these factors are 𝜑, 𝛾, 𝜔 and 𝒞𝑅𝑛). Factors which are used over 

different models are not specified for each model separately. They have to be specified in the first 

level with its actual factor name and in its second level with its symbolic name as represented in the 

DAG. For instance, the working time factor is used in different measurement models besides M2 and 

is therefore separated from M2 in the first level. It has its own key ’working_time’ on the first level 

and ’omega’ as key on the second level. The mean concentration of the radon gas measurements 

𝐶𝑅𝑛 is only used in M2 and therefore in the sub-dictionary ’M2’. The last level specifies the actual 

measurement error structure of the uncertain factor as a third-level-dictionary. Here, each key 

indicates the exact specification for the factor as follows: 

• classical_error: A dictionary containing the keys ’sd’ (standard deviation of the error), ’structure’ 

(either multiplicative or additive), ’proposal_sd’ (the initial standard deviation to make proposals) 
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• Berkson_error: A dictionary containing the keys ’sd’ (standard deviation of the error), ’structure’ 

(either multiplicative or additive), ’proposal_sd’ (the initial standard deviation to make proposals) 

• exposure_model_distribution: A string defining the distribution of the exposure model 

• exposure_model_parameters: A dictionary defining the parameter values for the exposure 

distribution 

• exposure_model_truncation: A dictionary with the keys ’lower’ and ’upper’ defining the range of 

possible values of the uncertain factor 

• mapping_identifier_classical: A list of strings defining the domain the error depends on 

• mapping_identifier_Berkson: A list of strings defining the domain the error depends on. These 

strings are the variables names of the data frame. For example, the information [’year’, 

’object’] would suggest individual errors for each year and object in the data over all relevant 

rows. 

• name_obs_values: The name of the variable from the input data frame which contains the 

observed values of the uncertain parameter. 

The user has to specify the uncertainty characteristics for all relevant uncertain factors according to 

the used measurement model formula. In the case of M2 these are 𝜑, 𝛾, 𝜔 and 𝒞𝑅𝑛. Since the first 

three of them are also part of other measurement models (for example M3), they are not part of the 

key ’M2’ and only 𝒞𝑅𝑛 remains in ’M2’. 

To get a more realistic idea on how the uncertainty characteristics file should look like, a partial file 
for the uncertain factors 𝒞𝑅𝑛 and 𝜔 for measurement model M2 is presented below. This file is also 

used in the simulation study for Scenario S2 and S3 (see Chapter 5). 

uncertainty_characteristics = { 
’M2’:{ 

’C_Rn’: { 
’classical_error’:{’sd’: 0.59, 

 ’structure’: ’additive’, 
 ’proposal_sd’: 0.1}, 

’Berkson_error’:{’sd’: 0}, 
’exposure_model_distribution’: ’norm’, 
’exposure_model_parameters’: {’mu’: 6, 
          ’sigma’: 8}, 
’exposure_model_truncation’: {’lower’: 1e-10}, 
’mapping_identifier_classical’ : [’year’, 
              ’object’] 
’name_obs_values’: ’C_Rn_obs’ 

}, 
}, 
’working_time’:{ 

’omega’: { 
’classical_error’:{’sd’: 0.33, 
         ’structure’: ’multiplicative’, 
         ’proposal_sd’: 0.1}, 
’Berkson_error’:{’sd’: 0.69, 
           ’structure’: ’multiplicative’, 
                 ’proposal_sd’: 0.1}, 
’exposure_model_distribution’: ’beta’, 
’exposure_model_parameters’: {’alpha’: 3, 
          ’beta’: 3}, 
’exposure_model_truncation’: {’lower’: 0.88, 
         ’upper’: 1.2}, 
’mapping_identifier_classical’: [’w_period’] 
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’mapping_identifier_Berkson’: [’year’, 
           ’object’] 
’name_obs_values’: ’w_classical’ 

}, 
}, 
’activity’:{ 

’phi’: { …}, 
}, 
’equilibrium’:{ 

’gamma’: { …}, 
}, 

} 

The factor 𝒞𝑅𝑛 is only part of M2 while 𝜔 is used in other models as well. Therefore 𝒞𝑅𝑛 is 

encapsulated in the sub-dictionary ’M2’ and 𝜔 in its own sub-dictionary ’working_time’. In the 

simulation study in Chapter 5, 𝒞𝑅𝑛 only has an additive normal classical error with a standard 

deviation of 0.59. Hence, the specification for 𝒞𝑅𝑛 contains this error structure for the classical error 

as sub-dictionary. Moreover, the sub-dictionary contains the key ’proposal_sd’ which denotes the 

initial standard deviation which is used to propose new values while the MCMC algorithm is in the 

sampling process. The sub-dictionary for a Berkson error only contains the information that the 

standard deviation is zero indicating no Berkson error. The sub-dictionaries 

’exposure_model_distribution’ and ’exposure_model_parameters’ contain the distribution of 𝒞𝑅𝑛 

and its prior parameters respectively. The sub-dictionaries ’mapping_identifier_classical’ and 

’mapping_identifier_Berkson’ specify whether the errors are shared between workers, within 

workers or both. As described before, the list [’year’, ’object’], implies that all workers in M2 which 

share the same classical error when they are in a specific object and year. The key ’name_obs_values’ 

identifies the error-prone variable in the data set. In the same way as for 𝒞𝑅𝑛, the sub-dictionary for 

𝜔 contains the uncertainty characteristics for this factor which can be read in the same manner. 𝜔 

contains a Berkson error and therefore the standard deviation is now not set to zero and one has to 

specify the characteristics for the Berkson error as well. In the simulation study (Chapter 5), the 

Berkson error for 𝜔 is specified with a standard deviation of 0.69, is multiplicative and the initial 

standard deviation for the proposal is set to 0.1. We omitted the other factors for measurement 

model M2 for brevity. Note that for a standard deviation of 0.0 for the classical or Berkson 

measurement error, the algorithm does not account for the respective uncertainty in this part. If a 

user, for instance, would specify a classical and Berkson error with a standard deviation of 0.0, the 

algorithm would not correct for any measurement error in this factor and would only use the 

observed factor values (as provided in the data frame) as given values. 

4.6.5 Structure of the algorithm 

As the algorithm is implement in an object-oriented fashion, we are able to present the algorithm as 

a class diagram shown in Figure 4.4. We refer to Appendix A 1 for a description of the structure and 

class relations. The basic concept is to have a main class MCMC which controls the whole initialization, 

sampling procedure and saving of the results. 

4.6.6 Documentation 

We provide a documentation of the code as html-files. A file index.html serves as landing page and 

provides links to the documentation of the different python-modules. 

We use Sphinx (Brandl, 2021) with autodoc as documentation tool. The documentation is 

therefore written at the head of each function or class as docstring in reStructuredText-format. 

When using Sphinx with autodoc, it is possible to extract the docstrings into .rst-files and 

afterwards to compile them to html. The theme and page layout stems from Read the Docs. More 

details can be found in the footer of the documentation.  
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Figure 4.4: Class diagram for the implemented algorithm. 
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5 Simulation study 

Before using the Bayesian hierarchical approach developed in Chapter 4 to account for measurement 

error on the real Wismut cohort data, we conduct a simulation study to assess and to compare the 

performance of the proposed Bayesian hierarchical approach with classical methods to account for 

measurement error and to study the impact of varying the complexity of the assumed measurement 

models. 

In this chapter, we first give general information about the principles of simulation studies, then 

detail the aims of our simulation study and describe the design including the different simulation 

scenarios. In Section 5.4 we first describe the challenges we are faced with when generating 

exposure and survival data and then explain the generation of error-prone exposure data as well as 

the generation of survival times as a function of time varying exposure. After showing the used prior 

parameters for applying the Bayesian hierarchical approach, we describe SIMEX and regression 

calibration as two alternative methods to account for measurement error in Section 5.6 and present 

the results of the simulation study in Section 5.7. 

5.1 General principles of simulation studies 

When developing statistical methods to conduct parameter inference, it is important to assess the 

extent to which the proposed method fulfills some desirable statistical properties. In particular, a 

statistical method should produce parameter estimates 𝜃 for an unknown parameter 𝜃 that are 

unbiased, i.e. the expected value of the parameter estimate 𝜃 should be equal to the true parameter 

value 𝜃 or in other words, the parameter estimate should not suffer from systematic over- or 

underestimation. Similarly, it is important that the uncertainty intervals (i.e. confidence intervals in 

the case of frequentist estimators and credible intervals in the case of Bayesian estimators) are well 

calibrated in the sense that the probability to cover the true parameter value 𝜃 is close to the 

nominal coverage probability: When repeating an estimation procedure on 100 independent data 

sets to produce 95% confidence intervals, approximately 95 of these intervals should cover the true 

parameter value 𝜃. In the case where more intervals cover the true parameter value, the interval 

overestimates the uncertainty associated with the estimation and the interval can be considered to 

be too conservative whereas in the case where less intervals cover the true parameter, the interval 

underestimates this uncertainty and it can be seen as too permissive. 

While it is sometimes possible to derive theoretical results on the statistical properties of the 

proposed estimators, in particular in simple cases such as in the estimation of the mean of a sample 

or in the linear regression model, in more complex cases these properties are very difficult or even 

impossible to prove theoretically. Moreover, theoretical results often apply in asymptotic settings 

when the sample size goes to infinity. To assess the bias and the coverage probabilities of a proposed 

inferential procedure on finite samples, it is common to conduct simulation studies in which a large 

number of “fictive” data sets are generated according to a probability model with known and fixed 

parameter value 𝜃 to obtain parameter estimates 𝜃 and confidence (or credible) intervals. By 

comparing the parameter estimates with the “true” parameter value 𝜃 which was used to generate 

the data sets, we can empirically assess the bias and coverage rates of the proposed statistical 

method. As it is possible to apply several estimation procedures on the same data set, simulation 

studies can also be used to compare the performance of competing methods. 

When interpreting the results of simulation studies, one has to keep in mind that these studies can 

only give indirect evidence on the performance of statistical methods on real data sets: In a 

simulation study, “fictive” data sets are generated according to a probability model and it is a general 

truism that “all models are wrong” (Box, 1976). In this vein, a simulation study can only provide 

evidence on how a proposed statistical method would perform in a simplified world in which all (or 

at least a large part of) our modeling assumptions are fulfilled. To maximize the transferability of the 

results of simulation studies to real settings, it is desirable to generate “fictive” data sets that are as 
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close as possible to the real data that we are interested in. Moreover, simulation studies can be used 

to study the impact of model misspecification by applying an estimation procedure which assumes a 

simple probability model on data which was generated according to a more complex probability 

model. Finally, it should be mentioned that concepts like the bias of estimators or coverage rates are 

desirable properties of frequentist estimators and that their applicability to Bayesian methods of 

inference is somewhat controversial. 

5.2 Aims of the simulation study 

Besides investigating the applicability and the practical relevance of the Bayesian hierarchical 

approach (see Chapter 4) to account for measurement error in the Wismut cohort, we pursue two 

aims with the simulation study. 

The first aim of the simulation study is to compare the performance of our proposed method to 

account for exposure measurement error in the Wismut cohort with alternative approaches. Thus, 

we will compare our Bayesian hierarchical approach described in Chapter 4 with classical methods of 

correcting for measurement error, namely with SIMEX (see Section 5.6.1) and regression calibration 

(see Section 5.6.2). 

The second aim of the simulations is to assess to what extent the complex structures of 

measurement error encountered in the Wismut cohort can be accounted for with measurement 

models which assume a simplified error structure. To address this point, we will generate exposure 

data according to a complex measurement model involving several types of measurement error (i.e. 

generalization error, parameter uncertainties etc.) and assume a more simple and therefore 

misspecified, measurement model when correcting for measurement error. By increasing the 

complexity of the assumed measurement models, it is possible to evaluate the adequacy of results of 

previous studies which aimed at correcting for uncertainty in radon exposure in cohorts of uranium 

miners. Additionally, we can thereby provide evidence to judge whether it is worthwhile to perform 

the extensive characterization and quantification of measurement error in an occupational cohort 

study as was performed by (Küchenhoff et al., 2018) and in Chapters 2 and 3. Finally, this can also 

give evidence of whether it is worthwhile to develop a Bayesian hierarchical approach that is flexible 

enough to account for complex error structures with shared and unshared Berkson and classical 

components or whether it is also valid to use more classical methods of measurement error 

correction, such as regression calibration and SIMEX, which are easier to implement and which make 

a number of simplifying assumptions. 

5.3 Design of the simulation study 

In the design of the simulation study, our aim is to maximise the information gained through the 

simulations while respecting the limited time to compute all simulation scenarios as both the 

Bayesian hierarchical approach and SIMEX are very computationally expensive. In this vein, we focus 

on measurement model M2 (see Section 2.3) and only use a Cox proportional hazards model with 

only one value for the true 𝛽 in the simulations and a measurement error size quantified in Section 

3.4. We focus on M2 for the simulations since underground mining objects in the second and third 

exposure assessment period represent the largest proportion of person work years of all object types 

in the Wismut (together they represent 43.06% as can be seen in Figure 2.1). The measurement 

models for underground mining objects in the second (M2) and third exposure assessment period 

(M3) only differ in one uncertain parameter: M3 involves the ventilation correction factor 𝑐(𝑜) 

instead of the equilibrium factor 𝑔(𝑡, 𝑜) which is present in M2. It would therefore be redundant to 

distinguish these two models in the simulation study and we choose M2 as it can be seen as more 

representative for the entire employment period of the Wismut cohort as it is between the first and 

the third exposure assessment period. 

For the simulation study we consider three data generation scenarios (see Figure 5.1) for which we 

generate exposure data with varying complexity. To assess the performance of our proposed 
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Bayesian hierarchical approach and to compare it with alternative methods to account for 

measurement error (see first aim of our simulation study), we estimate the parameter values 

assuming the respective measurement model, i.e. we do not consider model misspecification. In the 

comparison of the Bayesian hierarchical approach with SIMEX and regression calibration, we have to 

vary the complexity of the data generation process for the exposure data as it is not straightforward 

to assume mixtures of Berkson and classical error when accounting for measurement error via 

SIMEX. 

 

Figure 5.1: Overview of the three scenarios in the simulation study and the complexity levels of parameter 
estimation. 

In this vein, we generate data according to complexity level 5 (see Table 4.1 in Section 4.1). For 

simulation scenario 1 (S1) we generate data according to M2 with the exception that we neglect all 

Berkson error components (denoted as level 5a in Figure 5.1) in order to be able to apply SIMEX 

besides the Bayesian hierarchical approach and regression calibration. In simulation scenario 2 (S2), 

level 5b in Figure 5.1, we generate data according to M2 (Section 2.3) without the Berkson 

assignment error and use the Bayesian hierarchical approach and regression calibration. In Figure 

5.1, these cases for scenarios S1 and S2 in which the model used for data generation is equivalent to 

the model used for parameter estimation are shown on the diagonal. As SIMEX is not able to account 

for Berkson uncertainties, in simulation scenario S2, in which exposure data is generated according 

to level 5b, we additionally correct parameter estimates for measurement error through SIMEX when 

neglecting all Berkson errors (i.e. we use level 5a for parameter estimation). 
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Additionally, to assess to what extent the complex structures of measurement error encountered in 

the Wismut cohort can be accounted for with measurement models which assume a simplified error 

structure (see second aim of our simulation study), we consider the results under model 

misspecification. In this vein we also study in simulation scenario 3 (S3) whether our decision to 

neglect assignment error when correcting for measurement error in the Wismut cohort is justifiable 

by first generating exposure data according to M2 on level 5 in Section 4.1 to then add an assignment 

error (i.e. we use level 5c in Figure 5.1 for data generation). We assume the assignment error to be 

additive and following Hoffmann et al. (2018b) to consist of one unshared Berkson error component 

reflecting the individual exposures of miners and years to vary around the group-based exposure and 

one Berkson error component that is shared for all years of exposure of the same miner, thus 

reflecting individual practices or job conditions of the miners. We assess the effect of neglecting 

assignment error by conducting parameter inference through the Bayesian hierarchical approach and 

regression calibration on level 5 (denoted as level 5b in Figure 5.1) and through SIMEX on level 5 with 

the exception that all Berkson uncertainties are neglected (denoted as level 5a in Figure 5.1). 

Furthermore, to assess the effect of model misspecification, we use the Bayesian hierarchical 

approach when assuming level 5a for parameter estimation (i.e. measurement error according to M2 

without the Berkson parameter uncertainties) for data generated according to a more complex 

model including Berkson error components (scenarios S2 and S3). In Figure 5.1 the cases under the 

diagonal are those with misspecification. 

In addition to this misspecification of the model structure, for scenario 3 we also consider 

misspecification of the size of the measurement errors by correcting for measurement error with the 

Bayesian hierarchical approach when using standard errors that are either half or double as large as 

the standard errors that were used to generate the data. 

Finally, we produce a naive estimate which does not assume any measurement error in all three 

simulation scenarios to assess the overall impact of measurement error on risk estimation. We did 

not consider level 3 and level 4 neither as model to generate the data nor used for parameter 

estimation. Level 3 did not seem relevant for the Wismut since there is more detailed information on 

the different uncertain factors intervening in exposure estimation. We did not generate data 

according to level 4 because the only difference to level 5 is that all error components are assumed 

to be unshared and this does not seem to be realistic in the light of the exposure assessment in the 

Wismut cohort. 

For each of the three simulation scenarios, we generate 100 data sets and estimate and compare a 

naive (𝛽̂𝑛𝑎𝑖𝑣𝑒) and up to three corrected risk estimates (𝛽̂𝐵𝑎𝑦𝑒𝑠, 𝛽̂𝑅𝐶 and 𝛽̂𝑆𝐼𝑀𝐸𝑋) in order to derive 

the mean bias 𝛽̂ − 𝛽 and the mean relative bias 
𝛽̂−𝛽

𝛽
 for the different estimators where 𝛽 is the true 

parameter value which was used to generate the data. Moreover, we calculate coverage rates, i.e. 

the percentage of data sets for which the estimated 95% confidence or credible intervals cover the 

true parameter value 𝛽. Finally, we also consider the estimates of the baseline hazard parameters 

𝜆1, 𝜆2, 𝜆3 and 𝜆4 to assess the impact of measurement error on the estimated piecewise constant 

baseline hazard. 

5.4 Data generation 

In this section, we describe how we generate the data for the simulation study on basis of a fictive 

data set of the Wismut cohort that we received from the Federal Office for Radiation Protection 

(BfS). First, we discuss the challenges when generating exposure and survival data for the simulations 

and then detail the generation of error-prone exposure data according to the measurement models 

of the considered simulation scenarios. In the third subsection we describe the generation of survival 

times with the annual radon exposure as time-varying covariate and time until death by lung cancer 

as censored outcome variable. 
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5.4.1 Challenges in the generation of exposure and survival data 

As described in Section 5.1, it is advisable to generate data sets that are as close as possible to the 

data set that we are interested in in order to maximize the transferability of the results in the 

simulation study. However, when generating exposure and survival data that reflect the 

characteristics of the Wismut cohort, we are faced with a number of challenges which we will discuss 

in this section. 

Concerning the exposure data, it would be desirable to start from the exposure values observed in 

the Wismut cohort in order to be as close as possible to this data set. At the same time, we have to 

respect both the properties of classical measurement error - namely that the error terms have to be 

independent of the true exposure - and the properties of Berkson error - namely that the generated 

error terms have to be independent of the observed exposure. If we only had a classical 

measurement error affecting a miner’s radon progeny exposure, we could assume the observed 

exposure values in the fictive cohort data set to be equal to the true exposure 𝑋𝑖(𝑡). To obtain the 

observed exposure 𝑍𝑖(𝑡), we would need to either multiply or add an error term 𝑈𝑖(𝑡) which would 

be independent of true exposure and therefore respect the properties of classical measurement 

error: 𝑍𝑖(𝑡) = 𝑋𝑖(𝑡) ⋅ 𝑈𝑖(𝑡) or 𝑍𝑖(𝑡) = 𝑋𝑖(𝑡) + 𝑈𝑖(𝑡). Conversely, if we only had a Berkson error on 

the radon progeny exposure, we could use the observed exposure values in the fictive cohort data 

set as observed exposure 𝑍𝑖(𝑡) and either multiply or add a measurement error term 𝑈𝑖(𝑡) in order 

to obtain the true exposure either as 𝑋𝑖(𝑡) = 𝑍𝑖(𝑡) ⋅ 𝑈𝑖(𝑡) or 𝑋𝑖(𝑡) = 𝑍𝑖(𝑡) + 𝑈𝑖(𝑡) (see for instance 

the simulation strategy of Küchenhoff et al. (2007) to generate Berkson error in the Wismut cohort). 

In contrast, a strategy that is not valid to generate Berkson error is to assume that the exposure data 

of the cohort are the true exposure values 𝑋𝑖(𝑡) and to generate observed exposure 𝑍𝑖(𝑡) by 

dividing or substracting an error term 𝑈𝑖(𝑡): 𝑋𝑖(𝑡) = 𝑍𝑖(𝑡)/𝑈𝑖(𝑡) or 𝑋𝑖(𝑡) = 𝑍𝑖(𝑡) − 𝑈𝑖(𝑡). As shown 

by Hoffmann et al. (2018a), this simulation strategy, which was used by Allodji et al. (2012b) and 

Allodji et al. (2012c) to study the impact of exposure measurement error when analyzing the 

association between radon exposure and lung cancer mortality in the French cohort and to assess 

the performance of two variants of regression calibration and of SIMEX in the same cohort, will 

erroneously produce systematic classical measurement error and therefore provide erroneous 

results. 

Since the measurement models in the Wismut cohort, and in particular M2 (see Section 2.3) involve 

several uncertain quantities, namely the radon gas concentration, the activity weighting factor, the 

working time factor and the equilibrium factor, with the latter three involving both Berkson and 

classical measurement error components, we need to generate exposure data according to a model 

in which we assume Berkson and classical measurement error components in several uncertain 

quantities simultaneously. Thus, it is simply not possible to assume either observed or true exposure 

in the simulation study to be the same as the observed exposure values in the cohort and one has to 

pay great caution in the generation of the exposure data in order to respect all underlying 

independence assumptions. The complexity of the measurement error model considered for the 

Wismut cohort therefore represents a major challenge for the generation of the simulation data. 

In this situation, we have to first generate the true mean quantities (in the case of M2 (see Figure 

2.7) these quantities include the annual radon gas concentrations 𝒞𝑅𝑛(𝑡, 𝑜), the activity weighting 

factor 𝜑(𝑜, 𝑗), the equilibrium factor 𝛾(𝑝𝑡 , 𝑜) and the working time factor 𝜔(𝑝𝑡)) according to so-

called exposure models in which we make distributional assumptions and choose certain parameter 

values (see step 4 on page 87). Then, we add measurement errors which are generated according to 

measurement models for which we have to specify the variance parameters. Concerning the radon 

gas concentrations, we can for instance assume a normal or lognormal distribution with a certain 

mean and standard deviation. As the exposure models describe the distribution of latent variables, 

i.e. of quantities which are per definition not observable, it is difficult to make distributional 

assumptions and to find adequate parameter values for these variables. 

Moreover, there are many sets of distributional assumptions and parameter values which yield 
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exposure data that is close to the observed exposure data in the cohort. To address this difficulty, we 

choose parameter values (for instance measurement error variance parameters) in accordance with 

the quantification of measurement errors for the Wismut cohort wherever this is possible and for the 

remaining parameter values which have to be specified (for instance the mean and the variance of 

the true and unknown radon gas concentration), we generate exposure data which is as close as 

possible to the fictive data set of the Wismut cohort provided by the BfS for the simulation study. 

The exact parameter values and the operationalization of this comparison will be described in 

Section 5.4.2. 

Concerning the survival data, the main challenge arises through the time-varying nature of exposure 

data in occupational cohorts and more specifically of radon exposure in the Wismut cohort. As 

described in Section 4.1, we have to model radon exposure as a time-varying covariate if we want to 

describe measurement error on its natural level of occurrence (i.e. on the annual observed exposure 

values 𝑍𝑖(𝑡) instead of on the cumulative radon exposure that a miner received during his entire 

employment period at the Wismut). However, when considering the cumulative radon exposure as 

time-varying covariate, the generation of survival times becomes very challenging since the standard 

approach of using the inversion of survival functions is not possible (Bender et al., 2005; Sylvestre 

and Abrahamowicz, 2008; Austin, 2012; Hendry, 2014). If the cumulative exposure would vary 

proportionally to time, one could use the method proposed by Austin (2012), which allows to 

simulate survival times with dichotomous time-varying covariates and continuous time-varying 

covariates 𝑥(𝑡) = 𝑘𝑡 which are proportional to time with a constant factor 𝑘. As the annual exposure 

in the Wismut cohort is not the same for every year, the cumulative exposure does not vary 

proportionally to time and this method is thus not possible for the Wismut. Alternatively, it is 

possible to use a permutation-based algorithm (Sylvestre and Abrahamowicz, 2008), but compared 

to the simple inversion of survival functions, this method is far less computationally efficient. We 

therefore adapt a method proposed by Zhou (2001) which is based on the generation of truncated 

piecewise exponential random variables to generate survival times as a function of continuous time-

varying explanatory variables. This method was further extended by Hendry (2014) and Montez-Rath 

et al. (2017), who describe a number of pitfalls associated with this method which arise due to the 

sensitivity of the algorithm to some of the input parameter values which we will discuss in more 

detail in Section 5.4.3. 

5.4.2 Generating error-prone exposure data 

Our aim for generating error-prone exposure data for the simulation study is to generate the 

measurement errors according to the measurement models considered in the simulation scenarios 

and to use as much information from the fictive data set of the Wismut cohort provided by the BfS as 

possible for the respective simulation scenario. 

In this vein, we randomly choose 𝑁 = 1000 miners from the fictive cohort data set for each 

simulated data set. To be in accordance with M2, the miners are chosen such that they worked at 

least one year in the respective exposure assessment period from 1955 to 1974. All of these miners’ 

working years outside of this time period are cut off. As using the exposures from the fictive data set 

as either true or observed exposure data is not possible for simulation scenarios S1, S2 and S3, we 

pursue the goal to obtain error-prone observed exposure data 𝑍𝑖(𝑡) that is as close as possible to the 

radon exposure values of the fictive cohort data set. Besides, we consider each exposure that is zero 

in the fictive data set to be known without error. Thus, we also set the simulated true and observed 

exposure (𝑋𝑖(𝑡) and 𝑍𝑖(𝑡)) to zero for these years and miners. 

Since the fictive cohort data set only contains the year of birth and the year of the miner’s end of 

employment at the Wismut, we generate random dates containing an exact month and day for these 

two time points. Further, we assume that the annual radon exposures are received at the end of the 

respective years to the miners’ working histories. Thus, the first radon exposure is received and 
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becomes effective on the 31st December of the year of start of employment at the Wismut. The only 

exception is the year of a miner’s end of employment at the Wismut, where the exposure becomes 

effective on the exact day of end of employment. Besides, as the fictive cohort data set does neither 

contain any information about the objects the miners were working in nor the miners’ activities, we 

choose arbitrary clusters of miners to represent the mining objects and the different activities. 

Therefor we assign each miner one of four objects and one of three activities, with one of the 

activities corresponding to the reference activity of a hewer. As in M2, we assume the value of the 

activity weighting factor for miners with the reference activity to be 1 and to be known without 

error. 

To generate error-prone exposure data according to simulation scenarios S1, S2 and S3, for each 

underground mining object, we randomly choose from the respective distributions what we refer to 

as the true mean values of the uncertain parameters or the true mean radon gas or radon progeny 

concentrations. By multiplying the true mean values of the parameters or the true mean radon gas or 

radon progeny concentration with a classical error term, we obtain the observed mean values of the 

parameters or the observed mean radon gas or radon progeny concentrations, which were used in 

the radon exposure assessment. In case of an additional Berkson error component, the true mean 

values of the parameters are further multiplied with a Berkson error term in order to obtain the true 

values which may be specific to a year, an object and/or an activity. Using these true individual 

values of all uncertain parameters in the formula for the radon progeny assessment, we calculate the 

true radon exposure for each year 𝑋𝑖(𝑡). Finally, the error-prone observed exposure 𝑍𝑖(𝑡) is 

calculated by using the observed values of all uncertain parameters in the formula for the radon 

progeny assessment. 

In general, we need to specify a distribution for each unknown true mean value of the uncertain 

parameters 𝜔(𝑝𝑡), 𝛾(𝑝𝑡 , 𝑜) and 𝜑(𝑜, 𝑗) as well as for the unknown true radon gas concentration 

𝒞𝑅𝑛(𝑡, 𝑜). As the ranges for the values of the uncertain parameters should be based on the Wismut 

cohort, we choose the true mean values from generalized beta distributions with shape parameters 

𝛼 = 𝛽 = 3 and with the respective support (e.g. the working time factor 𝜔(𝑝𝑡) is between 0.88 and 

1.2 and the activity weighting factor 𝜑(𝑜, 𝑗) lies between 0 and 1). In accordance to the Wismut 

cohort, we assume two periods for the equilibrium factor (until 1957, from 1958) and three periods 

for the working time factor (until 1958, 1959-1965, from 1966). For the true radon gas concentration, 
we use a truncated normal distribution with parameter values 𝜇𝐶𝑅𝑛  and 𝜎𝐶𝑅𝑛  specified in such a way, 

that the distribution of the generated exposure data 𝑍𝑖(𝑡) is as close as possible to the fictive data 

set. To determine this most suitable combination of parameter values, we choose all miners from the 

fictive cohort data set who worked at least one year during the second exposure assessment period 

from 1955 to 1974 and cut off the years before and after that period. We then generate the 

respective observed exposure values 𝑍𝑖(𝑡) as described later, for a grid of different parameter values 
𝜇𝐶𝑅𝑛  (= 5,6,… ,15) and 𝜎𝐶𝑅𝑛  (= 1,2,… ,10) for the truncated normal distribution of the true and 

unknown radon gas concentration 𝒞𝑅𝑛(𝑡, 𝑜). With the observed exposures 𝑍(𝑡) for each 
combination of 𝜇𝐶𝑅𝑛  and 𝜎𝐶𝑅𝑛, we calculate the respective sums of squared differences between the 

quantiles (𝑞1 = 0.05, 𝑞2 = 0.075,… , 𝑞37 = 0.95) of the generated observed data 𝑍𝑖(𝑡) and the 

subset of the fictive data that only contains miners who worked during 1955-1974 with years outside 

of this period cut off. To reduce the variability, we conduct this comparison for three different seeds 
and finally choose the combination of values for 𝜇𝐶𝑅𝑛  and 𝜎𝐶𝑅𝑛  that leads to the lowest average sum 

of squared quantile differences. 

Figure 5.2 shows for one simulation data set generated according to the three simulation scenarios 

S1, S2 and S3 the densities of the true and the observed annual radon exposure as well as the density 

of the respective exposures in the Wismut cohort data set. The densities shown are based only on 

the exposed miners, i.e. without non-exposed miners with 0 WLM. A direct comparison for time to 

death from lung cancer between the simulated data and the fictive data set of the Wismut cohort 

that we received from the BfS is not possible because the outcome variable was permuted in this 
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fictive data set. Therefore, Figure A.2 in the Appendix A 2 only shows the Kaplan Meier curves for 

non-exposed miners with 0 WLM and exposed miners for one simulated data set that was generated 

according to scenarios S1, S2 or S3. 

 

Figure 5.2: Densities of the true (blue) and the observed (red) radon exposure in WLM for one simulation data 
set generated according to scenarios S1, S2 or S3, respectively and the density of the exposures in the Wismut 
cohort data (black) between 1955 and 1974. Exposures of 0 WLM are not shown. Note that in scenario S3 some 
of the true radon exposures can be negative due to the additive assignment error. 
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In the following we summarize the steps to generate error-prone exposure data according to 

simulation scenario S2 (M2 including the Berkson error components for the equilibrium, working 

time and activity weighting factors but excluding the Berkson type assignment error). 

1. Arbitrarily choose a day and month for a miner’s birth and end of his employment at the Wismut. 

2. Sample 1000 miners from those in the fictive data set, who worked at least one year in the time 

period from 1955 to 1974 and cut off their working time and exposure outside this period. 

3. Choose arbitrary clusters of miners to represent four different objects and three different 

activities. 

4. For each cluster of miners, sample the true mean values  

• Sample 𝜔(𝑝𝑡) from a generalized beta distribution with [0.88. 1.2] and shape parameters 

𝛼 = 𝛽 = 3 

• Sample 𝛾(𝑝𝑡 , 𝑜) from a generalized beta distribution with [0.2, 0.6] and shape parameters 

𝛼 = 𝛽 = 3 

• Sample 𝜑(𝑜, 𝑗) from a beta distribution with [0,1] and shape parameters 𝛼 = 𝛽 = 3 

• Sample 𝒞𝑅𝑛(𝑡, 𝑜) from a normal distribution truncated at zero with parameter values 𝜇𝐶𝑅𝑛 =

6 and 𝜎𝐶𝑅𝑛 = 8 which are determined through a comparison of the resulting generated 

values for 𝑍𝑖(𝑡) (calculated as 𝑍𝑖(𝑡) = 𝐶𝑅𝑛(𝑡, 𝑜) ⋅ 12 ⋅ 𝑔(𝑝𝑡 , 𝑜) ⋅ 𝑤(𝑝𝑡) ⋅ 𝑓(𝑜, 𝑗) as described 

later) with the observed exposure values in the fictive data set. 

5. Add to 𝒞𝑅𝑛(𝑡, 𝑜) a classical error term 𝑈𝒞,𝑐(𝑡, 𝑜) to obtain 𝐶𝑅𝑛(𝑡, 𝑜).  

𝑈𝒞,𝑐(𝑡, 𝑜) is sampled from a normal distribution with 𝜇𝑈𝒞,𝑐 = 0 and 𝜎𝑈𝒞,𝑐 = 0.59 (as quantified 

for the generalization error in object 009 Aue in 1961). 

6. Multiply the true mean value of the uncertain parameters with a classical error term 

• 𝑓(𝑜, 𝑗) = 𝜑(𝑜, 𝑗) ⋅ 𝑈𝜑,𝑐(𝑜, 𝑗) 

• 𝑤(𝑝𝑡) = 𝜔(𝑝𝑡) ⋅ 𝑈𝜔,𝑐(𝑝𝑡) 

• 𝑔(𝑝𝑡 , 𝑜) = 𝛾(𝑝𝑡 , 𝑜) ⋅ 𝑈𝛾,𝑐(𝑝𝑡, 𝑜) 

where 𝑈𝜑,𝑐(𝑜, 𝑗), 𝑈𝜔,𝑐(𝑝𝑡) and 𝑈𝛾,𝑐(𝑝𝑡, 𝑜) are sampled from a lognormal distribution with 𝜎𝑈𝜑,𝑐 =

𝜎𝑈𝜔,𝑐 = 𝜎𝑈𝛾,𝑐 = 0.33 (as quantified for the classical error component of the evaluation factor) 

and 𝜇𝑈𝜑,𝑐 = 𝜇𝑈𝜔,𝑐 = 𝜇𝑈𝛾,𝑐 = −
0.332

2
. 

7. Multiply the true mean value of the uncertain parameters with a Berkson error term 

• 𝜑′(𝑡, 𝑜, 𝑗) = 𝜑(𝑜, 𝑗) ⋅ 𝑈𝜑′,𝐵(𝑡, 𝑜, 𝑗) 

• 𝜔′(𝑡, 𝑜) = 𝜔(𝑝𝑡) ⋅ 𝑈𝜔′,𝐵(𝑡, 𝑜) 

• 𝛾′(𝑡, 𝑜) = 𝛾(𝑝𝑡 , 𝑜) ⋅ 𝑈𝛾′,𝐵(𝑡, 𝑜) 

where 𝑈𝜑′,𝐵(𝑡, 𝑜, 𝑗), 𝑈𝜔′,𝐵(𝑡, 𝑜) and 𝑈𝛾′,𝐵(𝑡, 𝑜) are sampled from a lognormal distribution with 

𝜎𝑈𝜑′,𝐵 = 𝜎𝑈𝜔′,𝐵 = 𝜎𝑈𝛾′,𝐵 = 0.69 (as quantified for the Berkson error component of the 

equilibrium factor) and 𝜇𝑈𝜑′,𝐵 = 𝜇𝑈𝜔′,𝐵 = 𝜇𝑈𝛾′,𝐵 = −
0.692

2
. 



 88 

8. Set 𝑓(𝑜, 𝑗) and 𝜑′(𝑡, 𝑜, 𝑗) as well as 𝑈𝜑,𝑐(𝑜, 𝑗) and 𝑈𝜑′,𝐵(𝑡, 𝑜, 𝑗) to 1 for miners with the reference 

activity since the activity weighting factor for a hewer is 1 and assumed to be known without 

error. 

9. Calculate the true exposure value for miner 𝑖 at time 𝑡 𝑋𝑖(𝑡) as 

𝑋𝑖(𝑡) = 𝒞𝑅𝑛(𝑡, 𝑜) ⋅ 12 ⋅ 𝛾′(𝑡, 𝑜) ⋅ 𝜔′(𝑡, 𝑜) ⋅ 𝜑′(𝑡, 𝑜, 𝑗). 

10. Calculate the error-prone observed exposure for miner 𝑖 at time 𝑡 𝑍𝑖(𝑡) as 

𝑍𝑖(𝑡) = 𝐶𝑅𝑛(𝑡, 𝑜) ⋅ 12 ⋅ 𝑔(𝑝𝑡 , 𝑜) ⋅ 𝑤(𝑝𝑡) ⋅ 𝑓(𝑜, 𝑗). 

11. Set 𝑋𝑖(𝑡) and 𝑍𝑖(𝑡) equal to zero for all years and miners who have an exposure of zero in the 

fictive data set. 

The generation of exposure data for simulation scenario S1 is generally the same with the exception 
that all Berkson parameter uncertainties 𝑈𝜑′,𝐵(𝑡, 𝑜, 𝑗),  𝑈𝜔′,𝐵(𝑡, 𝑜) and 𝑈𝛾′,𝐵(𝑡, 𝑜) are set to 1. 

For simulation scenario S3, we additionally add an additive assignment error, which consists of half 

an unshared and half a shared component by setting 𝑋𝑖(𝑡) = 𝒞𝑅𝑛(𝑡, 𝑜) ⋅ 12 ⋅ 𝛾′(𝑡, 𝑜) ⋅ 𝜔′(𝑡, 𝑜) ⋅
𝜑′(𝑡, 𝑜, 𝑗) + 𝑈𝐸,𝐵(𝑖, 𝑡, 𝑜, 𝑗) + 𝑈𝐸,𝐵(𝑖, 𝑜, 𝑗). The unshared error component 𝑈𝐸,𝐵(𝑖, 𝑡, 𝑜, 𝑗) 

independently affects different miners as well as a miner’s different exposure values, whereas the 
error component 𝑈𝐸,𝐵(𝑖, 𝑜, 𝑗) is shared for all working years of the same miner in the same object 

and the same activity. In accordance with the quantification of the assignment error for object 009 

(Aue) in 1961 as described in Section 3.4.3 and following Allodji et al. (2012a), we derive the standard 

deviation for both assignment error components as 𝜎𝑈𝐸,𝐵 = √
13.952

2
= 9.86. Thus, 𝑈𝐸,𝐵(𝑖, 𝑡, 𝑜, 𝑗) and 

𝑈𝐸,𝐵(𝑖, 𝑜, 𝑗) are sampled from a normal distribution with 𝜇𝑈𝐸,𝐵 = 0 and 𝜎𝑈𝐸,𝐵 = 9.86. 

5.4.3 Generating survival times as a function of time-varying exposure 

For the simulation study we need to generate survival times with a time-varying covariate. The 

outcome of interest is the censored time until death by lung cancer (𝑌𝑖 , 𝛿𝑖), where 𝛿𝑖  describes the 

censoring indicator. The time-varying covariate is the sum of the annual radon exposure values 

received until time 𝑡, 𝑋𝑖
𝑐𝑢𝑚(𝑡). 

In the following, we summarize the method proposed by Zhou (2001) which is based on the 

generation of truncated piecewise exponential random variables to generate survival times as a 

function of continuous time-varying explanatory variables as described by Hendry (2014) in short. 

The algorithm is based on generating a truncated piecewise exponential random variable 𝑉𝑖 for each 

miner 𝑖. For that, a monotone increasing transformation function 𝑔(. ) has to be chosen in such a 

way, that 𝑔(0) = 0 and 𝑔−1(. ) is differentiable. The baseline hazard rate of the Cox model according 

to which the survival times are generated, corresponds to ℎ0(𝑡) =
𝜕[𝑔−1(𝑡)]

𝜕𝑡
. In order to incorporate 

the sum of the annual radon exposure values received until time 𝑡 as a time-varying covariate, the 

rates 𝜆𝑖(𝑡) = 𝑒𝑥𝑝(𝛽𝑋𝑖
𝑐𝑢𝑚(𝑡)) have to be calculated for each miner 𝑖, where 𝛽 is the regression 

coefficient. Besides, one has to define the bounds of truncation 𝑎 and 𝑏, which correspond to the 

minimum and maximum possible generated time until death by lung cancer. The random variable 𝑉𝑖 

is drawn from a piecewise exponential distribution with varying rates 𝜆𝑖(𝑡) and the corresponding 

time change points 𝑔−1(𝑡). The truncation for the piecewise exponential variable is realized through 

an acceptation-rejection algorithm where only realizations within 𝑔−1(𝑎) and 𝑔−1(𝑏) are included. 

In the next step, the time until death by lung cancer of miner 𝑖 is calculated as 𝑇𝑖 = 𝑔(𝑉𝑖) and a 

censoring indicator 𝛿𝑖 ∈ {0,1} is defined (e.g. using an exponentially distributed censoring time), 

where for 𝛿𝑖 = 1 miner 𝑖 died of lung cancer, whereas he was censored for 𝛿𝑖 = 0. Finally, all radon 

exposure values of miner 𝑖, which occurred after the censored survival time, are deleted. 
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One pitfall of the algorithm developed by Zhou (2001) and implemented by Hendry (2014) is the 

sensitivity of the distribution of the outcome to multiple user-supplied parameters. For this reason, 

Montez-Rath et al. (2017) performed simulation studies to evaluate these sensitivities and provide 

guidelines for the choice of the user inputs. Following these guidelines, the survival data should be 

generated using a large range for the bounds of truncation and the 𝑔(. ) function should be defined 

via a Weibull distribution with a respective Weibull shape parameter 𝜈. 

To generate the time until death by lung cancer for the simulation study, we use the simulated true 

exposure values, cumulated for each year 𝑋𝑖
𝑐𝑢𝑚(𝑡) as time-varying covariate with a regression 

coefficient of 𝛽 = 0.003 per WLM. Since we did not find a representative estimate of the risk 

estimate for the Wismut cohort in a Cox model in which radon exposure was treated as time-varying 

covariate, we used the risk estimate that was estimated in the French cohort of uranium miners. 

Moreover, as suggested by Montez-Rath et al. (2017), we use a wide limit for the generation of time 

until death by lung cancer for the algorithm by setting the lower bound of truncation for each 

individual miner to his age at begin of employment at the Wismut and the upper bound to 500 (since 

we truncate survival times at the age of 104, this upper bound of 500 years is somewhat arbitrary). 

Following the guidelines, we also use a Weibull distribution for the 𝑔(. ) function with a shape 

parameter of 𝜈 = 1 to obtain a constant baseline hazard rate. However, we want to simulate 

according to a Cox proportional hazards model with a piecewise constant baseline hazard rate but 

this would violate the properties of the 𝑔(. ) function. We therefore set ℎ0(𝑡) to a constant value and 

integrate, depending on the age of the miner, the respective changing baseline hazard in the hazard 

rates 𝜆𝑖(𝑡). In this way we get a piecewise baseline hazard that is constant in the four age ranges 

[0,40), [40,55), [55,75) and [75,104]. These values were chosen in accordance with the patterns of 

lung cancer incidence in the general population. The upper limit of the last age interval results from 

the fact that we truncate the survival times at the age of 104, since this corresponds to the age of the 

oldest miner in the fictive cohort data set. Besides, we perform a censoring of the survival times by 

generating exponential distributed censoring times and defining the survival time as the minimum of 

the time until death by lung cancer and the censoring time. If a miner’s censoring time is chosen 

smaller than his age at begin of employment at the Wismut, we draw a new value from the 

exponential distribution. 

5.5 Applying the Bayesian hierarchical approach  

We applied the Bayesian hierarchical approach as described in Chapter 4 to the data generated in the 

simulation study. Here, we show the used prior parameters in the simulation study. For the 

parameters of interest, we specify priors as follows: 

• 𝛽 ∼ 𝑁(0,100) (normal distribution parameterized with mean and standard deviation) 

• 𝜆1 ∼ 𝐺𝑎(600,1/10000000) (Gamma distribution parameterized with shape and scale) 

• 𝜆2 ∼ 𝐺𝑎(12000,1/1000000) 

• 𝜆3 ∼ 𝐺𝑎(46000,1/1000000) 

• 𝜆4 ∼ 𝐺𝑎(1000,1/100000) 

Parameters of the exposure models are specified as 

• 𝒞𝑅𝑛 ∼ 𝑁
+(0.2,0.2) (normal distribution with values only on ℝ+) 

• 𝜑 ∼ 𝐵(3,3) (beta distribution with 𝑎 = 𝑏 = 3), truncated at [0; 1] 

• 𝜔 ∼ 𝐵(3,3) truncated at [0.88,1.2] 

• 𝛾 ∼ 𝐵(3,3) truncated at [0.2,0.6] 
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5.6 Alternative methods to account for measurement error 

As already described in the aims (Section 5.2) and the design (Section 5.3) of the simulation study, we 

use different methods for measurement error correction and risk estimation. While the Bayesian 

hierarchical approach is detailed in Chapter 4 and the naive risk estimate is simply obtained by using 

the observed exposure without any measurement error correction, in this section we describe how 

we performed the two alternative methods to account for measurement error, namely simulation 

extrapolation and regression calibration for the different simulation scenarios. 

5.6.1 Simulation extrapolation (SIMEX) 

Section 4.3.2 already briefly describes that using SIMEX for measurement error correction basically 

consists of the following three steps (see Carroll et al. (2006, Chapter 5) for more details): 

1. Simulate data of increasingly larger measurement error (1 + 𝜆𝑠𝑖𝑚)𝜎𝑢
2 with different values of 

𝜆𝑠𝑖𝑚 ≥ 0 by calculating 𝑍𝑏,𝑖(𝜆𝑠𝑖𝑚) = 𝑍𝑖 +√𝜆𝑠𝑖𝑚𝑈𝑏,𝑖 for 𝑖 = 1,… , 𝑛 and 𝑏 = 1,… , 𝐵 and 

replacing 𝑋𝑖  with 𝑍𝑏,𝑖(𝜆𝑠𝑖𝑚) in the model calculation to finally obtain for each 𝜆𝑠𝑖𝑚 value the 

average estimate 𝛽̂(𝜆𝑠𝑖𝑚) of the 𝐵 risk estimates 𝛽̂𝑏(𝜆𝑠𝑖𝑚) 

2. Extrapolate back to 𝜆𝑠𝑖𝑚 = −1 using an extrapolation function to obtain the SIMEX estimate 

3. Calculate the standard errors 

To account for measurement error in the Wismut cohort, SIMEX needs to be applied to survival data, 
which is possible by replacing 𝑋𝑖  with 𝑍𝑏,𝑖(𝜆𝑠𝑖𝑚) in the hazard function, and then using the partial 

likelihood to produce 𝐵 estimates for each 𝜆𝑠𝑖𝑚 (Carroll et al., 2006, pp. 323-324). With the average 

estimate 𝛽̂(𝜆𝑠𝑖𝑚) for each 𝜆𝑠𝑖𝑚, it is again possible to extrapolate back to 𝜆𝑠𝑖𝑚 = −1 to obtain the 

SIMEX measurement error corrected estimate. 

The SIMEX algorithm described so far corrects for additive classical measurement error, thus for the 

case that 𝑍𝑖 = 𝑋𝑖 + 𝑈𝑖  with 𝑈𝑖 ∼ 𝑁(0, 𝜎𝑢
2). As we assume multiplicative errors for the equilibrium, 

working time and activity weighting factors in M2 (see Section 2.3), we transform the multiplicative 

to the additive model 𝑙𝑜𝑔(𝑍𝑖) = 𝑙𝑜𝑔(𝑋𝑖) + 𝑈𝑖, with 𝑈𝑖 ∼ 𝑁(−
𝜎𝑢
2

2
, 𝜎𝑢
2) to be able to apply SIMEX to 

multiplicative classical measurement error. Then, the simulation step is not performed on 𝑍 itself, 

but on its logarithm 𝑙𝑜𝑔(𝑍), such that 𝑍𝑏,𝑖(𝜆𝑠𝑖𝑚) = 𝑒𝑥𝑝(𝑙𝑜𝑔(𝑍𝑖) + √𝜆𝑠𝑖𝑚𝑈𝑏,𝑖) (Carroll et al., 2006, 

pp. 104-108). 

For the simulation study, we use SIMEX with the corresponding parameter values and a procedure 

adapted to simulation scenario S1 to S3 as described in the following. 

1. Simulation step 

For each of the simulation scenarios S1 to S3 we use 

𝜆𝑠𝑖𝑚 = {0,0.25,0.5,0.75,1,1.25,1.5},
𝑏 = {1,2,… ,100},

 

as well as the median as a more robust alternative to the mean to get the average of the 𝐵 

estimates for each 𝜆𝑠𝑖𝑚 

𝛽̂(𝜆𝑠𝑖𝑚) = median(𝛽̂𝑏(𝜆𝑠𝑖𝑚)). 

For scenario S1, we assumed an additive classical measurement error for the radon gas 

concentration 𝒞𝑅𝑛(𝑡, 𝑜) and multiplicative classical errors for the three parameters 

𝜔(𝑝𝑡), 𝛾(𝑝𝑡 , 𝑜) and 𝜑(𝑜, 𝑗). Scenario S2 additionally assumed Berkson error components for the 

working time, equilibrium and activity weighting factors and scenario S3 was equivalent to 
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scenario S2 with an additional Berkson assignment error. However, since SIMEX only corrects for 

classical error, we consider the following for all three scenarios S1, S2 and S3: 

𝐶𝑅𝑛(𝑡, 𝑜) = 𝒞𝑅𝑛(𝑡, 𝑜) + 𝑈𝒞,𝑐(𝑡, 𝑜) with 𝑈𝒞,𝑐(𝑡, 𝑜) ∼ 𝑁(𝜇𝑈𝒞,𝑐 , 𝜎𝑈𝒞,𝑐
2 )

𝑙𝑜𝑔(𝑓(𝑜, 𝑗)) = 𝑙𝑜𝑔(𝜑(𝑜, 𝑗)) + 𝑈𝜑,𝑐(𝑜, 𝑗) with 𝑈𝜑,𝑐(𝑜, 𝑗) ∼ 𝑁(−
𝜎𝑈𝜑
2

2
, 𝜎𝑈𝜑
2 )

𝑙𝑜𝑔(𝑤(𝑝𝑡)) = 𝑙𝑜𝑔(𝜔(𝑝𝑡)) + 𝑈𝜔,𝑐(𝑝𝑡) with 𝑈𝜔,𝑐(𝑝𝑡) ∼ 𝑁(−
𝜎𝑈𝜔
2

2
, 𝜎𝑈𝜔
2 )

𝑙𝑜𝑔(𝑔(𝑝𝑡 , 𝑜)) = 𝑙𝑜𝑔(𝛾(𝑝𝑡 , 𝑜)) + 𝑈𝛾,𝑐(𝑝𝑡, 𝑜) with 𝑈𝛾,𝑐(𝑝𝑡, 𝑜) ∼ 𝑁(−
𝜎𝑈𝛾
2

2
, 𝜎𝑈𝛾
2 )

 

For each of the three parameters and the radon gas concentration we draw 

𝑈𝑏,𝑖
𝜑,𝑐
(𝑜, 𝑗), 𝑈𝑏,𝑖

𝜔,𝑐(𝑝𝑡), 𝑈𝑏,𝑖
𝛾,𝑐
(𝑝𝑡 , 𝑜) and 𝑈𝑏,𝑖

𝒞,𝑐(𝑡, 𝑜) from the respective normal distributions as 

described in the generation of error-prone exposure data in Section 5.4.2 and calculate 

𝐶𝑅𝑛,𝑏(𝜆𝑠𝑖𝑚, 𝑡, 𝑜) = 𝐶𝑅𝑛(𝑡, 𝑜) + √𝜆𝑠𝑖𝑚𝑈𝑏,𝑖
𝒞,𝑐(𝑡, 𝑜)

𝑓𝑏(𝜆𝑠𝑖𝑚, 𝑜, 𝑗) = 𝑒𝑥𝑝(𝑙𝑜𝑔(𝑓(𝑜, 𝑗)) + √𝜆𝑠𝑖𝑚𝑈𝑏,𝑖
𝜑,𝑐
(𝑜, 𝑗))

𝑤𝑏(𝜆𝑠𝑖𝑚, 𝑝𝑡) = 𝑒𝑥𝑝(𝑙𝑜𝑔(𝑤(𝑝𝑡)) + √𝜆𝑠𝑖𝑚𝑈𝑏,𝑖
𝜔,𝑐(𝑝𝑡))

𝑔𝑏(𝜆𝑠𝑖𝑚, 𝑝𝑡 , 𝑜) = 𝑒𝑥𝑝(𝑙𝑜𝑔(𝑔(𝑝𝑡 , 𝑜)) + √𝜆𝑠𝑖𝑚𝑈𝑏,𝑖
𝛾,𝑐
(𝑝𝑡 , 𝑜))

 

We replace the observed radon exposure with 

𝑍𝑏(𝜆𝑠𝑖𝑚) = 12 ⋅ 𝐶𝑅𝑛,𝑏(𝜆𝑠𝑖𝑚, 𝑡, 𝑜) ⋅ 𝑓𝑏(𝜆𝑠𝑖𝑚, 𝑜, 𝑗) ⋅ 𝑤𝑏(𝜆𝑠𝑖𝑚, 𝑝𝑡) ⋅ 𝑔𝑏(𝜆𝑠𝑖𝑚, 𝑝𝑡 , 𝑜) 

and estimate the risk coefficients 𝛽̂𝑏(𝜆𝑠𝑖𝑚) to get 

𝛽̂(𝜆𝑠𝑖𝑚) = median(𝛽̂𝑏(𝜆𝑠𝑖𝑚)). 

2. Extrapolation step 

Regardless of the underlying scenario, for each extrapolation step we use a simple quadratic 

extrapolation function 

𝒢𝑄(𝜆𝑠𝑖𝑚, (𝛼1, 𝛼2, 𝛼3)
𝑡) = 𝛼1 + 𝛼2𝜆𝑠𝑖𝑚 + 𝛼3𝜆𝑠𝑖𝑚

2  

to extrapolate back to 𝜆𝑠𝑖𝑚 = −1. 

3. SIMEX standard error 

To get the SIMEX standard errors for each simulation scenario, we use the simulation-based 

method of nonparametric bootstrap. For this we generate 200 bootstrap samples, each 

containing 1000 miners randomly drawn with replacement from the respective simulation data 

set. For each of the 200 bootstrap samples, the SIMEX method is performed as described for the 

respective simulation scenario. To obtain the 95% credible interval, the fifth and the 195𝑡ℎ of the 

ordered risk estimates of the 200 bootstrap samples is used as the lower and the upper limit 

respectively. 

5.6.2 Regression calibration 

As already mentioned in Section 4.3.1, the regression calibration method has in general the following 

three steps (see Carroll et al. (2006, Chapter 4) for more details): 

1. Estimation of the calibration function 𝐸(𝑋|𝑍) using some additional information like a calibration 

sample, repeated measurements or an instrumental variable. For the Wismut cohort, we can use 

the quantification for the measurement error magnitudes as this additional information. 

2. Fit the standard model using 𝐸(𝑋|𝑍) instead of 𝑍. 
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3. Calculate valid standard errors to account for the first step using bootstrap or sandwich methods. 

As for SIMEX, in order to correct the data of the Wismut cohort for measurement error, we need 

regression calibration to apply to survival data and to additive as well as multiplicative measurement 

error. Regression calibration can be applied to survival data by simply using in the second step a 

standard model for survival analysis, e.g. the Cox model. Applying regression calibration to additive 

or multiplicative error differs in the first step, which is described in the following. 

In the case of additive classical measurement error 𝑍𝑖 = 𝑋𝑖 + 𝑈𝑖  with 𝑈𝑖 ∼ 𝑁(0, 𝜎𝑈
2) the calibration 

function 𝐸(𝑋𝑖|𝑍𝑖) can be estimated through 

𝐸(𝑋𝑖|𝑍𝑖) = 𝜇𝑍 +
𝜎𝑍
2 − 𝜎𝑈

2

𝜎𝑍
2 (𝑍𝑖 − 𝜇𝑍). 

The multiplicative measurement error model can be transformed into the additive model 𝑙𝑜𝑔(𝑍𝑖) =

𝑙𝑜𝑔(𝑋𝑖) + 𝑈𝑖  with 𝑈𝑖 ∼ 𝑁(−
𝜎𝑈
2

2
, 𝜎𝑈
2) and the calibration function is obtained with equation (4.7) in 

Carroll et al. (2006, p. 74) as 

𝐸(𝑋𝑖|𝑍𝑖) = 𝑍𝑖

𝜎𝑙𝑜𝑔(𝑍)
2 −𝜎𝑈

2

𝜎𝑙𝑜𝑔(𝑍)
2

𝑒𝑥𝑝(𝜇𝑙𝑜𝑔(𝑍)(1 −
𝜎𝑙𝑜𝑔(𝑍)
2 − 𝜎𝑈

2

𝜎𝑙𝑜𝑔(𝑍)
2 ) +

𝜎𝑈
2

2
+
𝜎𝑙𝑜𝑔(𝑍)
2 − 𝜎𝑈

2

𝜎𝑙𝑜𝑔(𝑍)
2 ⋅

𝜎𝑈
2

2
). 

The following describes how regression calibration is used in the simulation study for simulation 

scenarios S1 to S3. 

1. Calibration function 𝐸(𝑋|𝑍) 

Scenario S1: 

Simulation scenario S1 corresponds to M2 without any Berkson error components (level 5a in 

Figure 5.1), so there is a classical additive measurement error for the radon gas concentration 

𝒞𝑅𝑛(𝑡, 𝑜) and only classical multiplicative errors for the activity weighting factor 𝜑(𝑜, 𝑗), the 

working time factor 𝜔(𝑝𝑡) and the equilibrium factor 𝛾(𝑝𝑡 , 𝑜): 

𝐶𝑅𝑛(𝑡, 𝑜) = 𝒞𝑅𝑛(𝑡, 𝑜) + 𝑈𝒞,𝑐(𝑡, 𝑜) with 𝑈𝒞,𝑐(𝑡, 𝑜) ∼ 𝑁(𝜇𝑈𝒞,𝑐 , 𝜎𝑈𝒞,𝑐
2 )

𝑙𝑜𝑔(𝑓(𝑜, 𝑗)) = 𝑙𝑜𝑔(𝜑(𝑜, 𝑗)) + 𝑈𝜑,𝑐(𝑜, 𝑗) with 𝑈𝜑,𝑐(𝑜, 𝑗) ∼ 𝑁(−
𝜎𝑈𝜑
2

2
, 𝜎𝑈𝜑
2 )

𝑙𝑜𝑔(𝑤(𝑝𝑡)) = 𝑙𝑜𝑔(𝜔(𝑝𝑡)) + 𝑈𝜔,𝑐(𝑝𝑡) with 𝑈𝜔,𝑐(𝑝𝑡) ∼ 𝑁(−
𝜎𝑈𝜔
2

2
, 𝜎𝑈𝜔
2 )

𝑙𝑜𝑔(𝑔(𝑝𝑡 , 𝑜)) = 𝑙𝑜𝑔(𝛾(𝑝𝑡 , 𝑜)) + 𝑈𝛾,𝑐(𝑝𝑡, 𝑜) with 𝑈𝛾,𝑐(𝑝𝑡, 𝑜) ∼ 𝑁(−
𝜎𝑈𝛾
2

2
, 𝜎𝑈𝛾
2 )

 

To calculate the calibration function for scenario S1, we first use the formula for classical 

measurement errors for the radon gas concentration 𝒞𝑅𝑛(𝑡, 𝑜) and the formula for multiplicative 

measurement errors for each of the three parameters 𝜑(𝑜, 𝑗), 𝜔(𝑝𝑡) and 𝛾(𝑝𝑡 , 𝑜), thus 
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𝐸(𝒞𝑅𝑛(𝑡, 𝑜)|𝐶𝑅𝑛(𝑡, 𝑜)) = 𝜇𝐶𝑅𝑛 +
𝜎𝐶𝑅𝑛
2 − 𝜎𝑈𝒞,𝑐

2

𝜎𝐶𝑅𝑛
2 (𝐶𝑅𝑛(𝑡, 𝑜) − 𝜇𝐶𝑅𝑛),

𝐸(𝜑(𝑜, 𝑗)|𝑓(𝑜, 𝑗)) = 𝑓(𝑜, 𝑗)

𝜎𝑙𝑜𝑔(𝑓)
2 −𝜎𝑈𝜑

2

𝜎𝑙𝑜𝑔(𝑓)
2

⋅

𝑒𝑥𝑝(𝜇𝑙𝑜𝑔(𝑓)(1 −
𝜎𝑙𝑜𝑔(𝑓)
2 − 𝜎𝑈𝜑

2

𝜎𝑙𝑜𝑔(𝑓)
2 ) +

𝜎𝑈𝜑
2

2
+
𝜎𝑙𝑜𝑔(𝑓)
2 − 𝜎𝑈𝜑

2

𝜎𝑙𝑜𝑔(𝑓)
2 ⋅

𝜎𝑈𝜑
2

2
),

𝐸(𝜔(𝑝𝑡)|𝑤(𝑝𝑡)) = 𝑤(𝑝𝑡)

𝜎𝑙𝑜𝑔(𝑤)
2 −𝜎𝑈𝜔

2

𝜎𝑙𝑜𝑔(𝑤)
2

⋅

𝑒𝑥𝑝(𝜇𝑙𝑜𝑔(𝑤)(1 −
𝜎𝑙𝑜𝑔(𝑤)
2 − 𝜎𝑈𝜔

2

𝜎𝑙𝑜𝑔(𝑤)
2 ) +

𝜎𝑈𝜔
2

2
+
𝜎𝑙𝑜𝑔(𝑤)
2 − 𝜎𝑈𝜔

2

𝜎𝑙𝑜𝑔(𝑤)
2 ⋅

𝜎𝑈𝜔
2

2
),

𝐸(𝛾(𝑝𝑡 , 𝑜)|𝑔(𝑝𝑡 , 𝑜)) = 𝑔(𝑝𝑡 , 𝑜)

𝜎𝑙𝑜𝑔(𝑔)
2 −𝜎𝑈𝛾

2

𝜎𝑙𝑜𝑔(𝑔)
2

⋅

𝑒𝑥𝑝(𝜇𝑙𝑜𝑔(𝑔)(1 −
𝜎𝑙𝑜𝑔(𝑔)
2 − 𝜎𝑈𝛾

2

𝜎𝑙𝑜𝑔(𝑔)
2 ) +

𝜎𝑈𝛾
2

2
+
𝜎𝑙𝑜𝑔(𝑔)
2 − 𝜎𝑈𝛾

2

𝜎𝑙𝑜𝑔(𝑔)
2 ⋅

𝜎𝑈𝛾
2

2
),

 

where 𝜇𝑙𝑜𝑔(𝑓), 𝜇𝑙𝑜𝑔(𝑤), 𝜇𝑙𝑜𝑔(𝑔), 𝜎𝑙𝑜𝑔(𝑓)
2 , 𝜎𝑙𝑜𝑔(𝑤)

2  and 𝜎𝑙𝑜𝑔(𝑔)
2  are the expectations and the variances 

of the logarithms of the values for 𝑓(𝑜, 𝑗), 𝑤(𝑝𝑡) and 𝑔(𝑝𝑡 , 𝑜), respectively. For the activity 

weighting factor, 𝜇𝑙𝑜𝑔(𝑓) and 𝜎𝑙𝑜𝑔(𝑓)
2  are calculated without those miners who belong to the 

reference activity of a hewer, since their activity weighting factor is assumed to be equal to 1 and 

to be known without error. 

Finally, we simply combine the four calibration functions for the single measurement errors as 

follows to obtain the calibration function for M2 without the Berkson error components: 

𝐸(𝒞𝑅𝑛(𝑡, 𝑜) ⋅ 12 ⋅ 𝛾(𝑝𝑡 , 𝑜) ⋅ 𝜔(𝑝𝑡) ⋅ 𝜑(𝑜, 𝑗)|𝐶𝑅𝑛(𝑡, 𝑜), 𝑔(𝑝𝑡 , 𝑜), 𝑤(𝑝𝑡), 𝑓(𝑜, 𝑗)) =

12 ⋅ 𝐸(𝒞𝑅𝑛(𝑡, 𝑜)|𝐶𝑅𝑛(𝑡, 𝑜)) ⋅ 𝐸(𝜑(𝑜, 𝑗)|𝑓(𝑜, 𝑗)) ⋅ 𝐸(𝜔(𝑝𝑡)|𝑤(𝑝𝑡)) ⋅ 𝐸(𝛾(𝑝𝑡 , 𝑜)|𝑔(𝑝𝑡 , 𝑜))
 

Scenarios S2 and S3: 

Compared to scenario S1, the scenarios S2 and S3 also consider Berkson error components for 

the activity weighting, the working time and the equilibrium factors and scenario S3 additionally 

considers the Berkson assignment error. As the assignment error is only considered in the model 

used for data generation and not in the model used for parameter estimation (see Figure 5.1), 

regression calibration for S2 and S3 is the same. Calculating the single calibration function for the 

radon gas concentration 𝒞𝑅𝑛(𝑡, 𝑜) is the same as in scenario S1, as there is no Berkson error 

component. Besides, when calculating the single calibration functions for each of the three 

parameters 𝜑(𝑜, 𝑗), 𝜔(𝑝𝑡) and 𝛾(𝑝𝑡 , 𝑜), one can show that they are also the same as in scenario 

S1: 

𝐸(𝜑′(𝑡, 𝑜, 𝑗)|𝑓(𝑜, 𝑗)) = 𝐸(𝜑(𝑜, 𝑗) ⋅ 𝑈𝜑′,𝐵(𝑡, 𝑜, 𝑗)|𝑓(𝑜, 𝑗))

= 𝐸(𝜑(𝑜, 𝑗)|𝑓(𝑜, 𝑗)) ⋅ 𝐸(𝑈𝜑′,𝐵(𝑡, 𝑜, 𝑗)|𝑓(𝑜, 𝑗))

= 𝐸(𝜑(𝑜, 𝑗)|𝑓(𝑜, 𝑗))

𝐸(𝜔′(𝑡, 𝑜)|𝑤(𝑝𝑡)) = 𝐸(𝜔(𝑝𝑡) ⋅ 𝑈𝜔′,𝐵(𝑡, 𝑜)|𝑤(𝑝𝑡))

= 𝐸(𝜔(𝑝𝑡)|𝑤(𝑝𝑡)) ⋅ 𝐸(𝑈𝜔′,𝐵(𝑡, 𝑜)|𝑤(𝑝𝑡))

= 𝐸(𝜔(𝑝𝑡)|𝑤(𝑝𝑡))

𝐸(𝛾′(𝑡, 𝑜)|𝑔(𝑝𝑡 , 𝑜)) = 𝐸(𝛾(𝑝𝑡 , 𝑜) ⋅ 𝑈𝛾′,𝐵(𝑡, 𝑜)|𝑔(𝑝𝑡 , 𝑜))

= 𝐸(𝛾(𝑝𝑡 , 𝑜)|𝑔(𝑝𝑡 , 𝑜)) ⋅ 𝐸(𝑈𝛾′,𝐵(𝑡, 𝑜)|𝑔(𝑝𝑡 , 𝑜))

= 𝐸(𝛾(𝑝𝑡 , 𝑜)|𝑔(𝑝𝑡 , 𝑜))

 

To obtain the calibration function for M2 including Berkson error, we again combine the single 

calibration functions as in scenario S1: 
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𝐸(𝒞𝑅𝑛(𝑡, 𝑜) ⋅ 12 ⋅ 𝛾′(𝑡, 𝑜) ⋅ 𝜔′(𝑡, 𝑜) ⋅ 𝜑′(𝑡, 𝑜, 𝑗)|𝐶𝑅𝑛(𝑡, 𝑜), 𝑔(𝑝𝑡 , 𝑜), 𝑤(𝑝𝑡), 𝑓(𝑜, 𝑗)) =

12 ⋅ 𝐸(𝒞𝑅𝑛(𝑡, 𝑜)|𝐶𝑅𝑛(𝑡, 𝑜)) ⋅ 𝐸(𝜑(𝑜, 𝑗)|𝑓(𝑜, 𝑗)) ⋅ 𝐸(𝜔(𝑝𝑡)|𝑤(𝑝𝑡)) ⋅ 𝐸(𝛾(𝑝𝑡 , 𝑜)|𝑔(𝑝𝑡 , 𝑜))
 

2. Standard model using 𝐸(𝑋|𝑍) instead of 𝑍 

Instead of the observed radon exposure, we use the calibration function that was calculated in 

the first step for the respective simulation scenario and fit a Cox model with a piecewise baseline 

hazard that is constant in the four age ranges [0,40), [40,55), [55,75) and [75,104] . 

3. Regression calibration standard error 

We use nonparametric bootstrap to get the standard errors for regression calibration. For each 

simulation scenario we generate 200 bootstrap samples with 1000 miners drawn at random and 

with replacement from the respective simulation data set and then perform for each bootstrap 

sample regression calibration. The fifth and the 195𝑡ℎ of the ordered risk estimates that are 

obtained for the 200 bootstrap samples are used for the lower and upper limit of the 95% 

credible interval. 

5.7 Results of the simulation study 

5.7.1 Results for 𝜷 

Table 5.1 gives information on the performance of the proposed Bayesian hierarchical approach in 

comparison with regression calibration and SIMEX in simulation scenarios S1, S2 and S3 of the 

simulation study. 

For simulation scenario S1, in which the data are only generated with shared classical error 

components in the four uncertain parameters 𝜔, 𝜑, 𝛾 and 𝐶𝑅𝑛, the naive estimates show a relative 

bias of about -10% and regression calibration, SIMEX and the hierarchical Bayesian approach are all 

able to reduce the absolute value of this relative bias to 5.96%, -4.24% and -2.95%, respectively. 

However, the coverage rate of the confidence intervals derived by the implemented version of 

regression calibration and SIMEX are 39% and 57% whereas the coverage rate of the credible 

intervals provided by the Bayesian hierarchical approach are 94% and thus very close to the nominal 

95%. 

For simulation scenario S2, in which the data are generated with shared Berkson and classical error 

components in the three uncertain parameters 𝜔, 𝜑 and 𝛾 and with shared classical error for 𝐶𝑅𝑛, 

the naive estimates show a relative bias of close to 20%. Regression calibration and the proposed 

Bayesian hierarchical approach are again able to reduce the absolute value of this bias to -2.57% and 

6.76%, respectively. Again, the Bayesian hierarchical approach provides credible intervals that result 

in a coverage rate of 93% which is very close to the nominal 95% whereas regression calibration 

provides only a coverage of 29%. When using SIMEX or a version of the Bayesian hierarchical 

approach that only accounts for classical error components (Level 5a in Figure 5.1), the measurement 

model is misspecified. SIMEX and the Bayesian hierarchical approach produce coverage rates of 

around 60% and a bias of 4.88% and -11.47%, respectively, in this situation. 

Finally, in simulation scenario S3, in which there are shared classical error components in the four 

uncertain parameters 𝜔, 𝜑, 𝛾 and 𝐶𝑅𝑛 and shared Berkson error components for the factors 𝜔, 𝜑 

and 𝛾 as well as an assignment error in the form of a Berkson error consisting of half a shared and 

half an unshared component, strictly speaking all models are misspecified since none of the 

approaches accounts for this additional Berkson assignment error. In this scenario, the bias of the 

naive estimate is again around -20%. Both regression calibration and the Bayesian hierarchical 

approach can successfully reduce the absolute value of this relative bias to 3.50% and -3.91%, 

respectively. However, the coverage rates for the Bayesian hierarchical approach are again very close 

to the nominal level with 98% coverage whereas regression calibration only shows a coverage of 

37%. The performance of SIMEX is comparable to its performance in simulation scenario S2 with a 

coverage rate of 60% and a relative bias of -13.81% and the version of the Bayesian hierarchical 
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approach that only accounts for classical error components (Level 5a in Figure 5.1) leads to a small 

relative bias of 0.88% but the coverage rate is only 55%.  

When the error variance parameters for the shared Berkson and classical error components in the 

four uncertain factors are misspecified by assuming either a standard deviation that is twice as big or 

half as big, the coverage rate of the Bayesian hierarchical approach is reduced to 28% and 80%, 

respectively. The relative bias, however is very high for the situation where the error variance is 

overestimated (178.8%) while it is negligible in the situation where the error variance is 

underestimated (-1.43%). 

Figure A.3 in the Appendix A 3 shows for the Bayesian hierarchical approach for scenario S1 the 

estimated mean and credible interval for 𝛽 on 100 simulated data sets. The horizontal dotted line is 

the true value of 𝛽. 

Table 5.1: Results of the simulation study (rounded to two digits) for 100 data sets generated 

according to a scenario among S1 to S3 and with a true risk coefficient of β =0.3 per 100 WLM. As 

described in Section 4.1 and shown in Figure 5.1 ‘Level 5a’ stands for adjustment only for classical 

errors according to M2 but without any Berkson error components. The naive frequentist and the 

naive Bayesian results are calculated by only using the disease model while assuming the observed 

exposure values to be without error. 
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5.7.2 Results for the baseline hazard parameters 

Table 5.2 shows results for the estimated baseline hazard parameters for the naive estimates, 

regression calibration and Bayes. For 𝜆2, 𝜆3 and 𝜆4, the proposed Bayesian approach shows good 

performance in correcting the baseline hazard parameter estimates. Depending on the scenarios and 

the parameter, the naive estimates can have a relative bias of more than 50%. While both error 

correction methods consistently produce overestimates of the true parameter values, the Bayesian 

hierarchical approach reduces these relative biases, whereas the regression calibration produces 

estimates that are comparable to the naive estimates. For 𝜆1, however, the Bayesian hierarchical 

approach shows estimates that are biased upwards by about 100% in all three scenarios. At the same 

time, the coverage rates for 𝜆1 are rather high (see Figure A.4 in the Appendix A 3, which shows for 

the Bayesian hierarchical approach for scenario S1 the estimated mean and credible interval for the 

baseline hazards on 100 simulated data sets). The difficulty in estimating 𝜆1 can be explained by the 

fact, that there is very little information in the data to estimate the baseline hazard parameter for 

miners younger than 40 years of age. To palliate this problem, it would be advisable to use 

informative prior distributions for 𝜆1 on the real data of the Wismut cohort. 

Table 5.2: Results of the simulation study for the estimates of the piecewise constant baseline 

hazard rate (rounded to two digits) for 100 data sets generated according to a scenario among S1 

to S3 with the respective true values and the age intervals [0,40), [40, 55), [55, 75), [75, 104] for the 

baseline hazards 𝝀𝟏, 𝝀𝟐, 𝝀𝟑 and 𝝀𝟒. 

 

5.7.3 Conclusions on the practical relevance of the proposed method for the Wismut cohort 

The results of the simulation study confirmed that exposure measurement error generally leads to an 

attenuation in risk estimates. Moreover, it showed that the proposed Bayesian hierarchical approach 

is able to correct for the complex error structure in the Wismut cohort. In contrast to regression 

calibration and SIMEX, this approach provides good coverage rates for all three simulation scenarios 

and seemed in particular advantageous when correcting for shared error components. Moreover, the 

comparison between the correctly specified Bayesian hierarchical approach and the misspecified 

one, which only corrects for classical error components, shows that it is important to consider the 

shared Berkson error components of the three factors 𝜔, 𝜑 and 𝛾 when correcting for measurement 

error in the Wismut cohort. However, it does not seem to be necessary to account for the 

assignment error in the Wismut cohort. In simulation scenario S3, the Bayesian hierarchical approach 

shows a good overall performance in correcting for the bias introduced by exposure measurement 

error and it shows a good coverage rate, even though it neglects this Berkson error with an unshared 

and a shared component. The simulation study also underlined the importance of an extensive 

exposure quantification as it showed that misspecifications of the error variances can result in very 

high relative biases. 
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6 Accounting for exposure uncertainty in the Wismut cohort 

6.1 Necessary adaptions to account for measurement error in the Wismut cohort 

In order to account for measurement error in the Wismut cohort, we combined the proportional 

hazards model without effect modification described in Section 4.4.1 with the measurement models 

described in Chapter 2. In order to do so, the real cohort data had to be extended. The respective 

measurement model and the corresponding observed uncertain parameters had to be added to the 

Wismut data in long format, i.e. the data frame contains several rows per miner with one row for 

each time point at which the miner’s radon exposure changed and at which the miner was either 

censored or died of lung cancer. For this purpose, the parameters required for the exposure 

assessment were determined from Lehmann et al. (1998) and Lehmann (2004) for all years of each 

object. In cases where the exposure assessment differed within one object, the required parameters 

were determined for each shaft group of the respective object. The actual creation of the extended 

cohort data with this information was mainly carried out by BfS. 

The measurement models described in Chapter 2 according to Lehmann et al. (1998) and Küchenhoff 

et al. (2018) were in many cases applicable to the real data of the Wismut cohort. However, when 

accounting for the more detailed and shaft specific exposure estimation according to JEM 2 

(Lehmann, 2004) and when trying to add the necessary information to the Wismut cohort data in 

order to obtain all parameter values and necessary information to account for these measurement 

models, we encountered a variety of examples where it was very difficult to apply these models 

exactly in the way that we had planned when we characterized and quantified exposure uncertainty. 

In such cases, we had to adapt the measurement error models derived in Chapter 2 or the 

dependence structures that were assumed in these models and therefore as well the quantified 

values of measurement error variances. This was necessary either because the exact information on 

the quantities was missing or because the exposure assessment was more complex than initially 

described in Lehmann et al. (1998). Even with these adapted measurement models it was unfeasible 

to model the exposure of miners who were listed under the object number 090 000 as this object 

number is not part of the JEMs (Lehmann et al., 1998; Lehmann, 2004). Since this only applied to a 

handful of miners, they were excluded from the data set. As we will describe in more detail in Section 

6.1.3, we assumed a measurement error model that was similar to M4 in cases in which we lacked 

information to reconstruct the detailed exposure values according to the initial measurement model 

or in which the exposure values in the extended cohort data could not be reproduced with the 

original models. In cases in which the annual exposure values derived based on Lehmann et al. (1998) 

or Lehmann (2004) only slightly deviated from the annual exposure values from the extended cohort 

data or in which it seemed more reasonable to keep the original measurement model, we did not 
modify the assumed measurement model, but defined a multiplicative term 𝜏𝑝𝑜𝑠𝑡 with which the 

exposure values would need to be multiplied to coincide with the exposure value from the extended 
cohort data. 𝜏𝑝𝑜𝑠𝑡 was calculated with the aim to assess the robustness of the results with respect to 

the multiplication of this term, but it was not in the scope of the present study to perform such a 

sensitivity analysis. 

Finally, in line with the results of the simulation study, we decided that it is not worthwhile to 

account for assignment error in the Wismut cohort, so we adapted all considered measurement 

models by omitting the assignment error. 

6.1.1 Adapting dependence structures between measurement error components 

Adapting dependence structures for parameter uncertainties 

It was originally assumed that the observed values for the different parameters would be different 

for different years, objects and activities. The observed value of the activity weighting factor 𝑓(𝑜, 𝑗), 

for instance, was assumed to depend on object 𝑜 and activity 𝑗. However, in the real data these 
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values often coincided. If we had access to more detailed information on the exact object and 

activity, we could use more precise information provided in Lehmann et al. (1998) to decide whether 

these observed values just happen to coincide or were really estimated jointly. However, because of 

data protection rules, we do not actually have access to the exact object and activity of the miners 

and therefore cannot use the information provided by Lehmann et al. (1998) to define the 

dependence structures of the occurring classical error components. Even if we had this information, 

it would be difficult to decide whether two values that are exactly the same were indeed estimated 

independently. To answer this question, we would need to interview the experts who were involved 

in the exposure assessment of the Wismut cohort. 

As a consequence, we will describe the set of objects, years and activities for which we assume 
shared classical errors as "clusters" in the following. For instance, we now assume 𝑓(𝑝𝑜𝑗) where 𝑝𝑜𝑗  

can be thought of as the result of a function 𝑝(𝑜, 𝑗) that assigns the same value 𝑝𝑜𝑗  to all objects and 

activities for which the observed values of the activity weighting factor 𝑓(𝑜, 𝑗) are the same. 

Implicitly, this function 𝑝(𝑜, 𝑗) would in this example define clusters of objects and years for which 

the activity weighting factor is constant. While we originally mainly assumed such clusters 𝑝𝑡 = 𝑝(𝑡) 

for the working time factor where these clusters merely reflected time periods, we now assume 

clusters that can also depend on objects and activities. For the working time factor 𝑤(𝑝𝑡) we assume 
a classical error component 𝑈𝜔,𝑐(𝑝𝑡) which is shared for all years of one cluster with the same 

observed working time factor as this implies that the implicit estimation was done simultaneously for 

all years and objects for which this value is used. Similarly, we assume for the equilibrium factor, the 

ventilation factor, the activity weighting factor and the evaluation factors for open pit mining as well 

as for the transfer factor for the evaluation factor and the proportion of exposure from old mining 

that their respective classical error components are shared for all years and objects for which they 

have the same observed value. In the updated DAGs shown in the following, these decisions are 

reflected in the modification of the arguments that the uncertain parameters take. 

Adapting measurement error characteristics to account for errors arising in the transfer of mean 

radon progeny and radon gas concentration measurements 

Many of the adaptations of the JEM 2 consist in using the JEM 1 exposure value of a specific year 

(transfer year) and object (transfer object) to transfer these values to another year and/or object. 

This is very similar to the assessment of exposure values for development and exploration objects 

where the exposure values of an affiliating mining object are multiplied by a transfer factor 𝜏𝐸 as 

described in Chapter 2. For example, in the case of a development object for which the exposure is 

30% of the exposure from the affiliated mining object, the exposure from this affiliated mining object 

and the respective year is transferred to the development object and multiplied with 𝜏𝐸 = 0.3. We 

assume that the development object has the same measurement model and the same uncertain 

exposure values as the transfer object in the transfer year, hence, in this case the same 

measurement model and the same uncertain exposure values as the affiliated mining object in the 

same year. In the same way, we treat cases for which the exposure assessment for a given object and 

year has been adjusted by the JEM 2 by using the exposure values of another object (transfer object) 
and year (transfer year) and by multiplying them with a transfer factor 𝜏𝐽𝐸𝑀. Again, the given object 

and year is assumed to have the same measurement model and the same uncertain exposure values 

as the transfer object in the transfer year. In this vein, we assume for instance that for objects for 

which the exposure assessment for 1988 and 1989 was not explicitly described, but the same radon 

progeny exposure values as from the previous year 1987 were given in the JEM 2 tables, that this 
exposure value from 1987 was continued. Since we treat the two transfer factors 𝜏𝐸 and 𝜏𝐽𝐸𝑀 exactly 

in the same way, we will only speak of transfer factor 𝜏 = 𝜏𝐸 ⋅ 𝜏𝐽𝐸𝑀 in the following. 

Initially, we had planned to model the transfer of exposure values by assuming a classical and a 

Berkson error component for the uncertain parameter 𝜏𝐸. However, when working with the 

extended Wismut cohort data, it became clear that it made more sense to model the transfer of 
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exposure values by adapting the dependence structures for the mean radon gas and radon progeny 

concentration measurements and by assuming a Berkson error component for these uncertain 

quantities. In this vein, we assume no error on the transfer factor 𝜏, thus, multiplying with 𝜏 = 1 has 

no effect on the exposure value itself. However, the transfer of exposure values from one year and 

object to another creates a dependence in the measurement error terms that we have to account 

for. Indeed, the classical error that occurs in the estimation of the exposure value for the object for 

which it was originally estimated is now shared between this original object and the object this 

exposure value is transferred to. It influences the cluster of observations for which we assume a 

shared error component for the mean radon gas or radon progeny concentration measurement and 

for the uncertain parameters that were used for this year and object. In addition to this shared 

classical error component for the radon gas or radon progeny concentration measurements, we 

account for the fact that the exposure value of the object and year that an exposure value was 

transferred to can differ from the estimate in the transfer year and/or transfer object. In this sense, if 

a cluster of observations consists of five non-transfer objects and years and one object and year that 

served as the transfer object and year, we assume a multiplicative object and year specific Berkson 

error for all five non-transfer objects. In cases in which there was a joint estimation without any clear 

reference object, we assumed a Berkson error for all obejcts and years in the cluster. 

6.1.2 Adapting the dependence structure of Berkson errors to account for shaft specific exposure 

values 

We slightly had to adapt the structure of the Berkson error for the equilibrium factor, because there 

were instances where different values of this factor were assumed for different shafts of the same 

object in the same year. As a consequence, we used a shaft specific Berkson error component for the 

equilibrium factor. For the same reasons, we now assume a shaft specific Berkson error for radon gas 

and radon progeny concentration in M2 and M3, respectively. 

6.1.3 Adapting measurement models 

The measurement models as described in Chapter 2 have to be adjusted because of the newly 

adapted dependence structures between error components, but also because of various problems 

that have arisen. For example, some information was not available that would have been needed for 

the originally assumed measurement model, or for some special cases the exposure assessment was 

carried out differently, resulting in new measurement models. Note also that the changes in the 

error structures for radon gas and radon progeny concentration measurements that were described 

in the last section made the measurement error that was originally assumed for 𝜏 redundant and we 

will therefore no longer assume an error for this quantity. 

In the following we will briefly describe the adapted measurement models. 

M0 

We assumed measurement model M0 with an exposure to radon progeny of 0 WLM and no 

measurement error whenever at least one of the following applied 

1. a miner worked in a surface object, even if the extended data of the Wismut cohort contained no 

value for the exposure (WLM was missing in the data) 

2. the object and object type were unknown but radon exposure was specified as 0 WLM 

3. the miner’s activity weighting factor had a value of 0, which, when multiplied to a hewer’s radon 

progeny exposure, also gives an exposure of 0 WLM. 
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M1a and M1b 

 

Figure 6.1: Hierarchical model combining a disease model with measurement model M1a to describe how 
exposure uncertainty in underground mining objects as well as in exploration and development objects in 
Saxony was accounted for on the data of the Wismut cohort in the first exposure assessment period. Due to the 
limited space and for a clearer presentation, no measurement error variances are shown here. 

According to Section 2.2, the evaluation area 𝐴(𝑡, 𝑜) for objects in Saxony during the first exposure 

assessment period (measurement model M1a) is calculated as 𝐴(𝑡, 𝑜) = 𝐶(𝑡, 𝑜) + 𝑝∑ 𝐶𝑡−1
𝑠=1946 (𝑠, 𝑜) 

with the mined vein area 𝐶(𝑡, 𝑜) and 𝑝 the proportion of mined vein area from previous years 

𝐶(𝑠, 𝑜). However, the size of the mined vein area or the cumulative mined vein area from previous 

years is unknown for several years and objects. For those objects and years for which the information 

on 𝐶(𝑡, 𝑜) and ∑ 𝐶𝑡−1
𝑠=1946 (𝑠, 𝑜) is neither given in Lehmann et al. (1998) nor Lehmann (2004), this 

information is not available for this project. With missing information on the (cumulative) mined vein 

area, it is impossible to use measurement model M1a as described in Chapter 2 and we therefore 

had to adjust it in such a way that for these years and objects the evaluation area 𝐴(𝑡, 𝑜) was 

calculated from the radon exposure from the Wismut cohort members 𝑍𝑖(𝑡, 𝑜) and the known values 

of the remaining parameters. 

𝐴(𝑡, 𝑜) = (
𝑍𝑖(𝑡, 𝑜)

𝑔(𝑝𝑡 , 𝑜) ⋅ 𝑤(𝑝𝑡) ⋅ 𝑓(𝑜, 𝑗) ⋅ 12
− 𝐶𝑅𝑛(1937/1938,003) ⋅ 𝑏(𝑜)) ⋅

1

𝑟(𝑡, 𝑜) ⋅ 𝑡𝑒(𝑜)
⋅
𝐴(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜))

𝐶𝑅𝑛(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜))

 

When correcting for measurement error according to measurement model M1a we now consider the 

evaluation area 𝐴(𝑡, 𝑜) to be known without measurement error. Since for measurement model M1b 

this assumption of the evaluation area 𝐴(𝑡, 𝑜) to be known without measurement error was already 

made in Chapter 2, the measurement model for M1b does not change here. 

In situations where the radon exposure estimation according to Lehmann et al. (1998) or Lehmann 

(2004) was solely based on the radon exposure from old mining without any exposure from mining 
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activity, measurement model M1a was applied in a reduced form. Only the uncertain parameters for 

old mining 𝐶𝑅𝑛(1937/1938,003) and 𝑏(𝑜) as well as the equilibrium, working time and activity 

weighting factors with the respective classical and Berkson measurement error components were 

considered. The measurement model in this reduced form corresponds to the DAG shown in Figure 

6.1, except that the exposure from mining activity 𝐸𝑀(𝑡, 𝑜, 𝑗0(𝑜)) and everything pointing there is 

not to be taken into account. 

 

Figure 6.2: Hierarchical model combining a disease model with measurement model M1b to describe how 
exposure uncertainty in underground mining objects as well as in development objects in Thuringia was 
accounted for on the data of the Wismut cohort in the first exposure assessment period. Due to the limited 
space and for a clearer presentation, no measurement error variances are shown here. 

For cases in which the exposure of an object and year according to measurement models M1a and 

M1b was transferred to another object and/or year, this object and/or year gets the same 

measurement model with the corresponding parameter values and the additional factor 𝜏. For M1a 

we assume that all old mining objects belong to one cluster for which the classical error of the radon 

gas exposure measurements from old mining 𝐶𝑅𝑛(1937/1938,003) are shared. Besides, each old 

mining object belongs to one cluster depending on the value of the proportion from old mining 𝑏(𝑜). 

For all objects in one cluster, thus, with the same observed 𝑏(𝑜) value, a shared classical error 
component 𝑈𝒷,𝑐(𝑜) is assumed for 𝑏(𝑜) (see also Section 6.1.1), whereas the Berkson error 

𝑈𝒷,𝐵(𝑡, 𝑜) is assumed as unshared for all objects except for the reference object 003 Schneeberg, 

where the old mining measurements 𝐶𝑅𝑛(1937/1938,003) were taken. 

In the same way we also assume that each object with exposure assessment according to 

measurement models M1a or M1b belongs to one of four clusters, for which the classical error for 
the radon gas concentration measurements 𝑈𝒞,𝑐(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜)) is assumed as shared depending 

on which of the four reference objects was used for 𝐶𝑅𝑛(𝑡0(𝑜0(𝑜)), 𝑜0(𝑜)). All objects with the same 

value of the transfer factor for evaluation 𝑡𝑒(𝑜) belong to one cluster with shared classical error 
component 𝑈𝜏𝑒,𝑐(𝑜) (see also Section 6.1.1). Besides, an unshared Berkson error component 

𝑈𝜏𝑒′,𝐵(𝑡, 𝑜) is assumed for all years of all objects except the four reference objects for which there is 
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no transfer factor for evaluation 𝑡𝑒 as the evaluation factor 𝑒(𝑡, 𝑜) was calculated for these objects 

and not transferred.  

Figures 6.1 and 6.2 show the adapted DAGs for objects in Saxony and Thuringia, respectively, for the 

first exposure assessment period in the Wismut cohort. 

M2 and M3 

 

Figure 6.3: Hierarchical model combining a disease model with measurement model M2 to describe how 
exposure uncertainty in underground mining objects in Saxony and Thuringia as well as in development objects 
was accounted for on the data of the Wismut cohort for the second exposure assessment period. 

The measurement error model for the second exposure assessment period (M2) as derived in 

Chapter 2 assumed an additive classical generalization error on the mean annual radon gas 

concentration 𝐶𝑅𝑛 since the averaging of several measured radon gas concentration values can be 

assumed to be normally distributed. For individual years of some objects, however, the radon 

exposure estimation was not based on averaged measured concentration values, but the radon gas 

concentration was determined by experts. This was the case when there were no measured values 

for that year, or when the measurements appeared implausible and were corrected accordingly by 

experts. For such years and objects, we adopt a new measurement error model M2_Expert, which 

basically corresponds to the exposure assessment of M2, but assumes a multiplicative classical 
expert estimation error 𝑈𝒞𝐸𝑥𝑝 ,𝑐(𝑝𝑡𝑜) on the annual radon gas concentration instead of an additive 

classical generalization error 𝑈𝒞,𝑐(𝑝𝑡𝑜). Assuming a multiplicative error guarantees the positivity of 

both true and observed exposure. Moreover, assuming lognormal measurement errors is in line with 

a large part of the literature on exposure uncertainty in radon exposure (Lubin et al., 1995b; Stram et 

al., 1999; Heid, 2002; Heid et al., 2004; Lubin et al., 2005; Heidenreich et al., 2012; Allodji et al., 

2012a,b,c). 



 103 

 

Figure 6.4: Hierarchical model combining a disease model with measurement model M2_Expert to describe how 
exposure uncertainty in underground mining objects in Saxony and Thuringia as well as in development objects 
in Saxony was accounted for on the data of the Wismut cohort for the second exposure assessment period in 
cases where radon gas concentration was determined by experts. 

As already described, in cases where an object and/or year uses the exposures from a transfer object 

and/or transfer year, a transfer factor 𝜏 is multiplied for which no measurement error component is 

assumed. However, for measurement models M2, M2_Expert and M3, the respective transfer 

objects and transfer years are used to form clusters for which the classical error component of the 
mean annual radon concentration 𝑈𝒞,𝑐(𝑝𝑡𝑜) or 𝑈𝒞𝐸𝑥𝑝 ,𝑐(𝑝𝑡𝑜) is assumed to be shared. As described in 

6.1.1, M2, M3 and the new measurement model M2_Expert are modified so that a Berkson error 
component for the mean annual radon concentration 𝑈𝒞′,𝐵(𝑡, 𝑜) or 𝑈𝒞′𝐸𝑥𝑝,𝐵(𝑡, 𝑜) is now assumed for 

all years and objects belonging to a cluster, unless they are the reference year and object and do not 

themselves use transferred radon gas or radon progeny concentrations from another year or object. 

This modification would make less sense for M1a and M1b because the transfer of exposure values is 

somewhat different in these models. In particular, it involved the estimation of an actual transfer 

factor for which it makes sense to assume a classical error component. In contrast, in the transfer of 

exposure values in M2, M2_Expert and M3 the assumed transfer factor is implicitly set to 1 rather 

than being actually estimated. Because the exposure values were simply imputed based on radon gas 

or radon progeny concentration measurements from another year and object. In this way, it is also 

possible to model complicated dependence structures, in which, for example, object A uses the 

radon gas concentration values from transfer object B, but B itself takes the values from object C, 

where object C itself has no transfer object or year and is thus considered the reference object for 

this cluster. 
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Figure 6.5: Hierarchical model combining a disease model with measurement model M3 to describe how 
exposure uncertainty in underground mining objects was accounted for on the data of the Wismut cohort for 
the third exposure assessment period. 

In this example, all three objects A, B and C would be in one cluster for the classical error component, 

and the two objects A and B would each get an unshared Berkson error component.  

Figure 6.3 and 6.5 show the adapted DAGs for underground mining objects for the second and third 

exposure assessment period in the Wismut cohort, respectively. Figure 6.4 shows the DAG for 

objects and years in the second exposure assessment period in which exposure assessment was not 

based on averaged measured radon gas concentration values, but the radon gas concentration was 

determined by experts. 

M4 

According to Chapter 2, the measurement model M4 describes the uncertainties in the exposure 

assessment for surface areas affiliated to underground mining objects and exploration objects in 
Thuringia, whereby we assume a classical expert estimation error 𝑈ℰ,𝑐(𝑝𝑡𝑜) for the radon exposure 

determined by experts in WLM and for the activity weighting factor like always both a classical and a 

Berkson error component. Now we extend the scope of this measurement model to cases in which 

we lacked information to reconstruct the detailed exposure values according to M1a, M1b, M2, M3 

or M6 or in which the exposure values in the extended cohort data could not be reproduced with 

these models. The measurement error model MX_Expert_WLM (M1a_Expert_WLM, 

M2_Expert_WLM, M3_Expert_WLM or M6_Expert_WLM, depending on the original measurement 

error model) was used if the radon exposure assessment was not clearly described in Lehmann et al. 

(1998) or Lehmann (2004), if the exposure assessment could not be reproduced with the defined 

models, or if the radon exposure assessment was too complicated or even impossible. The latter 

applied, for example, in cases where no information on the uranium recovering rate 𝑟(𝑡, 𝑜) was 

available for objects and years under M1a, which consequently makes a determination according to 

M1a impossible. Another example were cases where the associated mining object of an exploration 
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or development object was not clear, or consisted of a combination of different mining objects. In 

this case, it was not feasible to account for these complex dependence structures, which would 

result in some years and objects sharing a proportion of the classical error components of several 

years and objects at the same time. Finally, when the description by Lehmann et al. (1998) or 

Lehmann (2004) was very vague or did not agree at all with the exposure data, we preferred to 

choose model MX_Expert_WLM. 

 

Figure 6.6: Hierarchical model combining a disease model with measurement model to describe how exposure 
uncertainty in surface areas affiliated to underground mining objects and exploration objects in Thuringia (M4) 
was accounted for on the data of the Wismut cohort. This measurement error model was also used in cases 
where radon exposure assessment was not clearly described, if exposure assessment could not be reproduced or 
if the radon exposure assessment was too complicated or impossible (MX_Expert_WLM). 

As described for measurement models M2 and M3, it is also possible for measurement models M4 

and MX_Expert_WLM to model complicated dependence structures via the transfer objects and 

transfer years resulting from the error-free transfer factor 𝜏. For this purpose, clusters are again 

formed via the transfer objects and transfer years, for which the expert estimate of the exposure is 
then assumed to consist of a shared classical error component 𝑈ℰ,𝑐(𝑝𝑡𝑜) for all objects and years in 

the cluster, as well as an unshared Berkson error component 𝑈ℰ,𝐵(𝑡, 𝑜) for all objects and years in 

the cluster, that are not the reference object or year of this cluster. Additionally, for M4 and 

MX_Expert_WLM, the years within an object which have the same annual radon progeny exposure 

value, are considered as one cluster, even if there is no transfer year specified in the data set. For 
such cases, a correspondingly shared classical error component 𝑈ℰ,𝑐(𝑝𝑡𝑜) and an additional unshared 

Berkson error component 𝑈ℰ,𝐵(𝑡, 𝑜) are assumed for the expert estimation of the radon progeny 

exposure for each year.  

Figure 6.6 shows the updated DAG for surface areas affiliated to underground mining objects and 

exploration objects in Thuringia and for other objects with expert estimation of the annual radon 

progeny exposure. 
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M5 

Due to feasibility issues and in accordance with BfS, it was not within the scope of the current work 

to account for measurement error for exposures in processing companies and they were therefore 

excluded from the analysis. For this, all miners who had worked in a processing company even once 

in their career were completely excluded. Thus, the two measurement models for processing 

workers M5a and M5b are not relevant when accounting for exposure uncertainty on the extended 

data of the Wismut cohort for this project. 

M6 

 

Figure 6.7: Hierarchical model combining a disease model with measurement model M6 to describe how 
exposure uncertainty for open pit mining objects was accounted for on the data of the Wismut cohort. Due to 
the limited space and for a clearer presentation, no measurement error variances are shown here. 

Figure 6.7 shows the exposure assessment for open pit mining objects. In order to determine the 

annual radon exposure of an open pit mining object, in addition to the three parameters 𝑔(𝑝𝑡𝑜), 
𝑤(𝑝𝑡) and 𝑓(𝑝𝑡𝑗), the radon gas concentration measurements from 1994/1995 in object 300 

Lichtenberg at a depth of 0 and 130 meters, and the two evaluation factors 𝑒(𝑝𝑡𝑜) and 𝑒2(𝑝𝑡𝑜) as 

well as the depth 𝑑(𝑡, 𝑜) are necessary. However, the source in which, according to Lehmann et al. 

(1998), the depth for some years and open pit mining objects should be contained, was not available 

for this project. Thus, the depth 𝑑(𝑡, 𝑜) was calculated from the observed exposure values from the 

extended cohort data 𝑍𝑖(𝑡, 𝑜) in a similar way to the evaluation area 𝐴(𝑡, 𝑜) from M1a as 

𝑑(𝑡, 𝑜) = (
𝑍𝑖(𝑡, 𝑜)

𝑔(𝑝𝑡𝑜) ⋅ 𝑤(𝑝𝑡) ⋅ 𝑓(𝑝𝑡𝑗)
⋅
3700

12
− 𝐶𝑅𝑛,0(1994/1995,300)) ⋅

130

(𝐶𝑅𝑛,130(1994/1995,300) − 𝐶𝑅𝑛,0(1994/1995,300)) ⋅ 𝑒(𝑝𝑡𝑜)  ⋅  𝑒2(𝑝𝑡𝑜) 

 

and as already described before in Chapter 2, the depth was assumed to be known without 

measurement error (see Table 2.1). Lehmann et al. (1998) gives the values for the evaluation factors 
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𝑒(𝑝𝑡𝑜) and 𝑒2(𝑝𝑡𝑜), whereby we assume that for years without explicit specification of a value, the 

value from the last specified year was used. 

All objects and years with exposure assessment according to measurement model M6 are assumed 

to belong to one cluster with shared classical error for the mean radon gas concentrations of basic 

exposure without mining activity for object 300 Lichtenberg in 1994/1995 at ground level and in a 

depth of 130m.  

In comparison to the DAG in Chapter 2, the parameter 𝜏 is shown in Figure 6.7. 

6.1.4 Adapting the quantified values of measurement error variances 

Since the adjusted measurement models sometimes have different uncertain parameters and 

associated error components compared to those from Chapter 2, the quantified values of 

measurement error variances must also be adjusted. For all uncertain parameters from the adapted 

measurement models Table 6.1 lists their respective measurement models, their assumed error 

types (additive or multiplicative and Berkson or classical) and the assumed values for the standard 

deviations of the errors and an explanation of how these values were obtained. For the Berkson error 
component for ℰ(𝑝𝑡𝑜), 𝒞𝐸𝑥𝑝(𝑝𝑡𝑜), 𝒞𝑅𝑛(𝑝𝑡𝑜) and 𝒞𝑅𝐷𝑃(𝑝𝑡𝑜), which results from the clustering due to 

transfer objects and years, the quantified value of the standard deviation of the Berkson error 

component of the transfer factor is used. We also adapted the Berkson error component for the 

working time factor 𝜔(𝑝𝑡), since the initially assumed standard deviation of 0.69 seemed 

disproportional compared with the standard deviation parameter for the classical error component 

of 0.04. We therefore adapted the Berkson error standard deviation to reflect the same proportion 

of the classical and Berkson standard deviations as for 𝛾(𝑝𝑡𝑜). Since the ratio of these parameters is 

0.33, (0.23/0.69), we assumed a Berkson error standard deviation of 0.12. 

6.1.5 Shaft specific exposure estimation and changes in object association 

The assessment of the radon progeny exposure by the JEM 1 (Lehmann et al., 1998) is solely based 

on the different objects of the Wismut, whereas the JEM 2 (Lehmann, 2004) differentiates the radon 

exposure for some objects according to shafts or groups of shafts with sometimes significantly 

different exposure values. We always differentiate between the different shaft groups if the shaft 

specific exposure tables in Lehmann (2004) show a different exposure value than the one from the 

underlying object in Lehmann et al. (1998) for at least one year. This means that sometimes there are 

different shaft groups within an object, which have different radon exposures for some years but are 

based on the same exposure assessment for other years. In years where the radon exposure 

assessment is different, the shaft groups belong to different clusters for the shared error 

components, whereas they belong to the same cluster for years with identical exposure assessment. 

Although there were no shaft specific exposure documentations, but only the object specific 

exposures from Lehmann et al. (1998) for objects with an exposure estimation according to M4, we 

observed discrepancies between the reported values for radon progeny exposure in Lehmann et al. 

(1998) and the annual radon progeny exposure that were documented in the extended Wismut 

cohort data for some shafts. In these cases, we decided to assume shaft specific exposure values by 

estimating the corresponding radon progeny exposure value from the extended Wismut cohort data. 

Additionally, many objects and especially shafts have been renamed over time, or shafts have been 

assigned to other objects. As a consequence, it often happens that miners from the same shaft are 

listed under different shaft and object names. To ensure that the errors for these miners are shared, 

we renamed these shafts so that they all have the same shaft and object name, whereby the object 

corresponds to the respective object the shaft was assigned to for the given year. Accordingly, object 

names were also changed if an object was connected to another object, or if an object had already 

been closed and, according to Lehmann (2004), it could only be assumed that the miners were 

further employed in another object. 
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Table 6.1: Uncertain parameters with the measurement models in which they occur, their assumed 

error types and the quantified standard deviations as used when accounting for measurement 

error on the Wismut data as well as the quantification approach. Due to lack of space, we 

abbreviated ‘classical error standard deviation’ to ‘classical standard deviation’ and ‘Berkson error 

standard deviation’ to ‘Berkson standard deviation’. 
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6.1.6 Calculating exposure values for individual miners 

The estimated exposures according to the measurement models or the ones given in the JEMs 

(Lehmann et al., 1998; Lehmann, 2004) correspond to the annual radon progeny exposure, however, 

it frequently occurred that a miner worked less than a whole year in an object, e.g. because he 

started or ended his working career at the Wismut in the middle of the year, or because he worked in 

different objects or in different activities within a year. In these cases, it would be wrong to consider 

the whole annual radon exposure for this year 𝑡, so we weight the annual radon exposure by the 

percentage of days 𝑙(𝑖, 𝑡, 𝑜, 𝑗) that miner 𝑖 worked at that object 𝑜 or with that activity 𝑗. In the 

extended cohort data set the number of days is given in increments of 10, which in combination with 

different objects during a year can result in a maximum number of 380 days per year for individual 

miners. Thus, we calculate the individual working history of miner 𝑖 as 𝑙(𝑖, 𝑡, 𝑜, 𝑗) =

min(proportion of days in object 𝑜 with activity 𝑗, 1). 

As described in Section 4.4, we need to account for time-varying exposure in proportional hazards 

models to avoid the so-called time-dependent bias (van Walraven et al., 2004; Beyersmann et al.,  

2008; Wolkewitz et al., 2012; Barnett et al., 2011). In its original form, the data are available in a so-

called wide format in which one line represents a miner and the information on yearly exposure 

values is given through different columns. To account for time-varying exposure, in the extended 

Wismut cohort data, the follow-up time of the miners is partitioned into intervals at which the 

cumulative exposure was constant. This is achieved by adding a row for each time interval at which 

the exposure of a miner remained constant, resulting in a long format. For the additional rows in the 

data set that are thereby created (Therneau and Grambsch, 2000; Therneau and Crowson, 2013) and 

for all other rows, we have to specify at which exact point in time the new cumulative exposure value 

started and when it stopped. As we only know the annual exposure values to radon progeny, we 

have to choose a date on which the miner received this annual exposure every year. We chose the 

1st of January of each year, implying a step function with jumps on the 1st of January in every year 

that a miner received an exposure. While it might have been more reasonable to assume that a 

miner received the annual exposure value on the 30th of June or on the 31st of December to not 

overestimate his exposure value at any given time, it was more convenient to choose the 1st of 

January as some miners worked part of the year in one object and part of the year in another. In 

these situations, there is not only one additional row in the data set for a given year of a miner, but 

we create several rows in the data set for a given miner and year that define the time intervals at 

which the miner worked in these different objects to be able to weight the corresponding values by 

the proportion of days the miner worked in each object (as described above). Given these rows for 

miners working in several objects in a given year, it is more logical to distribute the number of days in 

the working history of a miner between the 1st of January and the 31st of December rather than 

distributing it between the 30th of June and the 30th of June of the following year or between the 

31st of December and the 31st of December of the following year. In accordance with common 

practice in the analysis of lung cancer mortality in cohorts of uranium miners, we exclude exposure 

values that a miner received immediately before death by lung cancer by lagging cumulative 

exposure 𝑋𝑖
cum(𝑡) to respect a latency period of five years (Grosche et al., 2006; Amabile et al., 2009; 

Hauptmann et al., 2001; Langholz et al., 1999; Richardson et al., 2011). 

6.2 Applying the Bayesian hierarchical approach to the Wismut cohort data 

The results were generated using the implemented MCMC algorithm. We run eight chains with 

100000 iterations and 50000 iterations as burn-in. We only keep each 200th iteration (thinning) to 

reduce autocorrelation in each chain. Before starting the burn-in phase, we tune the acceptance 

rates by using 100 adaptive phases. For that, we run a small number of iterations 100 times and look 

at the acceptance rates. If the rates are not sufficient, we adapt the standard deviations of the 

proposal distributions to get better acceptance rates. 

For measurement models M2, M2_Expert and M3, we did not observe enough flexibility when 
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defining only one prior distribution for 𝒞𝑅𝑛, 𝒞𝐸𝑥𝑝 and 𝒞𝑅𝑃𝐷 as the variation was too high between the 

years. We therefore defined one individual distribution for each year. This means, for instance in 
measurement model M2, that instead of one 𝜇𝒞𝑅𝑛  and 𝜎𝒞𝑅𝑛 , we actually have two parameters for 

every year from 1955 to 1974. However, we will not use a specific notation for that since each of 

them is specified with the same prior. 

Prior parameters 

Here, we present the used prior parameters in the algorithm. For the parameters of interest, we 

specify priors as follows: 

• 𝛽 ∼ 𝑁(0,100) (normal distribution parameterized with mean and standard deviation) 

• 𝜆1 ∼ 𝐺𝑎(600,1/10000000) (Gamma distribution parameterized with shape and scale) 

• 𝜆2 ∼ 𝐺𝑎(12000,1/1000000) 

• 𝜆3 ∼ 𝐺𝑎(46000,1/1000000) 

• 𝜆4 ∼ 𝐺𝑎(1000,1/100000) 

Parameters of the exposure models are specified as 

• 𝒞𝑅𝑛𝑜𝑙𝑑 ∼ 𝑁
+(22.5,4) (normal distribution with values only on ℝ+; only for M1a) 

• 𝒞𝑅𝑛𝑟𝑒𝑓 ∼ 𝑁
+(34.09,10) (only for M1a) 

• 𝑏 ∼ 𝐵(1,1) (beta distribution with parameters 𝑎 = 𝑏 = 1; only for M1a), truncated at [0.15,1.1] 

• 𝜏𝑒 ∼ 𝐵(1,1) (only for M1a) truncated at [0.3,1] 

• 𝒞𝑅𝑛 ∼ 𝑁
+(𝜇𝒞𝑅𝑛 , 𝜎𝒞𝑅𝑛) (only for M2) 

• 𝒞𝐸𝑥𝑝 ∼ 𝑁
+(𝜇𝒞𝐸𝑥𝑝 , 𝜎𝒞𝐸𝑥𝑝) (only for M2_Expert) 

• 𝒞𝑅𝑃𝐷 ∼ 𝑁
+(𝜇𝒞𝑅𝑃𝐷 , 𝜎𝒞𝑅𝑃𝐷) (only for M3) 

• 𝜁 ∼ 𝐵(1,1) (only for M3) truncated at [0.15,1.7]  

• 𝜑 ∼ 𝐵(1,1) truncated at (0,1.3] 

• 𝜔 ∼ 𝐵(1,1) truncated at [0.6,1.5] 

• 𝛾 ∼ 𝐵(1,1) (only for M1a, M2, M2_Expert) truncated at [0.05,0.8]  

For 𝐶𝑅𝑛, 𝐶𝑅𝑃𝐷 and 𝐶𝐸𝑥𝑝 we specify hierarchical priors: 

• 𝜇𝒞𝑅𝑛 ∼ 𝑁(6,10) (one distribution for each year in M2) 

• 𝜎𝒞𝑅𝑛 ∼ 𝑁(8,10) (one distribution for each year in M2) 

• 𝜇𝒞𝐸𝑥𝑝 ∼ 𝑁(0.15,0.2) (one distribution for each year in M2_Expert) 

• 𝜎𝒞𝐸𝑥𝑝 ∼ 𝑁(0.2,0.2) (one distribution for each year in M2_Expert) 

• 𝜇𝒞𝑅𝑃𝐷 ∼ 𝑁(1.7,3) (one distribution for each year in M3) 

• 𝜎𝒞𝑅𝑃𝐷 ∼ 𝑁(1,2) (one distribution for each year in M3) 

The prior specification is the same for the 1960+ and the full cohort, except that for the 1960+ cohort 

we omit all priors that occur only for measurement model M1a. 

6.3 Results 

In the following, we present the results for the 1960+ cohort and the full cohort when accounting for 

measurement error. These results are preliminary, as they only account for a subset of the 1960+ 

cohort data and their robustness still has to be confirmed in extensive sensitivity analyses. Moreover, 

they do not include data on workers who were employed in Wismut processing companies at any 

point during their working career. 
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6.3.1 Results for the 1960+ cohort 

Table 6.1 shows the results with measurement error correction on the sub-cohort of miners hired in 

1960 or later (also referred to as 1960+ cohort (Kreuzer et al., 2018)) when accounting for 

measurement error models M2, M3 and M2_Expert as described in Section 6.1. Table 6.2 shows the 

results without measurement error correction. 

Table 6.1: Results when correcting for measurement models M2, M3 and M2_Expert on the sub-

cohort of miners hired in 1960 or later. 

parameter Estimate [95% Credible Interval] 

EHR (beta) 1.80 [0.70; 3.36] per 100 WLM 

Baseline hazard (0 < age ≤ 40) 2.44 [1.09; 4.03] in 10−5 

Baseline hazard (40 < age ≤ 55) 2.44 [1.87; 3.16] in 10−4 

Baseline hazard (55 < age ≤ 75) 1.81 [1.52; 2.12] in 10−3 

Baseline hazard (75 < age ≤ 104) 5.94 [3.45; 8.97] in 10−3 

Table 6.2: Results when not correcting for measurement error the sub-cohort of miners hired in 

1960 or later.  

Parameter Estimate [95% Credible Interval] 

EHR (beta) 1.44 [0.73; 2.52] per 100 WLM 

Baseline hazard (0 < age ≤ 40) 2.43 [1.19; 4.07] in 10−5 

Baseline hazard (40 < age ≤ 55) 2.40 [1.79; 3.08] in 10−4 

Baseline hazard (55 < age ≤ 75) 1.79 [1.48; 2.12] in 10−3 

Baseline hazard (75 < age ≤ 104) 5.99 [3.47; 9.50] in 10−3 

We included miners who had only been exposed in years and objects that were characterized 

through these three measurement models, i.e. we excluded all miners who had been exposed in any 

year and object characterized through measurement models M1a, M1b, M4, MX_Expert_WLM, M5 

or M6 in the 1960+ cohort resulting in a reduction to 18852 workers and 286 deaths by lung cancer 

(compared to the 23899 workers and 458 total number of deaths by lung cancer observed in the 

1960+ cohort). While the estimates of the baseline hazard parameters remain largely unchanged 

through the correction of measurement error, we estimate an EHR of 1.80 per 100 WLM, i.e. for each 

increase of 100 WLM the hazard rate is increased by 1.80. Thus, it is larger than the uncorrected EHR 

estimate of 1.44. This increase is accompanied by larger uncertainty intervals. Note also that the 

measurement error corrected 95% credible interval [0.70; 3.36] per 100 WLM encompasses the 

uncorrected interval [0.73; 2.52] with both intervals excluding the 0. 
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6.3.2 Results for the full cohort 

Table 6.3 shows the results with measurement error correction on the full cohort when accounting 

for measurement error models M1a, M2, M3 and M2_Expert as described in Section 6.1. Table 6.4 

shows the results without measurement error correction on the full cohort. 

Table 6.3: Results when correcting for a measurement error on models, M1a, M2, M3 and 

M2_Expert on the full cohort.  

parameter Estimate [95% Credible Interval] 

EHR (beta) 0.54 [0.35; 0.81] per 100 WLM 

Baseline hazard (0 < age ≤ 40) 2.26 [1.25; 3.72] in 10−5 

Baseline hazard (40 < age ≤ 55) 3.61 [3.07; 4.17] in 10−4 

Baseline hazard (55 < age ≤ 75) 2.40 [2.18; 2.63] in 10−3 

Baseline hazard (75 < age ≤ 104) 4.09 [3.51; 4.64] in 10−3 

Table 6.4: Results when not correcting for a measurement error on models, M1a, M2, M3 and 

M2_Expert on the full cohort.  

parameter Estimate [95% Credible Interval] 

EHR (beta) 0.33 [0.27; 0.4] per 100 WLM 

Baseline hazard (0 < age ≤ 40) 2.33 [1.29; 3.75] in 10−5 

Baseline hazard (40 < age ≤ 55) 3.67 [3.16; 4.24] in 10−4 

Baseline hazard (55 < age ≤ 75) 2.44 [2.22; 2.65] in 10−3 

Baseline hazard (75 < age ≤ 104) 4.06 [3.43; 4.75] in 10−3 

We included miners who had only been exposed in years and objects that were characterized 

through these four measurement models, i.e. we excluded all miners who had been exposed in any 

year and object characterized through measurement models M1b, M4, MX_Expert_WLM, M5 or M6 

resulting in a reduction to 30271 workers and 1302 deaths by lung cancer (compared to the 50470 

workers and 3438 total number of deaths by lung cancer observed in the full cohort). If we include 

data on all 50470 workers, we obtain an uncorrected EHR of 0.23 [0.21; 0.26] per 100 WLM.  Again, 

the estimates for baseline hazard parameters remain largely unchanged whereas we can observe a 

noticeable increase in the EHR when correcting for measurement error that is accompanied by larger 

uncertainty intervals. We estimate an EHR of 0.54 per 100 WLM, i.e. for each increase of 100 WLM 

the hazard rate is increased by 0.54.  

6.3.3 Stability of the results regarding the assumed magnitude of the assumed exposure 

uncertainty 

In order to assess the stability of the estimated parameters as a function of the assumed magnitude 

of the exposure uncertainty, we ran a sensitivity analysis in which we additionally fitted four models 

in which we systematically varied the assumed magnitude of the measurement errors by multiplying 
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the magnitude of all Berkson error components or all classical error components by a factor of 0.5 or 

1.5 in order to assess how increasing or reducing the magnitude of the measurement error 

components by 50% would affect the results. We preferred a 50% increase rather than doubling the 

magnitude of measurement error components, because we were concerned that a doubling of the 

magnitude might result in highly implausible values. This sensitivity analysis was only performed for 

the 1960+ cohort. As can be seen in Figure 6.8, both the risk estimates and the width of the 95% 

credible intervals strongly depends on the assumed magnitude of Berkson and classical error 

components. In line with the results of the simulation study shown in Section 5.7, we see that 

assuming a larger magnitude of measurement error can lead to substantial increases in the EHR. 

Interestingly, we only observe this phenomenon when we increase the Berkson components of the 

different uncertain parameters, whereas increasing the classical error components by 50% leads to a 

reduction in the EHR estimate that is close to the uncorrected estimate. Conversely, assuming a 

smaller magnitude of classical error does not substantially change the EHR estimate and credible 

intervals whereas assuming a smaller magnitude of Berkson error leads as expected to a smaller EHR 

estimate. Overall, the results of this sensitivity analysis underline the importance of performing an 

extensive quantification of exposure uncertainty as the resulting EHR estimates are highly contingent 

upon the assumed magnitude of Berkson and classical measurement error. 

 

Figure 6.8: Estimate of the EHR with a 50% and 95% credible interval for the different settings. B denotes a 
Berkson error and C a classical error. For example, B×0.5, C×1 means that the standard errors for the Berkson 
errors are assumed to be only half of the value assumed for the main analysis and the standard error of the 
classical error is on its original value assumed for the main analysis. ’corrected’ and ’uncorrected’ refer to the 
results from the main analysis and serve as a reference. 
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7 Discussion 

In this work, the aim was to quantify exposure uncertainty in the Wismut cohort, to derive 

measurement models to describe the exposure uncertainty in this cohort and to develop an 

approach to correct for measurement error. The performance of the proposed approach was 

assessed on simulated data and compared with classical approaches to account for measurement 

error. The proposed approach was applied to the data of the Wismut cohort (mortality follow-up 

1946-2013) without accounting for effect modifying variables. Workers who were employed in 

processing companies at any point during their working career were excluded due to feasibility 

issues. 

7.1 The applicability of the proposed approach 

This work demonstrated that the developed Bayesian hierarchical approach is very suitable for the 

correction of exposure uncertainty in the Wismut cohort and that it can be applied to account for a 

wide range of measurement error structures. Due to its flexibility, it was possible to account for 

complex structures of exposure uncertainty with measurement errors in radon gas and radon 

progeny concentrations and parameter uncertainties in the estimates of various uncertain quantities 

including the working time factor, the activity weighting factor, the equilibrium factor and the 

ventilation correction factor. It was possible to account for changes in the structure and the 

magnitude of measurement error that occurred due to changes in the methods of exposure 

assessment over time and for dependence structures both for several exposure years and for several 

objects. Based on these results, we can see that it is very suitable and applicable for the correction of 

measurement error in the Wismut cohort, and more generally, to account for complex structures of 

measurement error in occupational cohorts. 

7.2 Comparing the results with previous findings from the literature 

In the current work, we estimated an EHR of 1.44 per 100 WLM with a 95% credible interval of [0.73; 

2.52] on the sub-cohort of miners hired in 1960 or later without measurement error correction when 

modelling the association between time until death by lung cancer and radon exposure through a 

proportional hazards model. Kreuzer et al. (2018) used a grouped Poisson regression model on the 

data based on the same mortality follow-up (1946-2013) and estimated an Excess Relative Risk per 

100 WLM of 1.1 [0.6; 1.7] on the sub-cohort of miners hired in 1960 or later. The difference in the 

uncorrected risk coefficients might be explained by the fact that we used a proportional hazards 

model instead of a grouped Poisson model and that we had to exclude all miners who were ever 

exposed in any year or object characterized through measurement models M4, MX_Expert_WLM, 

M5 or M6 on this cohort, resulting in a decrease of lung cancer deaths from 495 to 286 events. When 

accounting for measurement error, the EHR and 95% credible interval increased to 1.80 per 100 

WLM with a 95% credible interval of [0.70; 3.36]. The increase in the risk estimate and the increased 

uncertainty around this estimate are in line with the results of the simulation study that we 

conducted to assess the performance of the proposed approach and with results on the French 

cohort of uranium miners where the EHR and 95% credible intervals increased from 0.88 [0.50; 1.36] 

to 0.90 [0.51; 1.41] when correcting for measurement error (Hoffmann, 2017). Note that the 

difference in naive risk estimates between the Wismut cohort and the French cohort of uranium 

miners is in line with previous comparisons of the risk estimates in these two cohorts (Tirmarche et 

al., 2012). The current results for the Wismut cohort are preliminary, as they do not yet account for 

all measurement models that are to be considered. Moreover, in future work, it seems essential to 

consider effect modifying variables in the association between radon exposure and lung cancer 

mortality in the Wismut cohort. On the one hand, previous simulation studies suggest that complex 

structures of measurement error may lead to apparent effect modification when the true model is 

linear without effect modification (Hoffmann, 2018b). On the other hand, if the true model includes 
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effect modifying variables, the correction of measurement error is unlikely to be reliable because the 

resulting misspecification in the disease model provides erroneous information in the updating of the 

latent variables. 

Finally, these results rely on many assumptions concerning the structure, type and magnitude of 

measurement error that we will discuss in the following paragraph and their robustness still has to be 

confirmed in extensive sensitivity analyses. 

7.3 Assumptions on the structure, type and magnitude of measurement error 

Due to the absence of any type of validation, calibration or replication study that would allow us to 

obtain ancillary information to assess the structure and magnitude of measurement error in the 

Wismut cohort, we had to make a great number of assumptions. In particular, we assumed an 

additive measurement error structure for the generalization error despite a common consensus in 

the literature that measurement error in radiation exposure in general, and in radon exposure in 

particular, is best described by a multiplicative measurement error component following a lognormal 

distribution (Lubin et al., 1995b; Stram et al., 1999; Heid, 2002; Heid et al., 2002; Heid et al., 2004; 

Heidenreich et al., 2004; Lubin et al., 2005; Advisory Group on Ionising Radiation AGIR, 2009; 

Heidenreich et al., 2012; Allodji et al., 2012a,b,c). The results put the assumption of additive and 

normally distributed generalization error somewhat in question because some of the mean 

parameters in the exposure model for radon gas and radon progeny concentrations were estimated 

to take negative values. These results indicate that the model tries to describe the very heavy tailed 

distribution of mean radon gas and mean radon progeny measurements through a truncated normal 

distribution even though such a skewed distribution would probably be better described through a 

lognormal distribution. In future work, it would be worthwhile to conduct sensitivity analyses in 

which a multiplicative measurement error structure is assumed. 

Due to a lack of information, it was not possible to quantify the classical and the Berkson component 

for all uncertain quantities individually in the present work. We therefore made the assumption that 

the standard deviation quantified for classical error component of the evaluation could be 

transferred from this uncertain parameter to other uncertain parameters. This assumption is 

somewhat questionable and it is advisable to assess the robustness of the results to this assumption 

in future sensitivity analyses. Finally, in the present work, the value quantified for object 009 Aue in 

1961 was always used for the standard deviation for the classical error components for 𝒞𝑅𝑛(𝑝𝑡𝑜), 
𝒞𝑅𝑛,0(1994/95,300) and 𝒞𝑅𝑛,130(1994/95,300). Similarly, the value quantified for object 009 Aue 

in 1968 was used for the standard deviation for the classical error component for 𝒞𝑅𝐷𝑃(𝑝𝑡𝑜) for all 

years and objects belonging to measurement model M3. In future work, it would be worthwhile to 

assume different measurement error variances for the different years and different objects in a given 

measurement model for the generalization error in radon gas concentration measurements 𝐶𝑅𝑛 and 

radon progeny concentration measurements 𝐶𝑅𝑃𝐷 by accounting for the number of measurements 

that were averaged to obtain the final estimates. 

7.4 Outlook 

While the Bayesian hierarchical approach shows great flexibility when it comes to accounting for 

complex patterns of measurement error, the results of the current work have to be interpreted with 

caution. Indeed, they rely on many assumptions concerning the magnitude and the structure of 

measurement error. It was not in the scope of this project to conduct extensive sensitivity analyses 

to assess the robustness of the results to assumptions on the type and magnitude of measurement 

error in the Wismut cohort. In this context, it would also be valuable to make extensive posterior 

predictive checks to assess the fit of the model to the observed data. Thereby, it would be possible to 

assess whether time until death by lung cancer is systematically over- or underestimated for certain 

years and objects. 

Finally, it was not in the scope of the current work to correct for measurement models M1b, M4, 
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MX_Expert_WLM, M5 and M6 in the Wismut cohort and it would be valuable to correct for these 

additional measurement error structures in future work to be able to provide a corrected risk 

estimate for all workers included in the 1960+ and in the full cohort. 
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A Appendix 

A 1 Implementation of the algorithm 

A 1.1 Overview 

The main class of the algorithm is MCMC which serves as an interface for inference. It holds instances 

of the class Parameter and an instance of the class LatentVariable. When the sampling 

procedure is invoked, MCMC updates the state of all Parameter instances and the LatentVariable 

instance. The LatentVariable represents the (cumulative) exposure. The exposure of all workers 

in the cohort stems from different submodels represented through various uncertain factors. 

Therefore, the LatentVariable class contains a dictionary of instances of the class 

UncertainFactor. When MCMC updates the LatentVariable, the LatentVariable invokes 

updates for all its instances of the UncertainFactor class and calculates the cumulative exposure 

which is used in the updates of the parameters (invoked by MCMC). Each instance of the 

UncertainFactor represents its true unobserved value. It may hold some instances of the class 

PriorParameterVector which is a container of the class PriorParameter. A PriorParameter 

represents the prior on the distribution of an uncertain factor. For the case of 𝒞𝑅𝑛, this is a collection 

of many instances represented by PriorParameterVector. This nested structure gives more 

flexibility in the estimation of 𝒞𝑅𝑛 (we specify variable priors depending on the exposure year). An 

instance of the UncertainFactor class may hold instances of the classes ErrorComponent 

(representing a classical additive error), MultClassicalErrorComponent (representing a classical 

multiplicative error) and BerksonErrorComponent (representing a Berkson error which is assumed 

to be always multiplicative). We also implement a class FixedParameter which behaves like the 

Parameter class but skips updates. FixedParameter is used to fix the value of priors or of a 

parameter. 

A 1.2 Updating the latent exposure 

As we already described before the update for a parameter, we show here, how the update of the 

latent variable works using the LatentVariable class. Since the latent variable is a combination of 

different factors, we describe the update for one of these. When accounting for M2 in the Wismut 

cohort, the joint posterior distribution [𝜃|𝑌, 𝑋] can be expressed as: 

[𝜃, 𝑋| ⋅] =  [𝛽][𝜆][𝛼𝜔][𝛽𝜔][𝛼𝛾][𝛽𝛾][𝛼𝜑][𝛽𝜑][𝜇𝒞][𝜎𝒞] ×

∏[

𝑖,𝑡

𝑌𝑖|𝜆, 𝛽, 𝑋𝑖
𝑐𝑢𝑚(𝑡)] ×

∏[

𝑖,𝑡

𝑋𝑖(𝑡)|𝒞𝑅𝑛(𝑡, 𝑜), 𝜑′(𝑡, 𝑜, 𝑗), 𝛾′(𝑡, 𝑜), 𝜔′(𝑡, 𝑜), 𝜏𝐸 ′(𝑡), 𝑙(𝑖, 𝑡, 𝑜, 𝑗)] ×

∏[

𝑡,𝑜

𝜔′(𝑡, 𝑜)|𝜎𝜔′,𝐵
2 , 𝜔(𝑝𝑡)]∏[

𝑝𝑡

𝑤(𝑝𝑡)|𝜎𝜔,𝑐
2 , 𝜔(𝑝𝑡)]∏[

𝑝𝑡

𝜔(𝑝𝑡)|𝛼𝜔, 𝛽𝜔] ×

∏[

𝑡,𝑜

𝛾′(𝑡, 𝑜)|𝜎𝛾′,𝐵
2 , 𝛾(𝑝𝑡 , 𝑜)]∏[

𝑝𝑡,𝑜

𝑔(𝑝𝑡 , 𝑜)|𝜎𝛾,𝑐
2 , 𝛾(𝑝𝑡 , 𝑜)]∏[

𝑝𝑡,𝑜

𝛾(𝑝𝑡 , 𝑜)|𝛼𝛾 , 𝛽𝛾] ×

∏[

𝑡,𝑜,𝑗

𝜑′(𝑡, 𝑜, 𝑗)|𝜎𝜑′,𝐵
2 , 𝜑(𝑜, 𝑗)]∏[

𝑜,𝑗

𝑓(𝑜, 𝑗)|𝜎𝜑,𝑐
2 , 𝜑(𝑜, 𝑗)]∏[

𝑜,𝑗

𝜑(𝑜, 𝑗)|𝛼𝜑, 𝛽𝜑] ×

∏[

𝑡,𝑜

C𝑅𝑛(𝑡, 𝑜)|𝜎𝒞,𝑐
2 , 𝒞𝑅𝑛(𝑡, 𝑜)]∏[

𝑡,𝑜

𝒞𝑅𝑛(𝑡, 𝑜)|𝜇𝒞 , 𝜎𝒞]

 

For a simple disease model in which the association between lung cancer mortality and radon 

exposure is modeled through a linear or log-linear function without effect modifying variables and in 

which the baseline hazard is modeled through a piecewise constant function with four different 

baseline hazards as a function of the age of the worker, the MCMC class contains a dictionary of 
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parameters, in which it holds five instances of the Parameter class (𝛽, 𝜆1, 𝜆2, 𝜆3 and 𝜆4) and one 

instance of the LatentVariable class. 

As described in Section 2.3, the true exposure 𝑋𝑖(𝑡, 𝑜) of miner 𝑖 in year 𝑡 and object 𝑜 in M2 

depends on the product of the true working time factor in year 𝑡 and object 𝑜 𝜔′(𝑡, 𝑜), the true 

equilibrium factor in year 𝑡 and object 𝑜 𝛾′(𝑡, 𝑜), the true activity weighting factor for activity 𝑗 in 

year 𝑡 and object 𝑜 𝜑′(𝑡, 𝑜, 𝑗) and the true radon gas measurement in year 𝑡 and object 𝑜 𝒞𝑅𝑛(𝑡, 𝑜): 

𝐸(𝑡, 𝑜, 𝑗) = 𝒞𝑅𝑛(𝑡, 𝑜) ⋅ 12 ⋅ 𝛾
′(𝑡, 𝑜) ⋅ 𝜔′(𝑡, 𝑜) ⋅ 𝜑′(𝑡, 𝑜, 𝑗). 

The LatentVariable class is responsible for the calculation of the true exposure of a miner 

working in year 𝑡 in object 𝑜 and activity 𝑗. To do so, it holds the four uncertain factors 𝜔, 𝛾, 𝜑 and 

𝒞𝑅𝑛. Each of these uncertain factors is an instance of the UncertainFactor class. The function 

calculate_exposure() in the LatentVariable class calculates the true exposure for each year 𝑡 and 

each miner 𝑖. It does so by accessing the current values of the uncertain factors through the 

get_values() function which is implemented in the UncertainFactor class for each uncertain 

factor 𝜔, 𝛾, 𝜑 and 𝒞𝑅𝑛 and by multiplying the values by 12. 

Each instance of UncertainFactor contains at least one instance of the class ErrorComponent or 

MultClassicalErrorComponent which represents the classical measurement error component 

of the UncertainFactor instance. Depending on the error structure, the UncertainFactor may 

also hold a BerksonErrorComponent representing the Berkson error component. 

In order to avoid too much repetition in the presentation, we will describe the implementation and 

the functioning of the algorithm while focusing on the working time factor 𝜔′(𝑡, 𝑜) in the following. 

For this uncertain factor, the Berkson and classical measurement error component are given by 

𝑤(𝑝𝑡) = 𝜔(𝑝𝑡) ⋅ 𝑈𝜔,𝑐(𝑝𝑡)

𝜔′(𝑡, 𝑜) = 𝜔(𝑝𝑡) ⋅ 𝑈𝜔′,𝐵(𝑡, 𝑜).
 

The algorithm proposes new values for the classical and for the Berkson errors jointly. Therefore, for 

the update of 𝜔(𝑝𝑡) and 𝜔′(𝑡, 𝑜), we have to look at the joint posterior which is given by: 

[𝑤(𝑝𝑡), 𝜔′(𝑡, 𝑜)| ⋅] ∝ ∏[

𝑖,𝑡

𝑌𝑖|𝜆, 𝛽, 𝑋𝑖
𝑐𝑢𝑚(𝑡)] ×

∏[

𝑡,𝑜

𝜔′(𝑡, 𝑜)|𝜎𝜔′,𝐵
2 , 𝜔(𝑝𝑡)] ×

∏[

𝑝𝑡

𝑤(𝑝𝑡)|𝜎𝜔,𝑐
2 , 𝜔(𝑝𝑡)] ×

∏[

𝑝𝑡

𝜔(𝑝𝑡)|𝛼𝜔, 𝛽𝜔]

 

These are the only terms that either depend on 𝜔′(𝑡, 𝑜) or 𝜔(𝑝𝑡).  

Since we have the combination of classical and Berkson errors over different uncertain factors 

representing the latent exposure, the implementation of the update of the latent variable faces more 

challenges: The classical error and the Berkson error may affect the exposure on different 

dimensions. For instance, the classical error on the factor 𝜔 depends only on 𝑝𝑡 while the Berkson 

error depends on 𝑡 and 𝑜. To solve this problem, we suggest a 2-step procedure. We show this 

procedure in the general update flow below for 𝜔 after showing the update flow for one parameter. 

A 1.3 General update flow of the algorithm for one iteration 

We showed how the update of a parameter within an MCMC algorithm and for an uncertain factor as 

part of the latent exposure variable is made. 

In the following, we will present an update for an arbitrary unknown parameter of the measurement 

model and afterwards an update for 𝜔 will be described to get more insight in the algorithm. Note 

that all ratios are calculated on the log scale and get transformed back to the normal scale right 
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before the final acceptance rate calculation. This ensures numerical stability and speeds up some 

computations due to the simplifications in the used densities. 

The algorithm iterates over all parameters and updates each of them. Afterwards, the constituent 

parts of the latent variable are getting updated. 

Update scheme for a parameter 

The update for a parameter is conducted in a separate Python module update.py. Note that for a 

parameter update the latent variable is fixed (i.e. as described before, the update can be done given 

the values of the latent variable). The update scheme for the parameter is rather straightforward and 

it works as follows: 

1. The MCMC class requires the current state of the chain (all parameters and the latent variable) 

and passes it to the update function within the update.py module. 

2. A new value is proposed given the current value. All other values stay the same. 

3. Using the proposed value of the parameter to be updated and the current values of the other 

parameters and the latent variable, the acceptance rate 𝜌 is calculated as described in Section 

4.6.1. 

4. Accept the proposed value as new state with probability 𝜌. 

5. Increment the iterator from t to t+1 for that parameter and store the updated information. 

 

Figure A.1: The disease model, Berkson and classical measurement model of 𝜔 and the exposure model for the 
update of 𝜔 
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Update scheme for 𝝎 

The update for each of the uncertain factors follows in general the same scheme as described before. 

However, since the latent exposure is a combination of different uncertain factors which have a 

complex error structure, the update of each of them is more complex. The update is exemplary 

illustrated for 𝜔. Figure A.1 shows the focus on the relevant parts of the full DAG. If 𝜔 is updated, the 

other uncertain factors can be seen as fixed. The same is true for the parameters 𝛽 and 𝜆. The 

update scheme has to include two measurement models: One for the Berkson and one for the 

classical component. The full update scheme is given as follows: 

1. The true mean values of 𝜔 depend on 𝑝𝑡. Therefore, the algorithm uses as many different mean 

values as the number of different time periods. Given the current state, a candidate for new 

mean values is proposed (for each 𝑝𝑡) and the actual classical measurement errors are calculated 

(one for each 𝑝𝑡). Depending on a multiplicative or additive error structure, the error is 

calculated as 𝑈 = 𝑍/𝑋 or 𝑈 = 𝑍 − 𝑋. For 𝜔 the error is therefore calculated as 𝑈𝜔,𝑐(𝑝𝑡) =

𝜔(𝑝𝑡)/w(𝑝𝑡). 

2. Given the calculated errors and the proposed value, the proposal ratio, the measurement ratio 

and the exposure ratio can be calculated. 

3. After the classical error is calculated, the Berkson error must be taken into account. Since the 

Berkson error affects the uncertain factor in another dimension, it is necessary to expand the 

uncertain factor to the correct dimension. To do that, a mapping matrix is used. The current true 

mean values are multiplied by this matrix to map it to the right dimension. In the case of 𝜔, the 

dimension is defined over all time points and objects. Afterwards the Berkson errors 𝑈𝜔′,𝐵 are 

proposed and multiplied on the resulting values with the correct dimension yielding 𝜔′(𝑡, 𝑜). To 

understand this procedure, see the following example: 

𝜔′(𝑡, 𝑜) = 𝜔(𝑝𝑡) ⋅ 𝑈𝜔′,𝐵(𝑡, 𝑜) with 

(

 
 
 
 
 
 
 
 

𝜔′(1955,1)

𝜔′(1955,2)

𝜔′(1956,1)

𝜔′(1957,1)

𝜔′(1958,1)

𝜔′(1959,1)

𝜔′(1959,2)

𝜔′(1967,1)

𝜔′(1968,1)

𝜔′(1968,2))

 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 

1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1)

 
 
 
 
 
 
 

(

𝜔(1)
𝜔(2)
𝜔(3)

) ∘

(

 
 
 
 
 
 
 
 
 

𝑈𝜔′,𝐵(1955,1)

𝑈𝜔′,𝐵(1955,2)

𝑈𝜔′,𝐵(1956,1)

𝑈𝜔′,𝐵(1957,1)

𝑈𝜔′,𝐵(1958,1)

𝑈𝜔′,𝐵(1959,1)

𝑈𝜔′,𝐵(1959,2)

𝑈𝜔′,𝐵(1967,1)

𝑈𝜔′,𝐵(1968,1)

𝑈𝜔′,𝐵(1968,2))

 
 
 
 
 
 
 
 
 

 

Here the dimension of 𝜔(𝑝𝑡) is three (3 different periods). The dimension for the Berkson errors 

affects the mean values on the time scale and objects. In this example, the mapping matrix has 

therefore a dimension of 10 × 3. Afterwards the Berkson errors are multiplied element-wise on 

the new dimension resulting in proposed deviations of 𝜔′(𝑡, 𝑜)cand. 

4. After proposing Berkson errors, the measurement ratio and the proposal ratio for these values 

can be calculated. 
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5. Given new values with the Berkson error, it is again necessary to map them to the full dimension 

of the data set. This is again done by a mapping matrix in the same manner as before but with 

another dimension (if the model is specified without a Berkson error, the multiplication of the 

first mapping matrix is not necessary). Since the true exposure is defined as 𝑋𝑖(𝑡, 𝑜) = 𝒞𝑅𝑛(𝑡, 𝑜) ⋅

12 ⋅ 𝛾′(𝑡, 𝑜) ⋅ 𝜔′(𝑡, 𝑜) ⋅ 𝜑′(𝑡, 𝑜, 𝑗) ⋅ 𝑙(𝑖, 𝑡, 𝑜, 𝑗), the new proposed latent exposure can be 

calculated as 𝑋𝑖(𝑡, 𝑜)cand = 𝑋𝑖(𝑡, 𝑜)t/𝜔′(𝑡, 𝑜)t ⋅ 𝜔′(𝑡, 𝑜)cand. 

6. Afterwards, the new latent exposure values are cumulated. This is achieved by using again a 

sparse matrix with a 1 on triangular blocks to sum up the exposures received by each of the 

workers. As an illustration, see the following short example: 

(

 
 
 
 
 
 
 

𝑋1(1)
𝑋1(1) + 𝑋1(2)
𝑋1(1) + 𝑋1(2) + 𝑋1(3)
𝑋1(1) + 𝑋1(2) + 𝑋1(3) + 𝑋1(4)
𝑋2(1)
𝑋2(1) + 𝑋2(2)
𝑋3(1)
𝑋3(1) + 𝑋3(2)

𝑋3(1) + 𝑋3(2) + 𝑋3(3) )

 
 
 
 
 
 
 

=

(

 
 
 
 
 
 

1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1 1)

 
 
 
 
 
 

(

 
 
 
 
 
 

𝑋11
𝑋12
𝑋13
𝑋14
𝑋21
𝑋22
𝑋31
𝑋32
𝑋33)

 
 
 
 
 
 

 

7. Given the new proposed cumulative exposure values, it is now possible to calculate the ratio of 

the disease model. 

8. To get the final acceptance probability, the six ratios of the different models must be summed up 

and exponentiated: 

• The proposal, measurement and exposure ratio from the classical error component 

(calculated in step 2) 

• The proposal and measurement ratio from the Berkson component (calculated in step 4) 

• The ratio of the disease model 

9. The proposed latent exposure (through 𝜔′(𝑡, 𝑜)cand) and the proposed errors are accepted as 

new state of the system according to the acceptance probability calculated in step 8, otherwise 

the old state is carried forward.  

10. In a last step, the iterators are incremented from t to t+1 and the update information is stored. 
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A 2 Generated survival times in the simulation study 

 

Figure A.2: Kaplan Meier curves for non-exposed miners with 0 WLM (red) and exposed miners (blue) for one 
simulation data set generated according to scenarios S1, S2 or S3, respectively. 
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A 3 Estimated 95% credible intervals for the proposed Bayesian hierarchical approach in the 

simulation study 

 

Figure A.3: Estimated means and 95% credible intervals on 100 data sets for the parameter 𝛽 of the Cox model 
using the Bayesian hierarchical approach for simulation scenario S1. The dotted horizontal line is the true 
underlying value of 𝛽. 
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Figure A.4: Estimated means and 95% credible intervals on 100 data sets for the baseline hazards (𝜆𝑘 , 𝑘 =
1,2,3,4) of the Cox model using the Bayesian hierarchical approach for simulation scenario S1. The dotted 
horizontal line is the true underlying value. 
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